Skip to main content
Log in

Thioctic Acid for Patients with Symptomatic Diabetic Polyneuropathy

A Critical Review

  • Review Article
  • Published:
Treatments in Endocrinology

Abstract

Diabetic neuropathy represents a major health problem, as it is responsible for substantial morbidity, increased mortality, and impaired quality of life. Near-normoglycemia is now generally accepted as the primary approach to prevention of diabetic neuropathy, but is not achievable in a considerable number of patients. A growing body of evidence suggests that oxidative stress resulting from enhanced free-radical formation and/or defects in antioxidant defense is implicated in the pathogenesis of diabetic neuropathy. Markers of oxidative stress such as superoxide anion and peroxynitrite production are increased in diabetic patients in relation to the severity of polyneuropathy. In experimental diabetic neuropathy, oxygen free-radical activity in the sciatic nerve is increased, and treatment with thioctic acid, a potent lipophilic antioxidant, results in prevention or improvement of the diabetes-induced neurovascular and metabolic abnormalities in various organ systems. Pharmacodynamic studies have shown that thioctic acid favorably influences the vascular abnormalities of diabetic polyneuropathy such as impaired microcirculation, increased indices of oxidative stress, and increased levels of markers for vascular dysfunction, such as thrombomodulin, albuminuria, and nuclear factor-κB.

Thus far, seven controlled randomized clinical trials of thioctic acid in patients with diabetic neuropathy have been completed (Alpha-Lipoic Acid in Diabetic Neuropathy [ALADIN I-III], Deutsche Kardiale Autonome Neuropathie [DEKAN], Oral Pilot [ORPIL], Symptomatic Diabetic Neuropathy [SYDNEY], Neurological Assessment of Thioctic Acid in Neuropathy [NATHAN] II) using different study designs, durations of treatment, doses, sample sizes, and patient populations. Recently, a comprehensive analysis was undertaken of trials with comparable designs that met specific eligibility criteria for a meta-analysis to obtain a more precise estimate of the efficacy and safety of thioctic acid (600mg intravenously for 3 weeks) in diabetic patients with symptomatic polyneuropathy. This meta-analysis included the largest sample of diabetic patients (n = 1258) ever to have been treated with a single drug or class of drugs to reduce neuropathic symptoms, and confirmed the favorable effects of thioctic acid based on the highest level of evidence (Class Ia: evidence from meta-analyses of randomized, controlled trials). The following conclusions can be drawn from these trials: (i) short-term treatment for 3 weeks using intravenous thioctic acid 600 mg/day reduces the chief symptoms of diabetic polyneuropathy to a clinically meaningful degree; (ii) this effect on neuropathic symptoms is accompanied by an improvement of neuropathic deficits, suggesting potential for the drug to favorably influence underlying neuropathy; (iii) oral treatment for 4–7 months tends to reduce neuropathic deficits and improve cardiac autonomic neuropathy; and (iv) clinical and postmarketing surveillance studies have revealed a highly favorable safety profile of the drug.

Based on these findings, a pivotal long-term multicenter trial of oral treatment with thioctic acid (NATHAN I) is being conducted in North America and Europe to investigate effects on progression of diabetic polyneuropathy, using a clinically meaningful and reliable primary outcome measure that combines clinical and neurophysiological assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

Notes

  1. The NATHAN II study was a multicenter trial including outpatients from 33 diabetes centers in the US, Canada, and Europe. In the trial, 241 patients received thioctic acid and 236 received placebo.

References

  1. American Diabetes Association, American Academy of Neurology. Consenus statement: report and recommendations of the San Antonio conference on diabetic neuropathy. Diabetes Care 1988: 11: 592–7

    Google Scholar 

  2. Thomas PK. Metabolic neuropathy. J R Coll Physicians Lond 1973; 7: 154–60

    PubMed  CAS  Google Scholar 

  3. Shaw JE, Zimmet PZ, Gries FA, et al. Epidemiology of diabetic neuropathy. In: Gries FA, Cameron NE, Low PA, et al., editors. Textbook of diabetic neuropathy. New York: Thieme Stuttgart, 2003: 64–82

    Google Scholar 

  4. Resnick HE, Vinik AI, Schwartz AV, et al. Independent effects of peripheral nerve dysfunction on lower-extremity physical function in old age: The Women’s Health and Aging study. Diabetes Care 2000; 23: 1642–7

    Article  PubMed  CAS  Google Scholar 

  5. Forsblom CM, Sane T, Groop P-H, et al. Risk factors for mortality in type 2 (non-insulin-dependent) diabetes: evidence of a role for neuropathy and a protective effect of HLA-DR4. Diabetologia 1998; 41: 1253–62

