Skip to main content
Log in

Neuromuscular Electrical Stimulation and Voluntary Exercise

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Neuromuscular electrical stimulation (NMES) has been in practice since the eighteenth century for the treatment of paralysed patients and the prevention and/or restoration of muscle function after injuries, before patients are capable of voluntary exercise training. More recently NMES has been used as a modality of strengthening in healthy subjects and highly trained athletes, but it is not clear whether NMES is a substitute for, or a complement to, voluntary exercise training. Moreover the discussion of the mechanisms which underly the specific effects of NMES appears rather complex at least in part because of the disparity in training protocols, electrical stimulation regimens and testing procedures that are used in the various studies.

It appears from this review of the literature that in physical therapy, NMES effectively retards muscle wasting during denervation or immobilisation and optimises recovery of muscle strength during rehabilitation. It is also effective in athletes with injured, painful limbs, since NMES contributes to a shortened rehabilitation time and aids a safe return to competition. In healthy muscles, NMES appears to be a complement to voluntary training because it specifically induces the activity of large motor units which are more difficult to activate during voluntary contraction. However, there is a consensus that the force increases induced by NMES are similar to, but not greater than, those induced by voluntary training. The rationale for the complementarity between NMES and voluntary exercise is that in voluntary contractions motor units are recruited in order, from smaller fatigue resistant (type I) units to larger quickly fatiguable (type II) units, whereas in NMES the sequence appears to be reversed.

As a training modality NMES is, in nonextreme situations such as muscle denervation, not a substitute for, but a complement of, voluntary exercise of disused and healthy muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almekinders LC. Transcutaneous muscle stimulation for rehabilitation. Physician and Sportsmedicine 12: 118–124, 1984

    Google Scholar 

  • Alon G, High voltage stimulation: effects of electrode size on basic excitatory responses. Physical Therapy 65: 890–895, 1985

    PubMed  CAS  Google Scholar 

  • Alon G, Allin J, Inbar G. Optimization of pulse duration and pulse charge during transcutaneous electrical nerve stimulation. Australian Journal of Physiotherapy 29 (6): 195–201, 1983

    Google Scholar 

  • Alway SE, MacDougall JD, Sale DG. Contractile adaptations in the human triceps surae after isometric exercises. Journal of Applied Physiology 66: 2725–2732, 1989

    PubMed  CAS  Google Scholar 

  • Bellemare F, Woods JJ, Johansson R, Bigland-Ritchie B. Motor unit discharge rates in maximal voluntary contractions of 3 human muscles. Journal of Neurophysiology 50: 1380–1392, 1983

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OCJ, Woods JJ. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. Journal of Neurophysiology 50: 313–324, 1983

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie BR, Woods J J. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle and Nerve 7: 691–699, 1984

    PubMed  CAS  Google Scholar 

  • Blair E, Erlanger J. A comparison of the characteristics of axons through their individual electrical responses. American Journal of Physiology 106: 524–564, 1933

    Google Scholar 

  • Bouman HD, Shaffer KJ. Physiological basis of electrical stimulation of human muscle and its clinical application. Physical Therapy Review 37: 207–223, 1956

    Google Scholar 

  • Boutelle D, Smith B, Malone T. A strength study utilizing the Electro-Stim 180. Journal of Orthopaedic and Sports Physical Therapy 7: 50–53, 1985

    PubMed  CAS  Google Scholar 

  • Burke RE, Edgerton RV. Motor unit properties and selective involvement in movement. Exercise and Sport Science Reviews 3: 31–81, 1975

    CAS  Google Scholar 

  • Burke RE, Levine DN, Tsairis P, Zajac FE. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. Journal of Physiology 234: 723–748, 1973

    PubMed  CAS  Google Scholar 

  • Cabric M, Appell H-J. Effect of electrical stimulation of high and low frequency on maximum isometric force and some morphological characteristics in men. International Journal of Sports Medicine 8: 256–260, 1987a

    PubMed  CAS  Google Scholar 

  • Cabric M, Appell H-J, Resic A. Effects of electrical stimulation of different frequencies on the myonuclei and fiber size in humanmuscle. International Journal of Sports Medicine 8: 323–326, 1987b

