Skip to main content
Log in

Acute and Chronic Responses of Skeletal Muscle to Endurance and Sprint Exercise

A Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Skeletal muscle adapts to the stress of endurance and sprint exercise and training. There are 2 main types of skeletal muscle fibre — slow twitch (ST) and fast twitch (FTa, FTb, FTc). Exercise may produce transitions between FT and ST fibres. Sprint training has decreased the proportion of ST fibres and significantly increased the proportion of FTa fibres, while endurance training may convert FTb to FTa fibres, and increase the proportion of ST fibres (i.e. FTb → FTa → FTc → ST). However, the high proportion of ST fibres documented for elite endurance athletes may be simply the result of natural selection.

ST fibres function predominantly during submaximal exercise, whereas FT fibres are recruited as exercise intensity approaches V̇O2max and/or glycogen stores are depleted. Long distance runners have greater ST and FT fibre areas than untrained controls. However, doubt remains as to whether the ST or FT fibre area is greatest in endurance athletes. Increases in FT fibre area seem to occur during the first 2 months of training, whereas ST fibre areas appear to increase after 2 to 6 months of training. Sprint training leads to the preferential use of FT fibres and male, but not female sprinters have larger FT fibres than untrained controls.

Mitochondrial proteins and oxidative enzymes, as opposed to V̇O2maxare important determinants of the duration of endurance exercise.

Endurance training increases intramuscular glycogen stores in both FT and ST fibres and produces a ‘glycogen-sparing’ effect which is characterised by an increased free fatty acid (FFA) metabolism. The activity of glycogen synthase is also increased by endurance training. Sprint training increases glycogen concentrations similarly in all fibre types, reduces the rate of glycogen utilisation at submaximal workloads and allows supramaximal workloads to be maintained for longer periods of time. During endurance exercise the pattern of glycogen depletion varies between muscle fibre types and between muscle groups. Glycogen stores in ST fibres are utilised initially, followed by stores in FTa then FTb fibres. Sprint activities are associated with a much greater rate of glycogen depletion. However, it is unlikely that glycogen depletion causes fatigue during sprinting. Sprint work is associated with a preferential depletion of glycogen from FTb then FTa and ST fibres.

Endurance training appears to increase triglyceride stores adjacent to mitochondria and ST fibres have greater triglyceride stores than FT fibres. Endurance exercise is associated with a preferential use of triglycerides from ST fibres and endogenous triglycerides may account for over 50% of the total lipid oxidised during exercise. The oxidation of fat is unlikely to be a significant factor in sprinting tasks.

Skeletal muscle has an increased capacity to form alanine from pyruvate after endurance training and leucine oxidation may also be enhanced. The largest increase in amino acid metabolism during exercise occurs from intra-rather than extramuscular sources. The pool of free amino acids is used by the glucose-alanine cycle and during BCAA oxidation. However, prolonged physical activity reduces the amino acids available for these metabolic pathways, suggesting that the use of protein as an energy substrate is limited. In contrast, short term exercise is associated with high plasma alanine levels and thus, it is likely that BCAA oxidation increases during sprinting.

Glycolytic and oxidative enzyme responses may be significantly altered by both endurance and sprint training. Endurance training may increase phosphofructokinase (PFK), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) activity, whereas sprint training may increase PFK, phosphorylase, lactate dehydrogenase and glyceraldehyde dehydrogenase activity.

Creatine phosphate (CP) activity and ATP levels are higher in FT than ST fibres. Endurance training reduces CP and ATP depletion at submaximal workloads, but also increases CP and ATP concentrations. Superior sprinters are able to utilise phosphagens quickly and more completely than lesser competitors over distances up to 80m, but this may result from genetic predisposition rather than training.

Extreme and prolonged training may produce skeletal muscle fibre type conversion. Additionally, acute and chronic exercise alter skeletal muscle substrate, metabolism and phosphagen profiles thus influencing physical performance and sporting success. Obviously, such skeletal muscle changes are important to coaches and athletes wishing to design training programmes to maximise the performance of a specific motor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson P, Henriksson J. Training induced changes in the subgroups of human type II skeletal muscle fibres. Acta Physiologica Scandinavica 99: 123–125, 1977a

    Article  Google Scholar 

  • Anderson P, Henriksson J. Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. Journal of Physiology 170: 677–690, 1977b

    Google Scholar 

  • Anderson P, Sjogaard G. Selective glycogen depletion in subgroups of type II muscle fibres during intense submaximal exercise in man. Acta Physiologica Scandinavica 96: 26a–27a, 1976

    Article  Google Scholar 

  • Asmussen E, Klausen K, Nielson L, Techow OSA, Tonder P. Lactate production and anaerobic work capacity after prolonged exercise. Acta Physiologica Scandinavica 90: 731–742, 1974

