Skip to main content
Log in

Effects of Physical Training and Detraining, Immobilisation, Growth and Aging on Human Fascicle Geometry

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

In addition to its size and the extent of its neural activation, a muscle’s geometry (the angles and lengths of its fibres or fascicles) strongly influences its force production characteristics. As with many other tissues within the body, muscle displays significant plasticity in its geometry. This review summarises geometric differences between various athlete populations and describes research examining the plasticity of muscle geometry with physical training, immobilisation/ detraining, growth and aging. Typically, heavy resistance training in young adults has been shown to cause significant increases in fascicle angle of vastus lateralis and triceps brachii as measured by ultrasonography, while high-speed/ plyometrics training in the absence of weight training has been associated with increases in fascicle length and a reduction in angles of vastus lateralis fascicles. These changes indicate that differences in geometry between various athletic populations might be at least partly attributable to their differing training regimes. Despite some inter-muscular differences, detraining/unloading is associated with decreases in fascicle angle, although little change was shown in muscles such as vastus lateralis and triceps brachii in studies examining the effects of prolonged bed rest. No research has examined the effects of other interventions such as endurance or chronic stretching training. Few data exist describing geometric adaptation during growth and maturation, although increases in gastrocnemius fascicle angle and length seem to occur until maturation in late adolescence. Although some evidence suggests that a decrease in both fascicle angle and length accompanies the normal aging process, there is a paucity of data examining the issue; heavy weight training might attenuate the decline, at least in fascicle length. A significant research effort is required to more fully understand geometric adaptation in response to physical training, immobilisation/detraining, growth and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Table II
Table III

Similar content being viewed by others

Notes

  1. The term ‘fascicle geometry’ as used here describes the angulation and length of muscle fascicles. The broader term ‘muscle architecture’ will be reserved for the description of the whole muscle structure including fascicle geometry, muscle length and muscle volume (or physiological cross-sectional area).

References

  1. Scott SJ, Engstrom CM, Loeb GE. Morphometry of human thigh muscles: determination of fascicle architecture by magnetic resonance imaging. J Anat 1993; 182: 249–57

    PubMed  Google Scholar 

  2. Kawakami Y, Abe T, Fukunaga T. Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol 1993; 74: 2740–4

    PubMed  CAS  Google Scholar 

  3. Narici MV, Hoppeler H, Kayser B, et al. Human quadriceps cross-sectional area, torque and neural activation during 6 mo strength training. Acta Physiol Scand 1996; 157: 175–86

    Article  PubMed  CAS  Google Scholar 

  4. Aagaard P, Andersen JL, Dyhre-Poulsen P, et al. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 2001; 534: 613–23

    Article  PubMed  CAS  Google Scholar 

  5. Blazevich AJ, Giorgi A. Effect of testosterone administration and weight training on muscle architecture. Med Sci Sports Exerc 2001; 33: 1688–93

    Article  PubMed  CAS  Google Scholar 

  6. Blazevich AJ, Gill ND, Bronks R, et al. Training-specific muscle architecture adaptation after 5-wk concurrent training in athletes. Med Sci Sports Exerc 2003; 35: 2013–22

    Article  PubMed  Google Scholar 

  7. Kawakami Y, Abe T, Kuno S-Y, et al. Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol 1995; 72: 37–43

    Article  CAS  Google Scholar 

  8. Rutherford OM, Jones DA. Measurement of fibre pennation using ultrasound in the human quadriceps in vivo. Eur J Appl Physiol 1992; 65: 433–7

    Article  CAS  Google Scholar 

  9. Burkholder TJ, Fingado B, Baron S, et al. Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol 1994; 221: 177–90

    Article  PubMed  CAS  Google Scholar 

  10. Van Eijden TMGJ, Korfage JAM, Brugman P, et al. Architecture of the human jaw-closing and jaw-opening muscles. Anat Rec 1997; 248: 464–74