    Article  PubMed  CAS  Google Scholar 

  6. Coppini DV, Bowtell PA, Weng C, et al. Showing neuropathy is related to increased mortality in diabetic patients: a survival analysis using an accelerated failure time model. J Clin Epidemiol 2000; 53: 519–23

    Article  PubMed  CAS  Google Scholar 

  7. Abbott CA, Vileikyte L, Williamson S, et al. Multicenter study of the incidence of and predictive risk factors for diabetic neuropathic foot ulceration. Diabetes Care 1998; 21: 1071–5

    Article  PubMed  CAS  Google Scholar 

  8. Chan AW, MacFarlane IA, Bowsher D, et al. Chronic pain in patients with diabetes mellitus: comparison with non-diabetic population. The Pain Clinic 1990; 3: 147–59

    Google Scholar 

  9. Galer BS, Gianas A, Jensen MP. Painful diabetic neuropathy: epidemiology, pain description, and quality of life. Diabetes Res Clin Pract 2000; 47: 123–8

    Article  PubMed  CAS  Google Scholar 

  10. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–86

    Article  Google Scholar 

  11. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet 1998; 352: 837–53

    Article  Google Scholar 

  12. Pfeifer MA, Schumer MP. Clinical trials of diabetic neuropathy: past, present, and future. Diabetes 1995; 44: 1355–61

    Article  PubMed  CAS  Google Scholar 

  13. Ziegler D. Glycemic control. In: Gries FA, Cameron NE, Low PA, et al., editors. Textbook of diabetic neuropathy. New York: Thieme Stuttgart, 2003: 91–6

    Google Scholar 

  14. Cameron NE, Cotter MA. Metabolic and vascular factors in the pathogenesis of diabetic neuropathy. Diabetes 1997; 46 Suppl. 2: S31–7

    Google Scholar 

  15. Tomlinson DR, Fernyhough P, Diemel LT. Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors. Diabetes 1997; 46 Suppl.2 S43–9

    Google Scholar 

  16. Pfeifer MA, Schumer MP, Gelber DA. Aldose reductase inhibitors: the end of an era or the need for different trial designs? Diabetes 1997; 46 Suppl.2: S82–9

    Google Scholar 

  17. Horrobin DF. Essential fatty acids in the management of impaired nerve function in diabetes. Diabetes 1997; 46 Suppl. 2: S38–42

    Google Scholar 

  18. Low PA, Nickander KK, Tritschler HJ. The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes 1997; 46 Suppl. 2: S38–42

    Google Scholar 

  19. Tütüncü NB, Bayraktar M, Varli K. Reversal of defective nerve conduction with vitamin E supplementation in type 2 diabetes. Diabetes Care 1998; 21: 1915–8

    Article  PubMed  Google Scholar 

  20. Malik RA, Williamson S, Abbott C, et al. Effect of angiotensin-converting-enzyme (ACE) inhibitor trandolapril on human diabetic neuropathy: randomized double-blind controlled trial. Lancet 1998; 352: 1978–81

    Article  PubMed  CAS  Google Scholar 

  21. Way KJ, Katai N, King GL. Protein kinase C and the development of diabetic vascular complications. Diabetic Med 2001; 18: 945–59

    Article  PubMed  CAS  Google Scholar 

  22. Apfel SC, Schwartz S, Adornato BT, et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy. JAMA 2000; 284: 2215–21

    Article  PubMed  CAS  Google Scholar 

  23. Nicolucci A, Carinci F, Cavaliere D, et al. A meta-analysis of trials on aldose reductase inhibitors in diabetic peripheral neuropathy. Diabet Med 1996; 13: 1017–26

    Article  PubMed  CAS  Google Scholar 

  24. Cavaliere D, Scorpiglione N, Belfiglio M, et al. Quality assessment of randomised clinical trials on medical treatment of diabetic neuropathy. Diabetes Nutr Metab 1994; 7: 287–94

    Google Scholar 

  25. Luft D, Ziegler D. Evaluation of drug effects. In: Gries FA, Cameron NE, Low PA, et al., editors. Textbook of diabetic neuropathy. New York: Thieme Stuttgart, 2003: 313–60

    Google Scholar 

  26. Nicolucci A, Carinci F, Graepel JG, et al. The efficacy of tolrestat in the treatment of diabetic peripheral neuropathy: a meta-analysis of individual patient data. Diabetes Care 1996; 19: 1091–6