    PubMed  CAS  Google Scholar 

  • Cabric M, Appell H-J, Resic A. Fine structural changes in electrostimulated human skeletal muscle. European Journal of Applied Physiology 57: 1–5, 1988

    CAS  Google Scholar 

  • Cannon RJ, Cafarelli E. Neuromuscular adaptations to training. Journal of Applied Physiology 63: 2396–2402, 1987

    PubMed  CAS  Google Scholar 

  • Coleman AE. Effect of unilateral isometric and isotonic contractions on the strength of the contralateral limb. Research Quarterly 40: 490–495, 1969

    PubMed  CAS  Google Scholar 

  • Currier DP, Lehman J, Lightfoot P. Electrical stimulation in exercise of the quadriceps femoris muscle. Physical Therapy 59: 1508–1512, 1979

    PubMed  CAS  Google Scholar 

  • Currier DP, Mann R. Muscular strength development by electrical stimulation in healthy individuals. Physical Therapy 63: 915–921, 1983

    PubMed  CAS  Google Scholar 

  • Curwin S, Stanish WD, Valiant G. Clinical applications and biochemical effects of high frequency electrical stimulation. Canadian Athletic Trainers Association Journal 6: 15–16, 1980

    Google Scholar 

  • Davies CTM, Dooley P, McDonagh MJN, White MJ. Adaptation of mechanical properties of muscle to high force training in man. Journal of Physiology 365: 277–284, 1985

    PubMed  CAS  Google Scholar 

  • Davies J, Parker DF, Rutherford OM, Jones DA. Changes in strength and cross sectional area of the elbow flexors as a result of isometric strength training. European Journal of Applied Physiology 57: 667–670, 1988

    CAS  Google Scholar 

  • Delitto A, Brown M, Stube MJ, Rose ST, Lehman RC. Electrical stimulation of quadriceps femoris in an elite weight lifter: a single subject experiment. International Journal of Sports Medicine 10: 187–191, 1989

    PubMed  CAS  Google Scholar 

  • De Domenico G, Strauss GS. Maximum torque production in the quadriceps femoris muscle group using a variety of electrical stimulators. Australian Journal of Physiotherapy 32: 51–56, 1986

    Google Scholar 

  • Dorfman LJ, Howard JE, McGill KC. Triphasic behavioral response of motor units to submaximal fatiguing exercise. Muscle and Nerve 13: 621–628, 1990

    PubMed  CAS  Google Scholar 

  • Duchateau J. Electrostimulation: mise au point. Sport 133: 34–37, 1991

    Google Scholar 

  • Duchateau J, Hainaut K. Isometric or dynamic training: differential effects on mechanical properties of a human muscle. Journal of Applied Physiology 56: 296–301, 1984

    PubMed  CAS  Google Scholar 

  • Duchateau J, Hainaut K. Electrical and mechanical failures during sustained and intermittent contractions in humans. Journal of Applied Physiology 58: 942–947, 1985

    PubMed  CAS  Google Scholar 

  • Duchateau J, Hainaut K. Training effects of sub-maximal electrostimulation in a human muscle. Medicine and Science in Sports and Exercise 20: 99–104, 1988

    PubMed  CAS  Google Scholar 

  • Duchateau J, Hainaut K. Effects of immobilization on contractile properties, recruitment and firing rates of human motor units. Journal of Physiology 422: 55–65, 1990

    PubMed  CAS  Google Scholar 

  • Duchenne de Boulogne GB. Physiologie des mouvements, Paris, Balliere, 1867

    Google Scholar 

  • Edstrom L. Selective atrophy of red muscle fibres in the quadriceps in long-standing knee joint dysfunction injuries to the anterior cruciate ligament. Journal of the Neurological Sciences 11: 551–558, 1970

    PubMed  CAS  Google Scholar 

  • Edstrom L, Grimby L. Effect of exercise on the motor unit. Muscle and Nerve 9: 104–126, 1986

    PubMed  CAS  Google Scholar 

  • Edwards RHT, Hill DK, Jones DA, Merton PA. Fatigue of long duration in human skeletal muscle after exercise. Journal of Physiology 272: 769–778, 1977