    Article  PubMed  Google Scholar 

  11. Lieber RL, Fridén J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 2000; 23: 1647–66

    Article  PubMed  CAS  Google Scholar 

  12. Hof AL. Muscle mechanics and neuromuscular control. J Biomech 2003; 36: 1031–8

    Article  PubMed  CAS  Google Scholar 

  13. Hof AL, Geelen BA, Van den Berg J. Calf muscle moment, work and efficiency in level walking: role of series elasticity. J Biomech 1983, 37

  14. Hof AL, Van Zandwijk JP, Bobbert MF. Mechanics of human triceps surae muscle in walking, running and jumping. Acta Physiol Scand 2002; 174: 17–30

    Article  PubMed  CAS  Google Scholar 

  15. Kawakami Y, Muraoka T, Ito S, et al. In-vivo muscle-fibre behaviour during counter-movement exercise in humans reveals significant role of tendon elasticity. J Physiol 2002; 540: 635–46

    Article  PubMed  CAS  Google Scholar 

  16. Kubo K, Kanehisa H, Takeshita D, et al. In vivo dynamics of human medial gastrocnemius muscle-tendon complex during strength-shortening cycle exercise. Acta Physiol Scand 2000; 170: 127–35

    Article  PubMed  CAS  Google Scholar 

  17. Kurokawa S, Fukunaga T, Fukashiro S. Behavior of fascicles and tendinous structures of human gastrocnemius during vertical jumping. J Appl Physiol 2001; 90: 1349–58

    PubMed  CAS  Google Scholar 

  18. Lieber RL, Jacobson MD, Fazelle BM, et al. Architecture of selected muscles of the arm and forearm: anatomy and implications for tendon transfer. J Hand Surg 1992; 17A: 787–98

    Article  CAS  Google Scholar 

  19. Elliott BC, Blanksby BA. The synchronization of muscle activity and body segment movements during a running cycle. Med Sci Sports 1979; 11: 322–7

    PubMed  CAS  Google Scholar 

  20. Wiemann K, Tidow G. Relative activity of hip and knee extesors in sprinting: implications for training. N Studies Athl 1995; 10: 29–49

    Google Scholar 

  21. Wood GA. Optimal performance criteria and limiting factors insprint running. N Studies Athl 1986; 2: 55–63

    Google Scholar 

  22. Friederich JA, Brand RA. Muscle fiber architecture in the human lower limb. J Biomech 1990; 23: 91–5

    Article  PubMed  CAS  Google Scholar 

  23. Keller TCS. Molecular bungees. Nature 1997; 387: 233–5

    Article  PubMed  CAS  Google Scholar 

  24. Politou AS, Thomas DJ, Pastore A. The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys J 1995; 96: 2601–10

    Article  Google Scholar 

  25. Tskhovrebova L, Trinick J, Sleep JA, et al. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 1997; 387: 308–12

    Article  PubMed  CAS  Google Scholar 

  26. Tskhovrebova L, Trinick J. Extensibility in the titin molecule and its relation to muscle elasticity. Adv Exp Med Biol 2000; 481: 163–78

    Article  PubMed  CAS  Google Scholar 

  27. Linari M, Dobbie I, Reconditi M, et al. The stiffness of skeletal muscle in isometric contraction and rigor: the fraction of myosin heads bound to actin. Biophys J 1998; 74: 2459–73

    Article  PubMed  CAS  Google Scholar 

  28. Tawada K, Kimura M. Stiffness of glycerinated rabbit psoas fibers in the rigor state: filament-overlap relation. Biophys J 1984; 45: 593–602

    Article  PubMed  CAS  Google Scholar 

  29. Huxley HE, Stewart A, Sosa H, et al. X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys J 1994; 67: 2411–21

    Article  PubMed  CAS  Google Scholar 

  30. Martyn DA, Chase PB, Regnier M, et al. A simple model with myofilament compliance predicts activation-dependent cross bridge kinetics in skinned skeletal fibers. Biophys J 2002; 83: 3425–34