    Article  PubMed  CAS  Google Scholar 

  27. Ziegler D. Treatment of neuropathic pain. In: Gries FA, Cameron NE, Low PA, et al., editors. Textbook of diabetic neuropathy. New York: Thieme Stuttgart, 2003: 211–24

    Google Scholar 

  28. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40: 405–12

    Article  PubMed  CAS  Google Scholar 

  29. Ziegler D, Sohr C, Akila F, et al. Oxidative stress in diabetic patients with or without polyneuropathy and cardiovascular autonomic neuropathy [abstract]. Diabetologia 2002; 45 Suppl. 2: A329

    Google Scholar 

  30. Suzuki YJ, Tsuchiya M, Packer L. Thioctic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species. Free Radic Res Commun 1991; 15: 255–63

    Article  PubMed  CAS  Google Scholar 

  31. Packer L, Witt EH, Tritschler H. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 1995; 19: 227–50

    Article  PubMed  CAS  Google Scholar 

  32. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813–20

    Article  PubMed  CAS  Google Scholar 

  33. Packer L, Krämer K, Rimbach G. Molecular aspects of lipoic acid in the prevention of diabetic complications. Nutrition 2001; 17: 888–95

    Article  PubMed  CAS  Google Scholar 

  34. Haramaki N, Han D, Handelmann DL, et al. Cytosolic and mitochondrial systems for NADH- and NADPH-dependent reduction of alpha-lipoic acid. Free Radic Biol Med 1997; 22: 535–42

    Article  PubMed  CAS  Google Scholar 

  35. Nagamatsu M, Nickander KK, Schmelzer JD, et al. Lipoic acid improves nerve blood flow, reduces oxidative stress and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care 1995; 18: 1160–7

    Article  PubMed  CAS  Google Scholar 

  36. Nickander KK, McPhee BR, Low PA, et al. Alpha-lipoic acid: antioxidant potency against lipid peroxidation of neural tissues in vitro and implications for diabetic neuropathy. Free Radic Biol Med 1996; 21: 631–9

    Article  PubMed  CAS  Google Scholar 

  37. Bierhaus A, Chevion S, Chevion M, et al. Advanced glycation end product-induced activation of NF-κB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 1997; 46: 1481–90

    Article  PubMed  CAS  Google Scholar 

  38. Garret NE, Malcangio M, Dewhurst M, et al. Alpha-lipoic acid corrects neuropeptide deficits in diabetic rats via introduction of trophic support. Neurosci Lett 1997; 222: 191–4

    Article  Google Scholar 

  39. Mitsui Y, Schmelzer JD, Zollman PJ, et al. Alpha-lipoic acid provides neuroprotection from ischemia-reperfusion injury of peripheral nerve. J Neurol Sci 1999; 163: 11–6

    Article  PubMed  CAS  Google Scholar 

  40. Stevens MJ, Obrosova I, Cao X, et al. Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 2000; 49: 1006–15

    Article  PubMed  CAS  Google Scholar 

  41. Cameron NE, Jack AM, Cotter MA. Effect of alpha-lipoic acid on vascular responses and nociception in diabetic rats. Free Radic Biol Med 2001; 31: 125–35

    Article  PubMed  CAS  Google Scholar 

  42. Coppey LJ, Gellett JS, Davidson EP, et al. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 2001; 50: 1927–37

    Article  PubMed  CAS  Google Scholar 

  43. Piotrowski P, Wierzbicka K, Smialek M. Neuronal death in the rat hippocampus in experimental diabetes and cerebral ischaemia treated with antioxidants. Folia Neuropathol 2001; 39: 147–54

    PubMed  CAS  Google Scholar 

  44. Kunt T, Forst T, Wilhelm A, et al. Alpha-lipoic acid reduces expression of vascular cell adhesion molecule-1 and endothelial adhesion of human monocytes after stimulation with advanced glycation end products. Clin Sci (Lond) 1999; 96: 75–82

    Article  CAS  Google Scholar 

  45. Kocak G, Aktan F, Canbolat O, et al. The ADIC Study Group: antioxidants in diabetes-induced complications: alpha-lipoic acid treatment ameliorates metabolic parameters, blood pressure, vascular reactivity and morphology of vessels already damaged by streptozotocin-diabetes. Diabetes Nutr Metab 2000; 13: 308–18

    PubMed  CAS  Google Scholar 

  46. Jain SK, Lim G. Lipoic acid decreases lipid peroxidation and protein glycosylation and increases (Na(+) + K(+))- and Ca(++)-ATPase activities in high glucose-treated human erythrocytes. Free Radic Biol Med 2000; 29: 1122–8

