Skip to main content
Log in

Exercise, Muscle Damage and Fatigue

  • Issues in Fatigue in Sport and Exercise
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Fatigue as a functional sign and muscle damage as a structural sign can be observed after prolonged exercise like marathon running or after strenuous exercise, especially with the involvement of eccentric contractions. For fatigue due to prolonged exercise, hypoxic conditions and the formation of free oxygen radicals seem to be of aetiological importance, resulting in an elevated lysosomal activity. Eccentric exercise of high intensity rather results in a mechanical stress to the fibres. Although these different mechanisms can be discerned experimentally, both result in similar impairments of muscle function. A good training status may attenuate the clinical signs of fatigue and muscle damage. The symptoms and events occurring during delayed onset of muscle soreness (DOMS) can be explained by a cascade of events following structural damage to muscle proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott BC, Bigland B, Ritchie JM. The physiological cost of ne gative work. Journal of Physiology (London) 117: 380–390, 1952

    CAS  Google Scholar 

  • Abraham WM. Factors in delayed muscle soreness. Medicine and Science in Sports 9: 11–20, 1977

    PubMed  CAS  Google Scholar 

  • Armstrong RB. Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Medicine and Science in Sports and Exercise 16: 529–538, 1984

    PubMed  CAS  Google Scholar 

  • Armstrong RB, Laughlin MH, Rome L, Taylor CR. Metabolism of rats running up and down an incline. Journal of Applied Physiology 55: 518–521, 1983b

    PubMed  CAS  Google Scholar 

  • Armstrong RB, Ogilvie RW, Schwane JA. Eccentric exercise-induced injury to rat skeletal muscle. Journal of Applied Physiology 54: 80–93, 1983a

    PubMed  CAS  Google Scholar 

  • Asmussen E. Observations on experimental muscular soreness. Acta Rheumatologica Scandinavica 2: 109–116, 1956

    CAS  Google Scholar 

  • Bigland-Ritchie B, Woods JJ. Integrated electromyogram and oxygen uptake during positive and negative work. Journal of Physiology (London) 260: 267–277, 1976

    CAS  Google Scholar 

  • Bonde-Petersen F, Knuttgen HG, Henriksson J. Muscle metab-olism during exercise with concentric and eccentric contractions. Journal of Applied Physiology 33: 792–795, 1972

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiological Reviews 59: 527–605, 1979

    PubMed  CAS  Google Scholar 

  • Davies CTM, White JM. Muscle weakness following eccentric work in man. Pflügers Archiv 392: 166–171, 1981

    Article  Google Scholar 

  • Decker RS, Poole AR, Crie JS, Dingle JT, Wildenthal K. Lysosomal alterations in hypoxic and reoxygenated hearts. II. Immunohistochemical and biochemical changes in cathepsin D. American Journal of Pathology 98: 445–456, 1980

    PubMed  CAS  Google Scholar 

  • Del Maestro RF. An approach to free radicals in medicine and biology. Acta Physiologica Scandinavica 492: 153–168, 1980

    Google Scholar 

  • Edwards RHT, Mills KR, Newham DJ. Measurement of severity and distribution of experimental muscle tenderness. Journal of Physiology (London) 317: 1P–2P, 1981

    Google Scholar 

  • Evans DT, Smith LL, Chenier TC, Israel RG, McCammon MR, et al. Changes in peak torque, limb volume, and delayed onset muscle soreness following repetitive eccentric contractions. Abstract. International Journal of Sports Medicine 11: 403, 1990

    Google Scholar 

  • Firdèn J, Seger J, Ekblom B. Sublethal muscle fibre injuries after high-tension anaerobic exercise. European Journal of Applied Physiology 57: 360–368, 1988

    Article  Google Scholar 

  • Fridèn J, Sjöström M, Ekblom B. A morphological study of delayed muscle soreness. Experientia 37: 506–507, 1981

    Article  PubMed  Google Scholar 

  • Getzen LC, Carr III JE. Etiology of anterior tibial compartment syndrome. Surgery, Gynecology and Obstetrics 125: 347–350, 1967

    Google Scholar 

  • Hageloch W, Appell HJ, Weicker H. Rhabdomyolyse bei Bodybuilder unter Anabolika-Einnahme. Sportverletzung Sportschaden 2: 122–125, 1988

    Article  PubMed  CAS  Google Scholar 

  • Hikida RS, Staron RS, Hagerman FS, Sherman WM, Costill DL. Muscle fiber necrosis associated with human marathon runners. Journal of Neurological Science 59: 185–203, 1983

    Article  CAS  Google Scholar 

  • Hough T. Ergographic studies in muscular soreness. American Journal of Physiology 7: 76–92, 1902

    Google Scholar 

  • Kuipers H, Drukker J, Frederick PM, Geurten P, von Kranenburg G. Muscle degeneration after exercise in rats. International Journal of Sports Medicine 4: 45–51, 1983

    Article  PubMed  CAS  Google Scholar 

  • Newham DJ, Jones DA, Clarkson PM. Repeated high-force eccentric exercise: effects on muscle pain and damage. Journal of Applied Physiology 63: 1381–1386, 1987