    Article  PubMed  CAS  Google Scholar 

  31. Wakabayashi K, Sugimoto Y, Tanaka H, et al. X-ray diffraction evidence for the extensibility of actin and myosin filaments during contraction. Biophys J 1997; 67: 2422–35

    Article  Google Scholar 

  32. Schroeter P. P, Bretaudiere JP, Sass RL, et al. Three-dimensional structure of the Z band in a normal mammalian skeletal muscle. J Cell Biol 1996; 133: 571–83

    Article  PubMed  CAS  Google Scholar 

  33. Goldstein MA, Michael LH, Schroeter JP, et al. The Z-band lattice in skeletal muscle before, during and after tetanic contraction. J Muscle Res Cell Motil 1986; 7: 527–36

    Article  PubMed  CAS  Google Scholar 

  34. Fukunaga T, Miyatani M, Tachi M, et al. Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand 2001; 172: 249–55

    Article  PubMed  CAS  Google Scholar 

  35. Muhl ZF. Active length-tension relation and the effect of muscle pinnation of fiber lengthening. J Morphol 1982; 173: 285–92

    Article  PubMed  CAS  Google Scholar 

  36. Herring SW, Grimm AF, Grimm BR. Regulation of sarcomere number in skeletal muscle: a comparison of hypotheses. Muscle Nerve 1984; 7: 161–73

    Article  PubMed  CAS  Google Scholar 

  37. Lutz GJ, Rome LC. Muscle function during jumping in frogs I:sarcomere length change, EMG pattern, and jumping performance. Am J Physiol 1996; 271: C563–70

    Google Scholar 

  38. Lutz GJ, Rome LC. Muscle function during jumping in frogs II: mechanical properties of muscle - implications for system design. Am J Physiol 1996; 271: C571–8

    Google Scholar 

  39. Häkkinen K, Komi PV. Effect of explosive type strength training on electromyographic and force production characteristics of leg extensor muscles during concentric and various stretch shortening cycle exercises. Scand J Sports Sci 1985; 7: 65–76

    Google Scholar 

  40. Häkkinen K, Komi PV. Electromyographic changes during strength training and detraining. Med Sci Sports Exerc 1983;15: 455–60

    PubMed  Google Scholar 

  41. Hortobágyi T, Barrier J, Beard D, et al. Greater initial adaptations to submaximal muscle lengthening than maximal shortening. J Appl Physiol 1996; 81: 1677–82

    PubMed  Google Scholar 

  42. Moritani T, DeVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 1979; 58: 115–30

    PubMed  CAS  Google Scholar 

  43. Patten C, Kamen G, Rowland D, et al. Rapid adaptations of motor unit firing rate during the initial phase of strength development. Med Sci Sports Exerc 1995; 27: S6

    Google Scholar 

  44. Ploutz LL, Tesch PA, Biro RL, et al. Effect of resistance training on muscle use during exercise. J Appl Physiol 1994; 76:1675–81

    PubMed  CAS  Google Scholar 

  45. Enoka RM. Neural adaptations with chronic physical activity. J Biomech 1997; 30: 447–55

    Article  PubMed  CAS  Google Scholar 

  46. Chilibeck PD, Calder AW, Sale DG, et al. A comparison of strength and muscle mass increases during resistance training in young women. Eur J Appl Physiol 1998; 77: 170–5

    Article  CAS  Google Scholar 

  47. Hickson RC, Hidaka K, Foster C, et al. Successive time courses of strength development and steroid hormone responses to heavy-resistance training. J Appl Physiol 1994; 76: 663–70

    PubMed  CAS  Google Scholar 

  48. Häkkinen K, Komi PV, Alén M, et al. EMG, muscle fibre and force production characteristics during a 1 year training period in elite weight-lifters. Eur J Appl Physiol 1987; 56: 419–27

    Article  Google Scholar 

  49. Gaudy JF, Zouaoui A, Bravetti P, et al. Functional anatomy of the human temporal muscle. Surg Radiol Anat 2001; 23: 389–98