    PubMed  CAS  Google Scholar 

  • Edwards RHT, Jones DA, Newham DJ. Low frequency of stimulation and changes in human muscle contractile properties. Journal of Physiology 328: 29–30P, 1984

    Google Scholar 

  • Eerbeek O, Kernell D, Verhey BA. Effects of fast and slow patterns of tonic long-term stimulation on contractile properties of fast muscle in the cat. Journal of Physiology 352: 73–90, 1984

    PubMed  CAS  Google Scholar 

  • Enoka RM. Muscle strength and its development: new perspectives. Sports Medicine 6: 146–168, 1988

    PubMed  CAS  Google Scholar 

  • Eriksson E. Sport injuries of the knee ligaments: their diagnosis, treatment, rehabilitation and prevention. Medicine and Science in Sports 8: 133–144, 1976

    PubMed  CAS  Google Scholar 

  • Eriksson E, Haggmark T. Comparison of isometric muscle training and electrical stimulation supplementing isometric muscle training in the recovery after major knee ligament surgery. American Journal of Sports Medicine 7: 169–171, 1979

    PubMed  CAS  Google Scholar 

  • Eriksson E, Haggmark T, Kiessling K-H, Karlsson J. Effect of electrical stimulation on human skeletal muscle. International Journal of Sports Medicine 2: 18–22, 1981

    PubMed  CAS  Google Scholar 

  • Fahey TD, Harvey M, Schroeder RV, Ferguson F. Influence of sex differences and knee joint position on electrical stimulation modulated strength increases. Medicine and Science in Sports and Exercise 17: 144–147, 1985

    PubMed  CAS  Google Scholar 

  • Farrance BW, Houston ME, Ranney DA. Effects of electrical stimulation training using the extended leg position on quadriceps muscle of women. Canadian Journal of Sport Sciences 12: 170–174, 1987

    Google Scholar 

  • Galvani L. De viribus electricitatis in motu musculari commentarius, 1791. Translated by Montraville Green R, Ed Licht, Cambridge University Press, 1953

    Google Scholar 

  • Gardiner PF, Olha AE. Contractile and electromyographic characteristics of rat plantaris motor unit types during fatigue in situ. Journal of Physiology 385: 13–34, 1987

    PubMed  CAS  Google Scholar 

  • Godfrey CM, Jayawardena H, Quance TA, Welsh P. Comparison of electrostimulation and isometric exercise in strengthening the quadriceps muscle. Physiotherapy Canada 31: 265–267, 1979

    Google Scholar 

  • Hainaut K, Duchateau J. Muscle fatigue, effects of training and disuse. Muscle and Nerve 12: 660–669, 1989

    PubMed  CAS  Google Scholar 

  • Hainaut K, Duchateau J, Desmedt JE. Differential effects on slow and fast motor units of different programs of brief daily muscle training in man. Progress Clinical Neurophysiology 9: 241–249, 1981

    Google Scholar 

  • Halbach JW, Straus D. Comparison of electro-myostimulation to isokinetic training in increasing power of the knee extensor mechanism. Journal of Orthopaedic and Sports Physical Therapy 2: 20–24, 1980

    Google Scholar 

  • Hellebrandt FA. Cross education: ipsilateral and contralateral effect of unimanual training. Journal of Applied Physiology 4: 136–141, 1951

    PubMed  CAS  Google Scholar 

  • Hellebrandt FA, Parrish AM, Houtz SJ. Cross education: the influence of unilateral exercise on the contralateral limb. Archives of Physical Medicine 28: 76–85, 1947

    CAS  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motoneurons. Journal of Neurophysiology 28: 560–580, 1965

    PubMed  CAS  Google Scholar 

  • Hoppeler H. Exercise-induced ultrastructural changes in skeletal muscle. International Journal of Sports Medicine 7: 187–204, 1986

    PubMed  CAS  Google Scholar 

  • Howard JD, Enoka RM. Enhancement of maximal force by contralateral-limb stimulation. Journal of Biomechanics 20: 908, 1987