    Article  PubMed  CAS  Google Scholar 

  47. Kocak G, Karasu C. Elimination of *O2(−)/H2O2 by alpha-lipoic acid mediates the recovery of basal EDRF/NO availability and the reversal of superoxide dismutase-induced relaxation in diabetic rat aorta. Diabetes Obes Metab 2002; 4: 69–74

    Article  PubMed  CAS  Google Scholar 

  48. Melhem MF, Craven PA, Derubertis FR. Effects of dietary supplementation of alpha-lipoic acid on early glomerular injury in diabetes mellitus. J Am Soc Nephrol 2001; 12: 124–33

    PubMed  CAS  Google Scholar 

  49. Melhem MF, Craven PA, Liachenko J, et al. Alpha-lipoic acid attenuates hyper-glycemia and prevents glomerular mesangial matrix expansion in diabetes. J Am Soc Nephrol 2002; 13: 108–16

    PubMed  CAS  Google Scholar 

  50. Visioli F, Smith A, Zhang W, et al. Lipoic acid and vitamin C potentiate nitric oxide synthesis in human aortic endothelial cells independently of cellular glutathione status. Redox Rep 2002; 7: 223–7

    Article  PubMed  CAS  Google Scholar 

  51. El Midaoui A, de Champlain J. Prevention of hypertension, insulin resistance, and oxidative stress by alpha-lipoic acid. Hypertension 2002; 39: 303–7

    Article  PubMed  Google Scholar 

  52. Shotton HR, Clarke S, Lincoln J. The effectiveness of treatments of diabetic autonomie neuropathy is not the same in autonomie nerves supplying different organs. Diabetes 2003; 52: 157–64

    Article  PubMed  CAS  Google Scholar 

  53. Stockklauser-Farber K, Ballhausen T, Laufer A, et al. Influence of diabetes on cardiac nitric oxide synthase expression and activity. Biochim Biophys Acta 2000; 1535: 10–20

    Article  PubMed  CAS  Google Scholar 

  54. Strödter D, Lehmann E, Lehmann U, et al. The influence of thioctic acid on metabolism and function of the diabetic heart. Diabetes Res Clin Pract 1995; 29: 19–26

    Article  PubMed  Google Scholar 

  55. Ramrath S, Tritschler HJ, Eckel J. Stimulation of cardiac glucose transport by thioctic acid and insulin. Horm Metab Res 1999; 31: 632–5

    Article  PubMed  CAS  Google Scholar 

  56. Obrosova I, Cao X, Greene DA, et al. Diabetes-induced changes in lens antioxidant status, glucose utilization and energy metabolism: effect of DL-α-lipoic acid. Diabetologia 1998; 41: 1442–50

    Article  PubMed  CAS  Google Scholar 

  57. Obrosova IG, Minchenko AG, Marinescu V, et al. Antioxidants attenuate early up regulation of retinal vascular endothelial growth factor in streptozotocin-diabetic rats. Diabetologia 2001; 44: 1102–10

    Article  PubMed  CAS  Google Scholar 

  58. Borenshtein D, Ofri R, Werman M, et al. Cataract development in diabetic sand rats treated with alpha-lipoic acid and its gamma-linolenic acid conjugate. Diabetes Metab Res Rev 2001; 17: 44–50

    Article  PubMed  CAS  Google Scholar 

  59. Goralska M, Dackor R, Holley B, et al. Alpha-lipoic acid changes iron uptake and storage in lens epithelial cells. Exp Eye Res 2003; 76: 241–8

    Article  PubMed  CAS  Google Scholar 

  60. Persson HL, Svensson AI, Brunk UT. Alpha-lipoic acid and alpha-lipoamide prevent oxidant-induced lysosomal rapture and apoptosis. Redox Rep 2001; 6: 327–34

    Article  PubMed  CAS  Google Scholar 

  61. Myzak MC, Carr AC. Myeloperoxidase-dependent caspase-3 activation and apoptosis in HL-60 cells: protection by the antioxidants ascorbate and (dihydro)lipoic acid. Redox Rep 2002; 7: 47–53

    Article  PubMed  CAS  Google Scholar 

  62. Anderwald C, Koca G, Furnsinn C, et al. Inhibition of glucose production and stimulation of bile flow by R (+)-alpha-lipoic acid enantiomer in rat liver. Liver 2002; 22: 355–62