    Article  PubMed  CAS  Google Scholar 

  50. Gaudy JF, Zouaoui A, Bravetti P, et al. Functional organization of the human masseter muscle. Surg Radiol Anat 2000; 22: 181–90

    Article  PubMed  CAS  Google Scholar 

  51. Lam EW, Hannam AG, Christiansen EL. Estimation of tendon plane orientation within human masseter muscle from reconstructed magnetic resonance images. Arch Oral Biol 1991; 36:845–53

    Article  PubMed  CAS  Google Scholar 

  52. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994; 66: 259–67

    Article  PubMed  CAS  Google Scholar 

  53. van Donkelaar CC, Kretzers LJ, Bovendeerd PH, et al. Diffusion tensor imaging in biomechanical studies of skeletal muscle function. J Anat 1999; 194: 79–88

    Article  PubMed  Google Scholar 

  54. Mori S, Crain BJ, Chacko VP, et al. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45: 265–9

    Article  PubMed  CAS  Google Scholar 

  55. Mori S, van Zijl PC. Fiber tracking: principles and strategies - a technical review. NMR Biomed 2002; 15: 468–80

    Article  PubMed  Google Scholar 

  56. Heemskerk AM, Strijkers GJ, Vilanova A, et al. Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging. Mag Res Med 2005; 53: 1333–40

    Article  Google Scholar 

  57. van Doorn A, Bovendeerd PH, Nicolay K, et al. Determination of muscle fibre orientation using diffusion-weighted MRI. Eur J Morphol 1996; 34: 5–10

    PubMed  Google Scholar 

  58. Damon BM, Ding Z, Anderson AW, et al. Validation of diffusion tensor MRI-based muscle fiber tracking. Mag Res Med 2002; 48: 97–104

    Article  Google Scholar 

  59. Cleveland GG, Chang DC, Hazlewood CF, et al. Nuclear magnetic resonance measurement of the intracellular water. Biophys J 1976; 16: 1043–53

    Article  PubMed  CAS  Google Scholar 

  60. Bensamoun SF, Ringleb SI, Littrell L, et al. Determination of thigh muscle stiffness using magnetic resonance elastography. J Mag Res Imag 2006; 23: 242–7

    Article  Google Scholar 

  61. Karamanidis K, Arampatzis A. Mechanical and morphological properties of human quadriceps femoris and triceps surae muscle-tendon unit in relation to aging and running. J Biomech 2006; 39: 406–17

    Article  PubMed  Google Scholar 

  62. Narici M, Cerretelli P. Changes in human muscle architecture in disuse-atrophy evaluated by ultrasound imaging. J Gravit Physiol 1998; 5: 73–4

    Google Scholar 

  63. Chleboun GS, France AR, Crill MT, et al. In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle. Cells Tiss Org 2001; 169: 401–9

    Article  CAS  Google Scholar 

  64. Narici MV, Binzoni T, Hiltbrand E, et al. Changes in human gastrocnemius architecture with joint angle, at rest and with isometric contraction, evaluated in vivo. J Physiol 1996; 496:287–97

    PubMed  CAS  Google Scholar 

  65. Kurihara T, Oda T, Chino K, et al. Use of three-dimensional ultrasonography for the analysis of the fascicle length of human gastrocnemius muscle during contractions. Int J Sport Health Sci 2005; 3: 226–34

    Article  Google Scholar 

  66. Muramatsu T, Muraoka T, Kawakami Y, et al. In vivo determination of fascicle curvature in contracting human skeletal muscles. J Appl Physiol 2002; 92: 129–34

    Article  PubMed  CAS  Google Scholar 

  67. Reeves ND, Narici MV. Behavior of human muscle fascicles during shortening and lengthening contractions in vivo. J Appl Physiol 2003; 95: 1090–6