    PubMed  CAS  Google Scholar 

  • Newham DJ, McPhail G, Mills KB, Edwards RHT. Ultrastructural changes after concentric and eccentric contractions of human muscle. Journal of Neurological Science 61: 109–122, 1983

    Article  CAS  Google Scholar 

  • O’Reilly KP, Warhol MJ, Fielding RA, Frontera WR, Meredith CN, et al. Eccentric exercise-induced muscle damage impairs muscle glycogen repletion. Journal of Applied Physiology 63: 252–256, 1987

    PubMed  Google Scholar 

  • Payne CM, Stern LZ, Curless RG, Hannapel LK. Ultrastructural fiber typing in normal and diseased human muscle. Journal of Neurological Science 25: 88–108, 1975

    Article  Google Scholar 

  • Rall JA. Energetic aspects of skeletal muscle contraction: implication of fiber types. Exercise and Sports Science Reviews 13: 33–74, 1985

    CAS  Google Scholar 

  • Salminen A, Vihko V, Acid proteolytic capacity in mouse cardiac and skeletal muscles after prolonged submaximal exercise. Pflügers Archiv 389: 17–20, 1980

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Hongisto K, Vihko V. Lysosomal changes related to exercise injuries and training-induced protection in mouse skeletal muscle. Acta Physiologica Scandinavica 120: 15–20, 1984

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Vihko V. Endurance training reduces the susceptibility of mouse skeletal muscle to lipid peroxidation in vitro. Acta Physiologica Scandinavica 117: 109–113, 1983

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Vihko V. Autophagic response to strenuous exercise in mouse skeletal muscle fibers. Virchows Archiv (Cell Pathology) 45: 97–106, 1984

    Article  CAS  Google Scholar 

  • Schwane JA, Armstrong RB. Effect of training on skeletal muscle injury from downhill running in rats. Journal of Applied Physiology 55: 969–975, 1983

    PubMed  CAS  Google Scholar 

  • Schwane JA, Johnson SR, Vandenakker CB, Armstrong RB. Delayed-onset muscular soreness and plasma CPK and LDH activities after downhill running. Medicine and Science in Sports and Exercise 15: 51–56, 1983a

    PubMed  CAS  Google Scholar 

  • Schwane JA, Watrous BG, Johnson SR, Armstrong RB. Is lactic acid related to delayed-onset muscle soreness? Physician and Sportsmedicine 11: 124–131, 1983

    Google Scholar 

  • Sjöström M, Ängquist KA, Rais O. Intermittent claudication and muscle fiber fine structcure: correlation between clinical and morphological data. Ultrastructural Pathology 1: 309–326, 1980

    Article  PubMed  Google Scholar 

  • Sjöström M, Fridèn J, Ekblom B. Endurance, what is it? Muscle morphology after an extremely long distance run. Acta Physiologica Scandinavica 130: 513–520, 1987

    Article  PubMed  Google Scholar 

  • Sjöström M, Neglen P, Fridèn J, Eklöf B. Human skeletal muscle metabolism and morphology after temporary incomplete is chaemia. European Journal of Clinical Investigation 12: 69–79, 1982

    Article  PubMed  Google Scholar 

  • Tiidus PM, Ianuzzo CD. Effects of intensity and duration of muscular exercise on delayed soreness and serum enzyme activities. Medicine and Science in Sports and Exercise 15: 461–465, 1983

    Article  PubMed  CAS  Google Scholar 

  • Tullson P, Armstrong RB. Muscle hexose monophosphate shunt activity following exercise. Experientia 37: 1311–1312, 1981

    Article  PubMed  CAS  Google Scholar 

  • Vihko V, Rantamäki J, Salminen A. Exhaustive physical exercise and acid hydrolase activity in mouse skeletal muscle. Histochemistry 57: 237–249, 1978a

    Article  PubMed  CAS  Google Scholar 

  • Vihko V, Salminen A, Rantamäki J. Acid hydrolase activity in red and white skeletal muscle of mice during a two-week period folowing exhausting exercise. Pflügers Archiv 378: 99–106, 1978b

    Article  PubMed  CAS  Google Scholar 

  • Vihko V, Salminen A, Rantamäki J. Exhaustive exercise, endurance training, and acid hydrolase activity in mouse skeletal muscle. Journal of Applied Physiology 47: 43–50, 1979

    PubMed  CAS  Google Scholar 

  • Warhol MJ, Siegel AJ, Evans WJ, Silverman LM, Skeletal muscle injury and repair in marathon runners after competition. American Journal of Pathology 118: 331–338, 1985

    PubMed  CAS  Google Scholar 

  • Yates JW, Armbruster WJ. Concentric and eccentric strength loss and recovery folowing exercised-induced muscle soreness. Abstract. International Journal of Sports Medicine 11: 403, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appell, HJ., Soares, J.M.C. & Duarte, J.A.R. Exercise, Muscle Damage and Fatigue. Sports Medicine 13, 108–115 (1992). https://doi.org/10.2165/00007256-199213020-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199213020-00006

Keywords

Navigation