    Google Scholar 

  • Howard JD, Enoka RM. Maximal bilateral contractions are modified by neurally mediated interlimb effects. Journal of Applied Physiology 70: 306–316, 1991

    PubMed  CAS  Google Scholar 

  • Hultman E, Sjöholm H, Jäderholm-Ek I, Krynicki J. Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflugers Archives 398: 139–141, 1983

    CAS  Google Scholar 

  • Hymes AC, Raab DE, Yonchird EG. Acute pain control by electrostimulation: a preliminary report. Advances in Neurology 4: 761–767, 1974

    Google Scholar 

  • Ikai M, Fukunaga T. Calculation of muscle strength per unit crosssectional area of human muscle by means of ultrasonic measurements. Internationale Zeitschrift für angewandte Physiologie Einschleisslich 26: 26–32, 1968

    CAS  Google Scholar 

  • Ikai M, Fukunaga T. A study on training effect on strength per unit cross-sectional area of muscle by means of ultrasonic measurement. Internationale Zeitschrift für angewandte Physiologie Einschleisslich Arbeitsphysiologie 28: 173–180, 1970

    CAS  Google Scholar 

  • Ikai M, Yabe K, Ischii K. Muskelkraft und muskulare Ermudung bei willkurlicher Anspannung und elecktrischer Reizung des Muskels. Sportarzt und Sportmedizin 5: 197–204, 1967

    Google Scholar 

  • Johnson DH, Thurston P, Ashcroft PT. The Russian technique of faradism in the treatment of chondromalacia patellae. Physiotherapy Canada 29: 266–268, 1977

    Google Scholar 

  • Jones DA, Bigland-Ritchie B, Edwards RHT. Excitation frequency and muscle fatigue: mechanical responses during voluntary and stimulated contractions. Experimental Neurology 64: 401–413, 1979

    PubMed  CAS  Google Scholar 

  • Knaflitz M, Merletti R, De Luca C. Inference of motor unit recruitment order in voluntary and electrically elicited contractions. Journal of Applied Physiology 68: 1657–1667, 1990

    PubMed  CAS  Google Scholar 

  • Knight KL. Electrical stimulation during immobilization. Physician and Sportsmedicine 8: 147, 1980

    Google Scholar 

  • Komi PV. Training of muscle strength and power: interaction of neuromotoric, hypertrophic and mechanical factors. International Journal of Sports Medicine 7 (Suppl.): 10–15, 1986

    PubMed  Google Scholar 

  • Komi PV, Tesch P. EMG frequency spectrum, muscle structure and fatigue during dynamic contractions in man. European Journal of Applied Physiology 42: 41–50, 1979

    CAS  Google Scholar 

  • Kots JM. Trenirovka mysecnoj sily metodom elektrostimulaciji. Soobstenie. Teorija I Praktika Fiziceskoi Kultury 3: 64–67, 1971

    Google Scholar 

  • Kots JM, Hvilon VA. The training of muscular power by method of electrical stimulation, State Central Institute of Physical Culture, Mowcow, 1975

    Google Scholar 

  • Kramer JC, Mendryk SW. Electrical stimulation as a strength improvement technique: a review. Journal of Orthopaedic and Sports Physical Therapy 4: 91–98, 1982

    PubMed  CAS  Google Scholar 

  • Kubiak RJ, Whitman KM, Johnston RM. Changes in quadriceps femoris muscle strength using isometric exercise versus electrical stimulation. Journal of Orthopaedic and Sports Physical Therapy 8: 537–541, 1987

    PubMed  CAS  Google Scholar 

  • Lainey CG, Walmsley RP, Andrew GM. Effectiveness of exercise alone versus exercise plus electrical stimulation in strengthening the quadriceps muscle. Physiotherapy Canada 35: 5–11, 1983

    Google Scholar 

  • Langley JN, Kato T. The rate of loss of weight in skeletal muscle after nerve section with some observations on the effect of stimulation and other treatment. Journal of Physiology (London) 49: 432–440, 1916

    Google Scholar 

  • Lapicque L. La chronaxie et ses applications physiologiques. In Physiologie genérate du système nerveux, Vol. 5, Paris, 1938