    PubMed  Google Scholar 

  68. Finni T, Ikegawa S, Komi PV. Concentric force enhancement during human movement. Acta Physiol Scand 2001; 173:369–77

    Article  PubMed  CAS  Google Scholar 

  69. Finni T, Ikegawa S, Lepola V, et al. Comparison of force-velocity relationships of vastus lateralis muscle in isokinetic and in stretch-shortening cycle exercises. Acta Physiol Scand 2003; 177: 483–91

    Article  PubMed  CAS  Google Scholar 

  70. Izquerdo M, Ibañez J, Häkkinen K, et al. Maximal strength and power, muscle mass, endurance and serum hormones in weightlifters and road cyclists. J Sport Sci 2004; 22: 465–78

    Article  Google Scholar 

  71. Izquierdo M, Häkkinen K, Gonzalez-Badillo JJ, et al. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol 2002; 87: 264–71

    Article  PubMed  Google Scholar 

  72. Coyle EF. Improved muscular efficiency displayed as Tour de France champion matures. J Appl Physiol 2005; 98: 2191–6

    Article  PubMed  Google Scholar 

  73. Alexander MJL. The relationship between muscle strength and sprint kinematics in elite sprinters. Can J Sport Sci 1989; 14: 148–57

    PubMed  CAS  Google Scholar 

  74. Taylor NAS, Cotter JD, Stanley SN, et al. Functional torque velocity and power-velocity characteristics of elite athletes. Eur J Appl Physiol 1991; 62: 116–21

    Article  CAS  Google Scholar 

  75. Blazevich AJ, Jenkins DG. Physical performance differences between weight-trained sprinters and weight trainers. J Sci Med Sport 1998; 1: 12–21

    Article  PubMed  CAS  Google Scholar 

  76. Sleivert GG, Backus RD, Wenger HA. Neuromuscular differences between volleyball players, middle distance runners and untrained controls. Int J Sport Med 1995; 16: 390–8

    Article  CAS  Google Scholar 

  77. Kumagai K, Abe T, Brechue WF, et al. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol 2000; 88: 811–6

    PubMed  CAS  Google Scholar 

  78. Abe T, Fukashiro S, Harada Y, et al. Relationship between sprint performance and muscle fascicle length in female sprinters. J Physiol Anthropol Appl Human Sci 2001; 20: 141–7

    Article  PubMed  CAS  Google Scholar 

  79. Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc 2000; 32: 1125–9

    Article  PubMed  CAS  Google Scholar 

  80. Brechue WF, Abe T. The role of FFM accumulation and skeletal muscle architecture in power lifting performance. Eur J Appl Physiol 2002; 86: 327–36

    Article  PubMed  Google Scholar 

  81. Kearns CF, Abe T, Brechue WF. Muscle enlargement in sumo wrestlers includes increased muscle fascicle length. Eur J Appl Physiol 2000; 83: 289–96

    Article  PubMed  CAS  Google Scholar 

  82. Gondin J, Guette M, Ballay Y, et al. Electromyo stimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc 2005; 37: 1291–9

    Article  PubMed  Google Scholar 

  83. Alegre LM, Jimenez F, Gonzalo-Orden JM, et al. Effects of dynamic resistance training on fascicle length and isometric strength. J Sports Sci 2006; 24: 501–8

    Article  PubMed  Google Scholar 

  84. Blazevich AJ, Gill ND, Deans N, et al. Lack of human muscle architectural adaptation after short-term strength training. Muscle Nerve. Epub 2006 Oct 12

  85. Häkkinen K, Kallinen M, Linnamo V, et al. Neuromuscular adaptations during bilateral versus unilateral strength training in middle-aged and elderly men and women. Acta Physiol Scand 1996; 158: 77–88

    Article  PubMed  Google Scholar 

  86. Tanaguchi Y. Laterality specificity in resistance training: the effect of bilateral and unilateral training. Eur J Appl Physiol 1997; 75: 144–50

    Article  Google Scholar 

  87. Weir JP, Housh DJ, Housh TJ, et al. The effect of unilateral concentric weight training and detraining on joint angle specificity, cross-training, and the bilateral deficit. J Orthop Sports Phys Ther 1997; 25: 264–70