    Article  PubMed  Google Scholar 

  63. Liu J, Head E, Gharib AM, et al. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A 2002; 99: 2356–61

    Article  PubMed  CAS  Google Scholar 

  64. Liu J, Killilea DW, Ames BN. Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A 2002; 99: 1876–81

    Article  PubMed  CAS  Google Scholar 

  65. Hagen TM, Liu J, Lykkesfeldt J, et al. Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci U S A 2002; 99: 1870–5

    Article  PubMed  CAS  Google Scholar 

  66. Hermann R, Niebch G, Borbe HO, et al. Enantioselective pharmacokinetics and bioavailability of different racemic α-lipoic acid formulations in healthy volunteers. Eur J Pharm Sci 1996; 4: 167–74

    Article  CAS  Google Scholar 

  67. Rosak C, Ziegler D, Mehnert H, et al. Lokale Verträglichkeit intravenöser α-Liponsäure. Munch Med Wochenschr 1994; 136: 142–6

    Google Scholar 

  68. Gleiter CH, Schug BS, Hermann R, et al. Influence of food intake on the bioavailability of thioctic acid enantiomers. Eur J Clin Pharmacol 1996; 509: 513–4

    Article  Google Scholar 

  69. Gleiter CH, Schreeb KH, Freudenthaler S, et al. Lack of interaction between thioctic acid, glibenclamide and acarbose. Br J Clin Pharmacol 1999; 48: 819–25

    Article  PubMed  CAS  Google Scholar 

  70. Ruus P, Eggenstein C, Niebch G, et al. Pharmacokinetics of thioctic acid, glibenclamide and acarbose. Br J Clin Pharmacol 1999; 48: 819–25

    Google Scholar 

  71. Peter G, Borbe HO. Untersuchungen zur Absorption und Verteilung der Thioctsäure als Grandlage der klinischen Wirksamkeit bei Behandlung der diabetischen polyneuropathie. Diabetes Stoffwechsel 1996; 5: 12–6

    Google Scholar 

  72. Biewenga G, Vriesmann MF, Haenen GRMM, et al. The identification of a new metabolite of lipoic acid in man: 3-ketolipoic acid. In: Thesis G, editor. Biewenga: lipoic acid: a pharmacochemical study. Netherlands: Vrije Universiteit Amsterdam, 1997: 137–52

    Google Scholar 

  73. Locher M, Busker E, Borbe HO. Metabolism of α-lipoic acid in human volunteers [abstract 206]. Naunyn Schmiederbergs Arch Pharmacol 1995; R52: 351

    Google Scholar 

  74. Stevens JL, Bakke JE. S-methylation. In: Mulder GJ, editor. Conjugation reactions in drug metabolism. London: Taylor and Francis, 1990

    Google Scholar 

  75. Haak ES, Usadel KH, Kohleisen M, et al. The effect of α-lipoic acid on the neurovascular reflex arc in patients with diabetic neuropathy assessed by capillary microscopy. Microvasc Res 1999; 58: 28–34

    Article  PubMed  CAS  Google Scholar 

  76. Kusterer K, Haak E, Haak T. Lipoate prevention of diabetic microangiopathy. In: Fuchs J, Packer L, Zimmer G, editors. Lipoic acid in health and disease. New York: Marcel Decker, 1997: 429–34

    Google Scholar 

  77. Haak E, Usadel KH, Kusterer K, et al. Effects of alpha-lipoic acid on microcirculation in patients with peripheral diabetic neuropathy. Exp Clin Endocrinol Diabetes 2000; 108: 168–74

    Article  PubMed  CAS  Google Scholar 

  78. Hofmann M, Zimmer G. Lipoate prevention of diabetic microangiopathy. In: Fuchs J, Packer L, Zimmer G, editors. Lipoic acid in health and disease. New York: Marcel Decker, 1997: 423–7

    Google Scholar 

  79. Borcea V, Nourooz-Zadeh J, Wolff SP, et al. Alpha-lipoic acid decreases oxidative stress in patients with diabetes mellitus. Free Radic Biol Med 1999; 22: 1495–500

    Article  CAS  Google Scholar 

  80. Heitzer T, Finckh B, Albers S, et al. Beneficial effects of alpha-lipoic acid and ascorbic acid on endothelium-dependent, nitric oxide-mediated vasodilation in diabetic patients: relation to parameters of oxidative stress. Free Radic Biol Med 2001; 31: 53–61

    Article  PubMed  CAS  Google Scholar 

  81. Strokov IA, Manukhina EB, Bakhtina LY, et al. The function of endogenous protective systems in patients with insulin-dependent diabetes mellitus and polyneuropathy: effect of antioxidant therapy. Bull Exp Biol Med 2000; 130: 986–90