    Google Scholar 

  • Laughman RK, Youdas JW, Garrett TR, Chao EYS. Strength changes in the normal quadriceps femoris muscle as a result of electrical stimulation. Physical Therapy 63: 494–499, 1983

    PubMed  CAS  Google Scholar 

  • Lexell J, Henriksson-Larsen K, Sjöstrom M. Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiologica Scandinavica 117: 115–122, 1983

    PubMed  CAS  Google Scholar 

  • Licht S (Ed.). Electrodiagnosis and electromyography, Waverly Press, Baltimore 1961

    Google Scholar 

  • Lindh M. Increase in muscle strength from isometric quadriceps exercises at different knee angles. Scandinavian Journal of Rehabilitation Medicine 11: 33–36, 1979

    PubMed  CAS  Google Scholar 

  • Lloyd T, De Domenico G, Strauss GR, Singer K. A review of the use of electro-motor stimulation in human muscles. Australian Journal of Physiotherapy 32: 18–30, 1986

    Google Scholar 

  • Lomo T, Westgaard RH, Dahl HA. Contractile properties of muscle control by pattern of muscle activity in the rat. Proceeding Royal Society of London 187: 99–103, 1974

    CAS  Google Scholar 

  • Lotz BP, Dunne JW, Daube JR. Preferential activation of muscle fibers with peripheral magnetic stimulation of the limb. Muscle and Nerve 12: 636–639, 1989

    PubMed  CAS  Google Scholar 

  • Lysens R. Studie over spierkrachttraining door electrostimulatie. Belgische Vereniging voor Sportgeneeskunde en Sportwetenschappen 30: 37–48, 1981

    Google Scholar 

  • McMiken DF, Todd-Smith M, Thompson C. Strengthening of human quadriceps muscles by cutaneous electrical stimulation. Scandinavian Journal of Rehabilitation 15: 25–28, 1983

    CAS  Google Scholar 

  • Marsden CD, Meadows JC, Merton PA. ‘Muscular wisdom’ that minimizes fatigue during prolonged effort in man: peak rates of motoneuron discharge and slowing of discharge during fatigue. In Desmedt JE (Ed.) Motor control mechanisms in health and disease, Raven Press, New York, 1983

    Google Scholar 

  • Maton B. Human motor unit activity during the onset of muscle fatigue in submaximal isometric contraction. European Journal of Applied Physiology 46: 271–281, 1981

    CAS  Google Scholar 

  • Maughan RJ, Watson J, Weir J. Strength and cross-sectional area of human skeletal muscle. Journal of Physiology 338: 37–49, 1983

    PubMed  CAS  Google Scholar 

  • McDonagh JC, Binder MD, Reinking RM, Stuart DG. Tetrapartite classification of motor units of cat tibialis posterior. Journal of Neurophysiology 44: 696–712, 1980a

    PubMed  CAS  Google Scholar 

  • McDonagh JC, Binder MD, Reinking RM, Stuart DG. A commentary of muscle unit properties in cat hind limb muscles. Journal of Morphology 166: 217–230, 1980b

    PubMed  CAS  Google Scholar 

  • McDonagh MJN, Davies CTM. Adaptive response of mammalian skeletal muscle to exercise with high loads. European Journal of Applied Physiology 52: 139–155, 1984

    CAS  Google Scholar 

  • McDougall JD, Elder GCB, Sale DG, Moroz JR, Sutton JR. Effects of strength training and immobilization on human muscle fibers. European Journal of Applied Physiology 43: 25–34, 1980

    Google Scholar 

  • McNeal DR. 2000 years of electrical stimulation. In Hambrecht FT & Reswich JB (Eds) Functional electrical stimulation, pp. 5–12, New York, 1976

    Google Scholar 

  • Melzack R, Wall PD. Pain mechanism: a new theory. Science 150: 971–979, 1965

    PubMed  CAS  Google Scholar 

  • Miller C, Thépaut-Mathieu C. Comparison d’entraînements effectués sous électrostimulation et par contraction volontaire: rendement et adaptations physiologiques. Science et Motricité 11: 16–27, 1990

    Google Scholar 

  • Miller RG, Mirka A, Maxfield M. Rate of tension development in isometric contractions of a human hand muscle. Experimental Neurology 73: 267–285, 1981