    PubMed  CAS  Google Scholar 

  88. Jarvholm U, Palmerud G, Karlsson D, et al. Intramuscular pressure and electromyography in four shoulder muscles. J electromyography in four shoulder muscles. J Orthop Res 1991; 9: 609–19

    CAS  Google Scholar 

  89. Sejersted OM, Hagens AR. Intramuscular pressures for monitoring different tasks and muscle conditions. Adv Expl Med Biol 1995; 384: 339–50

    CAS  Google Scholar 

  90. Miura H, McCully K, Nioka S, et al. Relationship between muscle architectural features and oxygenation status determined by near infrared device. Eur J Appl Physiol 2004; 91:273–8

    Article  PubMed  Google Scholar 

  91. Ballard RE, Watenpaugh DE, Breit GA, et al. Leg intramuscular pressures during locomotion in humans. J Appl Physiol 1998;84: 1976–81

    PubMed  CAS  Google Scholar 

  92. Aratow M, Ballard RE, Crenshaw AG, et al. Intramuscular pressure and electromyography as indexes of force during isokinetic exercise. J Appl Physiol 1993; 74: 2634–40

    PubMed  CAS  Google Scholar 

  93. Degens H, Salmons S, Jarvis JC. Intramuscular pressure, force and blood flow in rabbit tibialis anterior muscles during single and repetitive contractions. Eur J Appl Physiol Occup Physiol 1998; 78: 13–9

    Article  PubMed  CAS  Google Scholar 

  94. Jarvinen MJ, Einola SA, Virtanen EO. Effect of the position of immobilization upon the tensile properties of the rat gastrocnemius muscle. Arch Phys Med Rehab 1992; 73: 253–7

    CAS  Google Scholar 

  95. Sejersted OM, Hagens AR, Kardel KR, et al. Intramuscular fluid pressure during isometric contraction of human skeletal muscle. J Appl Physiol 1984; 56: 287–95

    PubMed  CAS  Google Scholar 

  96. Akima H, Kuno S, Suzuki Y, et al. Effects of 20 days of bed rest on physiological cross-sectional area of human thigh and leg muscles evaluated by magnetic resonance imaging. J Gravit Physiol 1997; 4: S15–21

    Google Scholar 

  97. Kawakami Y, Akima H, Kubo K, et al. Changes in muscle size, architecture, and neural activation after 20 days of bed rest with and without resistance exercise. Eur J Appl Physiol 2001;84: 7–12

    Article  PubMed  CAS  Google Scholar 

  98. Kawakami Y, Muraoka Y, Kubo K, et al. Changes in muscle size and architecture following 20 days of bed rest. J Gravit Physiol 2000; 7: 53–60

    PubMed  CAS  Google Scholar 

  99. Yamashita-Goto K, Okuyama R, Honda M, et al. Maximal and submaximal forces of slow fibers in human soleus after bed rest. J Appl Physiol 2001; 91: 417–24

    PubMed  CAS  Google Scholar 

  100. Andersen JL, Gruschy-Knudsen T, Sandri C, et al. Bed rest increases the amount of mismatched fibers in human skeletal muscle. J Appl Physiol 1999; 86: 455–60

    PubMed  CAS  Google Scholar 

  101. Heslinga JW, Huijing PA. Effects of short length immobilization of medial gastrocnemius muscle of growing young adult rats. Eur J Morphol 1992; 30: 257–73

    PubMed  CAS  Google Scholar 

  102. Bleakney R, Maffulli N. Ultrasound changes to intramuscular architecture of the quadriceps following intramedullary nailing. J Sports Med Phys Fit 2002; 42: 120–5

    CAS  Google Scholar 

  103. Abe T, Kawakami Y, Suzuki Y, et al. Effects of 20 days bed rest on muscle morphology. J Gravit Physiol 1997; 4: S10–4