    PubMed  CAS  Google Scholar 

  82. Androne L, Gavan NA, Veresiu IA, et al. In vivo effect of lipoic acid on lipid peroxidation in patients with diabetic neuropathy. In Vivo 2000; 14: 327–30

    PubMed  CAS  Google Scholar 

  83. Kahler W, Kuklinski B, Rühlmann C, et al. Diabetes mellitus: eine mit freien radikalen assoziierte erkrankung. Inn Med 1993; 48: 223–32

    Article  CAS  Google Scholar 

  84. Hofmann MA, Bierhaus A, Zumbach MS, et al. Insufficient glycemic control increases nuclear factor-κB binding activity in peripheral blood mononuclear cells isolated from patients with type I diabetes. Diabetes Care 1998; 21:1310–6

    Article  PubMed  CAS  Google Scholar 

  85. Hofmann MA, Schiekofer S, Isermann B, et al. Peripheral blood mononuclear cells isolated from patients with diabetic nephropathy show increased activation of the oxidative-stress sensitive transcription factor NF-κB. Diabetologia 1999; 42(2): 222–32

    Article  PubMed  CAS  Google Scholar 

  86. Morcos M, Borcea V, Isermann B, et al. Effect of alpha-lipoic acid on the progression of endothelial cell damage and albuminuria in patients with diabetes mellitus: an exploratory study. Diabetes Res Clin Pract 2001; 52: 175–83

    Article  PubMed  CAS  Google Scholar 

  87. Dyck PJ, Davies JL, Wilson DM, et al. Risk factors for severity of diabetic polyneuropathy: intensive longitudinal assessment of the Rochester Diabetic Neuropathy Study cohort. Diabetes Care 1999; 22: 1479–86

    Article  PubMed  CAS  Google Scholar 

  88. Kishi Y, Schmelzer JD, Yao JK, et al. Lipoic acid: effect on glucose uptake, sorbitol pathway and energy metabolism in experimental diabetic neuropathy. Diabetes 1999; 48: 2045–51

    Article  PubMed  CAS  Google Scholar 

  89. Jacob S, Henriksen EJ, Tritschler HJ, et al. Enhancement of glucose disposal in patients with type 2 diabetes by α-lipoic acid. Arzneimittel Forschung 1995; 45: 872–4

    PubMed  CAS  Google Scholar 

  90. Jacob S, Henriksen EJ, Tritschler HJ, et al. Improvement of insulin-stimulated glucose-disposal in type 2 diabetes after repeated parenteral administration of thioctic acid. Exp Clin Endocrinol Diabetes 1996; 104: 284–8

    Article  PubMed  CAS  Google Scholar 

  91. Rett K, Wickmayr M, Ruus P, et al. α-Liponsäure steigert die Insulinempfindlichkeit übergewichtiger Patienten mit typ II Diabetes. Diabetes und Stoffwechsel 1996; 5(3 Suppl.): 59–63

    Google Scholar 

  92. Jacob S, Rett K, Henricksen EJ, et al. Thioctic acid: effect on insulin sensitivity and glucose-metabolism. Biofactors 1999; 10: 169–74

    Article  PubMed  CAS  Google Scholar 

  93. Evans JL, Goldfine ID. Alpha-lipoic acid: a multifunctional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technol Ther 2000; 2: 401–13

    Article  PubMed  CAS  Google Scholar 

  94. Jacob S, Ruus P, Hermann R, et al. Oral administration of rac-alpha-lipoic acid modulates insulin sensitivity in patients with type-2 diabetes mellitus: a placebo-controlled pilot trial. Free Radic Biol Med 1999; 27: 309–14

    Article  PubMed  CAS  Google Scholar 

  95. Konrad T, Vicini P, Kusterer K, et al. α-Lipoic acid treatment decreases serum lactate and pyruvate concentrations and improves glucose effectiveness in lean and obese patients with type 2 diabetes. Diabetes Care 1999; 22: 280–7

    Article  PubMed  CAS  Google Scholar 

  96. Evans OB. Pyruvate decarboxylase deficiency in subacute necrotizing encephalomyelopathy. Arch Neurol 1981; 38: 515–9

    Article  PubMed  CAS  Google Scholar 

  97. Barbiroli B, Medori R, Tritschler HJ, et al. Lipoic (thioctic) acid increases brain energy availability and skeletal muscle performance as shown by in vivo 31P MRS in a patient with mitochondrial cytopathy. J Neurol 1995; 242: 472–7