    PubMed  CAS  Google Scholar 

  • Milner-Brown HS, Stein RB, Lee RG. Synchronization of human motor units: possible roles of exercize and supraspinal reflexes. Electroencephalography and Clinical Neurophysiology 38: 245–254, 1975

    PubMed  CAS  Google Scholar 

  • Milner-Brown HS, Stein RB, Yemm R. The orderly recruitment of human motor units during voluntary isometric contractions. Journal of Physiology 230: 359–370, 1973

    PubMed  CAS  Google Scholar 

  • Mohr T, Carlson B, Sulentic C, Landry R. Comparison of isometric exercise and high volt galvanic stimulation on quadriceps femoris muscle strength. Physical Therapy 65: 606–609, 1985

    PubMed  CAS  Google Scholar 

  • Moreno-Aranda J, Seireg A. Electrical parameters for over-the-skin muscle stimulation. Journal of Biomechanics 14: 579–585, 1981a

    PubMed  CAS  Google Scholar 

  • Moreno-Aranda J, Seireg A. Investigation of over-the-skin electrical stimulation parameters for different normal muscles and subjects. Journal of Biomechanics 14: 587–593, 1981b

    PubMed  CAS  Google Scholar 

  • Moreno-Aranda J, Seireg A. Force response to electrical stimu- lation of canine skeletal muscles. Journal of Biomechanics 14: 595–599, 1981c

    PubMed  CAS  Google Scholar 

  • Morissey, McBrewster CE, Shields CL, Brown M. The effect of electrical stimulation on the quadriceps during postoperative immobilization. American Journal of Sports Medicine 13: 40–45, 1985

    Google Scholar 

  • Moritani T, de Vries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. American Journal of Physical Medicine 58: 115–130, 1979

    PubMed  CAS  Google Scholar 

  • Moritani T, Muro M, Kijima A. Electromechanical changes during electrically induced and maximal voluntary contractions: electrophysiologic responses of different muscle fiber type during stimulated contractions. Experimental Neurology 88: 471–483, 1985

    PubMed  CAS  Google Scholar 

  • Munsat TL, McNeal D, Waters R. Effects of nerve stimulation on human muscle. Archives of Neurology 33: 608–617, 1976

    PubMed  CAS  Google Scholar 

  • Nelson B. Interferential therapy. Australian Journal of Physiotherapy 27: 53–56, 1981

    Google Scholar 

  • Osborne SL. The retardation of atrophy in man by electrical stimulation of muscles. Archives of Physical Medicine 32: 523–528, 1951

    CAS  Google Scholar 

  • Pette D, Vrbova G. Neural control of phenotypic expression in mammalian muscle fibers. Muscle and Nerve 8: 676–689, 1985

    PubMed  CAS  Google Scholar 

  • Romero JA, Sanford TL, Schroeder RV, Fahey TD. The effects of electrical stimulation of normal quadriceps on strength and girth. Medicine and Science in Sports and Exercise 14: 194–197, 1982

    PubMed  CAS  Google Scholar 

  • Rutherford OM, Jones DA. The role of learning and coordination in strength training. European Journal of Applied Physiology 55: 100–105, 1986

    CAS  Google Scholar 

  • Rutherford OM, Jones DA. Contractile properties and fatigability of the human adductor pollicis and first dorsal interosseus: a comparison of the effects of two chronic stimulation patterns. Journal of the Neurological Sciences 85: 319–331, 1988

    PubMed  CAS  Google Scholar 

  • Sale DG. Neural adaptation to resistance training. Medicine and Science in Sports and Exercise 20: S135–S145, 1988

    PubMed  CAS  Google Scholar 

  • Sale D, McComas AJ, MacDougall JD, Upton ARM. Neuromuscular adaptation in human thenar muscles following strength training and immobilization. Journal of Applied Physiology 53: 419–453, 1982a

    PubMed  CAS  Google Scholar 

  • Sale D, Quinlan J, Marsh E, McComas AJ, Belanger AY. Influence of joint position on ankle plantarflexion in humans. Journal of Applied Physiology 52: 1636–1642, 1982b