    Google Scholar 

  104. Baker JH, Matsumoto DE. Adaptation of skeletal muscle to immobilization in a shortened position. Muscle Nerve 1988; 11: 231–44

    Article  PubMed  CAS  Google Scholar 

  105. Hayat A, Tardieu C, Tabary JC, et al. Effects of denervation on the reduction of sarcomere number in cat soleus muscle immobilized in shortened position during seven days. J Physiol (Paris) 1978; 74: 563–7

    CAS  Google Scholar 

  106. Tabary JC, Tabary C, Tardieu C, et al. Physiological and structural changes in the cat’s soleus muscle due to immobilization at different lengths by plaster casts. J Physiol 1972; 224;231–44

    PubMed  CAS  Google Scholar 

  107. Williams PE. Use of intermittent stretch in the prevention of serial sarcomere loss in immobilised muscle. Ann Rheum Dis 1990; 49: 316–7

    Article  PubMed  CAS  Google Scholar 

  108. Williams PE, Goldspink G. Changes in sarcomere length and physiological properties in immobilized muscle. J Anat 1978; 127: 459–68

    PubMed  CAS  Google Scholar 

  109. Nicks DK, Beneke WM, Key RM, et al. Muscle fibre size and number following immobilisation atrophy. J Anat 1989; 163: 1–5

    PubMed  CAS  Google Scholar 

  110. Leterme D, Cordonnier C, Mounier Y, et al. Influence of chronic stretching upon rat soleus muscle during non-weight-bearing conditions. Eur J Physiol 1994; 429: 274–9

    Article  CAS  Google Scholar 

  111. Herbert RD, Balnave RJ. The effect of position of immobilisation on resting length, resting stiffness, and weight of the soleus muscle of the rabbit. J Orthop Res 1993; 11: 358–6

    Article  PubMed  CAS  Google Scholar 

  112. Binzoni T, Bianchi S, Hanquinet S, et al. Human gastrocnemius medialis pennation angle as a function of age: from newborn to the elderly. J Physiol Anthropol Appl Hum Sci 2001; 20: 293–8

    Article  CAS  Google Scholar 

  113. Häkkinen K, Pakarinen A. Muscle strength and serum hormones in middle-aged and elderly men and women. Acta Physiol Scand 1993; 148: 199–207

    Article  PubMed  Google Scholar 

  114. Izquierdo M, Ibañez J, Gorostiaga E, et al. Maximal strength and power characteristics in isometric and dynamic actions of the upper and lower extremities in middle-aged and older men. Acta Physiol Scand 1999; 167: 57–68

    Article  PubMed  CAS  Google Scholar 

  115. Izquerdo M, Häkkinen K, Antón A, et al. Maximal strength and power, endurance performance, and serum hormones in middle-aged and elderly men. Med Sci Sports Exerc 2001; 33: 1577–87

    Article  Google Scholar 

  116. Klitgaard H, Mantoni M, Schiaffino S, et al. Function, morphology and protein expression of ageing skeletal muscle: a cross sectional study of elderly men with different training backgrounds. Acta Physiol Scand 1990; 140: 41–54

    Article  PubMed  CAS  Google Scholar 

  117. Narici MV, Maganaris CN, Reeves ND, et al. Effect of aging on human muscle architecture. J Appl Physiol 2003; 95: 2229–34

    PubMed  CAS  Google Scholar 

  118. Lexell J, Taylor CC, Sjostrom M. What is the cause of the aging atrophy? Total number, size and proportion of different fiber types studies in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 1988; 84: 275–94

    Article  PubMed  CAS  Google Scholar 

  119. Hortobágyi T, Zheng D, Weidner M, et al. The influence of aging on muscle strength and muscle fiber characteristics with special reference to eccentric strength. J Gerontol A: Biol Sci Med Sci 1995; 50: B399–406

    Article  Google Scholar 

  120. Larsson L, Grimby G, Karlsson J. Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol 1979; 46: 451–6

    PubMed  CAS  Google Scholar 

  121. Poggi P, Marchettic C, Scelsi R. Automatic morphometric analysis of skeletal muscle fibers in the aging man. Anat Rec 1987; 217: 30–4