    Article  PubMed  CAS  Google Scholar 

  98. Grover WD, Auerbach VH, Patel MS. Biochemical studies and therapy in subacute encephalomyelopathy (Leigh’s syndrome). J Pediatrics 1972; 81(1 Suppl.): 39–44

    Article  CAS  Google Scholar 

  99. Hommes FA, Polman HA, Reerink JD. Leigh’s encephalomyelopathy: an inborn error of gluconeogenesis. Arch Dis Child 1968; 43: 423–6

    Article  PubMed  CAS  Google Scholar 

  100. Haworth JC, Perry TL, Blass JP, et al. Lactic acidosis in three sibs due to defects in both pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenases complexes. Pediatrics 1976; 58: 564–72

    PubMed  CAS  Google Scholar 

  101. Maesaka H, Komiya K, Misugi K, et al. Hyperalaninemia, hyperpyraviemia and lactic acidosis due to pyruvate carboxylase deficiency of the liver; treatment with thiamine and lipoic acid. Eur J Pediatr 1976; 122: 159–68

    Article  PubMed  CAS  Google Scholar 

  102. Matalon R, Stumpf DA, Michals K, et al. Lipoamide dehydrogenase deficiency with primary lactic acidosis: favorable response to treatment with oral lipoic acid. Journal of Pediatrics 1984; 104(1 Suppl.): 65–9

    PubMed  CAS  Google Scholar 

  103. Robinson BH, Taylor J, Sherwood WG. Deficiency of dihydrolipoyl dehydrogenase (a component of pyruvate and α-ketoglutarate dehydrogenase complexes): a cause of congenital chronic lactic acidosis in infancy. Pediatr Res 1977; 11: 1198–202

    Article  PubMed  CAS  Google Scholar 

  104. Clayton BE, Dobbs RH, Patrick AD. Leigh’s subacute necrotizing encephalopathy: clinical and biochemical study, with special reference to therapy with lipoate. Arch Dis Child 1967; 42: 467–78

    Article  PubMed  CAS  Google Scholar 

  105. Barbiroli B, Medori R, Tritschler HJ, et al. Thioctic acid stimulates muscle ATP production in patients with type II diabetes and diabetic polyneuropathy. Diabetes und Stoffwechsel 1996; 5(3 Suppl.): 71–6

    Google Scholar 

  106. Bock E, Schneeweiss J. Ein Beitrag zur Therapie der Neuropathia diabetica. Munch Med Wochenschr 1959; 43: 1911–2

    Google Scholar 

  107. Sachse G, Willms B. Efficacy of thioctic acid in the therapy of peripheral diabetic neuropathy. Horm Metab Res 1980; 9: 105–8

    CAS  Google Scholar 

  108. Schulz B, Reichel G, Hüttle I, et al. Zur Wirksamkeit der Thioctsäuretherapie bei Typ-I-Diabetikern. Wiss Z Ernst-Moritz-Arndt-Univ. Greifswald 1986; 35: 48–50

    Google Scholar 

  109. Jörg J, Metz F, Scharafinski H. Zur medikamentösen Behandlung der diabetischen Polyneuropathie mit der α-Liponsäure oder Vitamin B-Präparaten. Nervenarzt 1988; 9: 36–44

    Google Scholar 

  110. Delcker A, Fischer PA, Ulrich H. Randomisierte Studie Thioctsäure gegenüber Vitamin-B-kombinationspräparat bei Patienten mit diabetischer Polyneuropathie unter besonderer Berücksichtigung des peripheren Nervensystems. In: Borbe HO, Ulrich O, editors. Thioctsäure: Neue biochemische, pharmakologische und klinische Erkenntnisse zur Thioctsäure.Frankfurt: pmi Verlag, 1989: 335–49

    Google Scholar 

  111. Reschke B, Zeuzem S, Rosak C, et al. Hochdosierte Langzeitbehandlung mit Thioctsäure bei der diabetischen Polyneuropathie: Ergebnisse einer kontrollierten, randomisierten Studie unter besonderer Berücksichtigung der autonomen Neuropathie. In: Borbe HO, Ulrich H, editors. Thioctsäure: Neue biochemische, pharmakologische und klinische Erkenntnisse zur Thioctsäure. Frankfurt: pmi Verlag, 1989: 318–34

    Google Scholar 

  112. Ziegler D, Mayer P, Mühlen H, et al. Effekte einer Therapie mit α-Liponsäure gegenüber Vitamin B1 bei der diabetischen Neuropathie. Diab Stoffw 1993; 2: 443–8