    PubMed  CAS  Google Scholar 

  • Salmons S, Henriksson J. The adaptive response of skeletal muscle to increased use. Muscle and Nerve 4: 94–105, 1981

    PubMed  CAS  Google Scholar 

  • Salmons S, Sreter FA. Significance of impulse activity in the transformation of skeletal muscle type. Nature 263: 30–34, 1976

    PubMed  CAS  Google Scholar 

  • Schantz P, Randall-Fox E, Hutchison W, Tyden A, Åstrand PO. Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiology Scandinavica 117: 219–226, 1983

    CAS  Google Scholar 

  • Scott OM, Vrbova G, Hyde SA, Dubowitz V. Effect of chronic low frequency electrical stimulation on normal tibialis anterior muscle. Journal of Neurology, Neurosurgery and Psychiatry 48: 774–781, 1985

    CAS  Google Scholar 

  • Selkowtiz DM. Improvement in isometric strength of the quadriceps femoris. Physical Therapy 65: 186–196, 1985

    Google Scholar 

  • Singer B. Functional electrical stimulation of the extremities in the neurological patient: a brief review. Australian Journal of Physiotherapy 33: 33–42, 1986

    Google Scholar 

  • Solomonow M. External control of the neuromuscular system. IEEE Transactions on Biomedical Engineering 31: 752–763, 1984

    PubMed  CAS  Google Scholar 

  • Stefanovska A, Vodovnik L. Change in muscle force following electrical stimulation. Scandinavian Journal of Rehabilitation Medicine 17: 141–146, 1985

    PubMed  CAS  Google Scholar 

  • St Pierre DMM, Leonard D, Houle R, Gardiner PF. Recovery of muscle from tetrodotoxin-induced disuse and the influence of daily exercises. Experimental Neurology 101: 327–346, 1988

    Google Scholar 

  • St Pierre D, Taylor AW, Lavoie M, Sellers W, Kots Y. Effects of 2500 Hz sinusoidal current on fibre area and strength of the quadriceps femoris. Journal of Sports Medicine and Physical Fitness 26: 60–65, 1986

    Google Scholar 

  • Strauss GS, De Domenico G. Torque production in human upper and lower limb muscles with voluntary and electrically stimulated contractions. Australian Journal of Physiotherapy 32: 38–49, 1986

    Google Scholar 

  • Thepaut-Mathieu C, Van Hoecke J, Maton B. Myoelectrical and mechanical changes linked to length specificity during isometric training. Journal of Applied Physiology 64: 1500–1505, 1988

    PubMed  CAS  Google Scholar 

  • Trimble MH, Enoka RM. Mechanisms underlying the training effects associated with neuromuscular electrical stimulation. Physical Therapy 71: 273–280, 1991

    PubMed  CAS  Google Scholar 

  • Trnkoczy A. Functional electrical stimulation of extremities: basis, technology and role in rehabilitation. Automedica 2: 59–100, 1978

    Google Scholar 

  • Wigerstad-Lossing I, Grimby G, Jonsson T, Morelli B, Peterson L, Renstrom P. Effects of electrical muscle stimulation combined with voluntary contractions after knee ligament surgery. Medicine and Science in Sports and Exercise 20: 93–98, 1988

    PubMed  CAS  Google Scholar 

  • Williams JGP, Street M. Sequential faradism in quadriceps rehabilitation. Physiotherapy 62: 252–254, 1976

    PubMed  CAS  Google Scholar 

  • Williams RA, Morissey MC, Brewster CE. The effect of electrical stimulation on quadriceps strength and thigh circumference in meniscectomy patients. Journal of Orthopaedic and Physical Therapy 8 (3): 143–146, 1986

    CAS  Google Scholar 

  • Wynn Parry CB. Strength-duration curves. In Licht S (Ed.) Electrodiagnosis and electromyography, pp. 241–271, Waverly Press, Baltimore, 1961

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hainaut, K., Duchateau, J. Neuromuscular Electrical Stimulation and Voluntary Exercise. Sports Medicine 14, 100–113 (1992). https://doi.org/10.2165/00007256-199214020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199214020-00003

Keywords

Navigation