    Article  PubMed  CAS  Google Scholar 

  122. Häkkinen K, Alen M, Kallinen M, et al. Neuromuscular adaptation during prolonged strength training, detraining and restrength-training in middle-aged and elderly people. Eur J Appl Physiol 2000; 83: 51–62

    Article  PubMed  Google Scholar 

  123. Häkkinen K, Kallinen M, Izquierdo M, et al. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol 1998; 84: 1341–9

    PubMed  Google Scholar 

  124. Knight CA, Kamen G. Adaptations in muscular activation of the knee extensor muscles with strength training in young and older adults. J Electromyogr Kinesiol 2001; 11: 405–12

    Article  PubMed  CAS  Google Scholar 

  125. Roos MR, Rice CL, Connelly DM, et al. Quadriceps muscle strength, contractile properties, and motor unit firing rates in young and old men. Muscle Nerve 1999; 22: 1094–103

    Article  PubMed  CAS  Google Scholar 

  126. Valour D, Ochala J, Ballay Y, et al. The influence of ageing on the force-velocity-power characteristics of human elbow flex or muscles. Exp Gerontol 2003; 38: 387–95

    Article  PubMed  CAS  Google Scholar 

  127. Newton RU, Häkkinen K, Häkkinen A, et al. Mixed-methods resistance training increases power and strength of young and older men. Med Sci Sports Exerc 1999; 34: 1367–75

    Google Scholar 

  128. Kubo K, Kanehisa H, Azuma K, et al. Muscle architectural characteristics in women aged 20–79 years. Med Sci Sports Exerc 2003; 35: 39–44

    Article  PubMed  Google Scholar 

  129. Kubo K, Kanehisa H, Azuma K, et al. Muscle architectural characteristics in young and elderly men and women. Int J Sports Med 2003; 24: 125–30

    Article  PubMed  CAS  Google Scholar 

  130. Morse CI, Thom JM, Birch KM, et al. Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol Scand 2005; 183: 291–8

    Article  PubMed  CAS  Google Scholar 

  131. Häkkinen K, Kraemer WJ, Pakarinen A, et al. Effects of heavy resistance/power training on maximal strength, muscle morphology, and hormonal response patterns in 60–75-year-old men and women. Can J Appl Physiol 2002; 27: 213–31

    Article  PubMed  Google Scholar 

  132. Izquerdo M, Häkkinen K, Ibañez J, et al. Effects of strength training on submaximal and maximal endurance performance capacity in middle-aged and older men. J Strength Cond Res 2003; 17: 129–39

    Google Scholar 

  133. Reeves ND, Narici MV, Maganaris CN. Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol 2004; 96: 885–92

    Article  PubMed  CAS  Google Scholar 

  134. Trappe S, Williamson D, Godard M, et al. Effect of resistance training on single muscle fiber contractile function in older men. J Appl Physiol 2000; 89: 143–52

    PubMed  CAS  Google Scholar 

  135. Lynn R, Morgan DL. Decline running produced more sarcomeres in rat vastus intermedius muscle fibers than does incline running. J Appl Physiol 1994; 77: 1439–44

    PubMed  CAS  Google Scholar 

  136. Butterfield TA, Leonard TR, Herzog W. Differential serial sarcomere number adaptations in knee extensor muscles of rats is contraction type dependent. J Appl Physiol 2005; 99: 1352–8

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to Prof. Craig Sharp for his insightful comments and discussion during the preparation of this article. This research was partly funded by an American Society of Biomechanics research grant (ASB-406015). The author has no conflicts of interest that are directly related to the content in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Blazevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blazevich, A.J. Effects of Physical Training and Detraining, Immobilisation, Growth and Aging on Human Fascicle Geometry. Sports Med 36, 1003–1017 (2006). https://doi.org/10.2165/00007256-200636120-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200636120-00002

Keywords

Navigation