    Google Scholar 

  113. Strokov IA, Kozlova NA, Mozolevsky Yu V, et al. Efficacy of IV-administration of trometamol salt of thioctic (α-lipoic) acid in diabetic neuropathy. J Neurol Psychiatry 1999; 6: 18–22

    Google Scholar 

  114. Schreiber FK. Zur Behandlung der Neuropathia diabetica. Dtsch Med Wochenschr 1961; 86: 531–6

    Article  PubMed  CAS  Google Scholar 

  115. Klein W. Die Behandlung der Neuropathia diabetica mit oralen Gaben von α-Liponsäure. Münchner Med Wochenschr 1975; 22: 957–8

    Google Scholar 

  116. Peripheral Nerve Society. Diabetic polyneuropathy in controlled clinical trials: consensus report of the Peripheral Nerve Society. Ann Neurol 1995; 38: 478–82

    Article  Google Scholar 

  117. Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic peripheral neuropathy with the antioxidant α-lipoic acid: a 3-week multicentre randomized controlled trial (ALADIN study). Diabetologia 1995; 38: 1425–33

    Article  PubMed  CAS  Google Scholar 

  118. Young MJ, Boulton AJM, Macleod AF, et al. A multicentre study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetologia 1993; 36: 150–4

    Article  PubMed  CAS  Google Scholar 

  119. Dyck PJ, Davies JL, Litchy WJ, et al. Longitudinal assessment of diabetic polyneuropathy using a composite score in the Rochester Diabetic Neuropathy Study cohort. Neurology 1997; 49: 229–39

    Article  PubMed  CAS  Google Scholar 

  120. Reljanovic M, Reichel G, Rett K, et al. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (α-lipoic acid): a two-year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Free Radic Res 1999; 31: 171–9

    Article  PubMed  CAS  Google Scholar 

  121. Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant α-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III study). Diabetes Care 1999; 22: 1296–301

    Article  PubMed  CAS  Google Scholar 

  122. Ziegler D, Schatz H, Conrad F, et al. Effects of treatment with the antioxidant α-lipoic acid on cardiac autonomic neuropathy in NIDDM patients: a 4-month randomized controlled multicenter trial (DEKAN Study). Diabetes Care 1997; 20: 369–73

    Article  PubMed  CAS  Google Scholar 

  123. Ruhnau K-J, Meissner HP, Finn JR, et al. Effects of 3-week oral treatment with the antioxidant, thioctic acid (α-lipoic acid), in symptomatic diabetic polyneuropathy. Diabetic Med 1999; 16: 1040–3

    Article  PubMed  CAS  Google Scholar 

  124. Ametov A, Barinov A, O’Brien P, et al. The sensory symptoms of diabetic polyneuropathy are improved with α-lipoic acid: the SYDNEY trial. Diabetes Care 2003; 26: 770–6

    Article  PubMed  CAS  Google Scholar 

  125. Dyck PJ, O’Brien PC. Meaningful degrees of prevention or improvement of nerve conduction in controlled clinical trials of diabetic neuropathy. Diabetes Care 1989; 12: 649–52

    Article  PubMed  CAS  Google Scholar 

  126. Rathmann W, Haastert B, Delling B, et al. Postmarketing surveillance of adverse drug reactions: a correlation study approach using multiple data sources. Pharmacoepiemiol Drug Saf 1998; 7: 51–7

    Article  CAS  Google Scholar 

  127. Ziegler D. Diabetic cardiovascular autonomic neuropathy: prognosis, diagnosis and treatment. Diabetes Metab Rev 1994; 10: 339–83

    Article  PubMed  CAS  Google Scholar 

  128. Ziegler D, Nowak H, Kempler P, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant α-lipoic acid: a meta-analysis. Diabetic Med 2004; 21: 114–21

    Article  PubMed  CAS  Google Scholar 

  129. Data on file, VIATRIS GmbH, 2003

Download references

Acknowledgments

The author is indebted to Dr Hans Tritschler for his helpful comments on this review. The ALADIN I-III, DEKAN, ORPIL, SYDNEY, and NATHAN I-II studies were supported by VIATRIS GmbH, Frankfurt am Main, Germany. The author has received honoraria for speaking engagements and consulting activities from VIATRIS GmbH. No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Ziegler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, D. Thioctic Acid for Patients with Symptomatic Diabetic Polyneuropathy. Mol Diag Ther 3, 173–189 (2004). https://doi.org/10.2165/00024677-200403030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024677-200403030-00005

Keywords

Navigation