    Article  PubMed  CAS  Google Scholar 

  • Baldwin KM, Fitts RH, Booth FW, Winder WW, Holloszy JO. Depletion of muscle and liver glycogen during exercise: protective effect of training. Pflugers Archiv (European Journal of Physiology) 354: 2203–2212, 1975

    Google Scholar 

  • Barany M. ATPase activity of myosin correlated with speed of muscle shortening. Journal of Physiology 50: 197–218, 1967

    Google Scholar 

  • Baumann H. Jaggi M. Soland S, Howald H, Schaub MC. Exercise training induces transitions of myosin isoform sub-units within histochemically typed human muscle fibres. Pflugers Archiv European Journal of Physiology. 409: 349–360, 1987

    Article  PubMed  CAS  Google Scholar 

  • Bell DG, Jacobs I. Muscle fibre-specific glycogen utilization in strength-trained males and females. Medicine and Science in Sports and Exercise 21(6): 699–654, 1989

    Google Scholar 

  • Bergstrom J. Muscle electrolytes in man. Scandinavian Journal of Clinical and Laboratory Investigation (Suppl. 68): 1962

    Google Scholar 

  • Bergstrom J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavica 71: 140–150, 1967

    Article  PubMed  CAS  Google Scholar 

  • Bessman SP, Carpeneter CL. The creatine-creatine phosphate energy shuttle. Annual Review of Biochemistry 54: 831–862, 1985

    Article  PubMed  CAS  Google Scholar 

  • Billeter R, Heizman CW, Howald H, Jenny E. Analysis of myosin light and heavy chain types in single human skeletal muscle fibers. European Journal of Biochemistry 116: 389–395, 1981

    Article  PubMed  CAS  Google Scholar 

  • Boner HW, Leslie SW, Combs AB, Tate CA. Effects of exercise training and exhaustion on 45Ca uptake by rat skeletal muscle mitochondria and sarcoplasmic reticulum. Research Communications in Chemical Pathology and Pharmacology 14(4): 767–770, 1976

    Google Scholar 

  • Boobis L, Williams C, Wooton SA. Influence of sprint training on muscle metabolism during brief maximal exercise in man. Journal of Physiology 342: 36P–37P, 1983a

    Google Scholar 

  • Boobis L, Williams C, Wooton SA. Human muscle metabolism during brief maximal exercise. Journal of Physiology 338: 21P–22P, 1983b

    Google Scholar 

  • Brooke MH, Kaiser KK. Muscle fibre types, how many and what kind? Archives of Neurology 23: 369–379, 1970

    Article  PubMed  CAS  Google Scholar 

  • Brooke MH, Kaiser KK. The use and abuse of muscle histo-chemistry. Annals of the New York Academy of Sciences 228: 121–144, 1974

    Article  PubMed  CAS  Google Scholar 

  • Brooks GA, Hittelman KJ, Faulkner JA, Beyer RE. Temperature, skeletal muscle mitochondrial functions, and oxygen debt. American Journal of Physiology 220(4) 1053–1059, 1971

    PubMed  CAS  Google Scholar 

  • Buchthal F, Schmalbruch J. Contraction times and fibre types in intact human muscle. Acta Physiologica Scandinavica 79: 435–452, 1970

    Article  PubMed  CAS  Google Scholar 

  • Buller AJ, Eccles JC, Eccles RM. Differentiation of fast and slow muscle in the cat hind limb. Journal of Physiology 150: 399–416, 1960

    PubMed  CAS  Google Scholar 

  • Bylund AC, Bjuro T, Cederblad G, Holm J, Lundhom K, et al. Physical training in man: skeletal muscle metabolism in relation to muscle morphology and running ability. European Journal of Applied and Occupational Physiology 36: 151–169, 1977

    Article  CAS  Google Scholar 

  • Carlson LA, Ekelund L-G, Froberg SO. Concentration of triglycerides, phospholipids and glycogen in skeletal muscle and of free fatty acids and B-hydroxybutyric acid in blood in man in response to exercise. European Journal of Clinical Investigation 1: 248–254, 1971

    PubMed  CAS  Google Scholar 

  • Chasiotis D, Sahlin K, Hultman E. Regulation of glycogenolysis in human muscle at rest and during exercise. Journal of Applied Physiology 53: 708–715, 1982

    Article  PubMed  CAS  Google Scholar 

  • Cheetham ME, Boobis LH, Brooks S, Williams C. Human muscle metabolism during sprint running. Journal of Applied Physiology 61: 54–60, 1986

    PubMed  CAS  Google Scholar 

  • Clarkson PM, Droll W, Mechionda AM. Isokinetic strength, endurance and fibre types in elite American paddlers. European Journal of Applied and Occupational Physiology 48: 67–76, 1982

    Article  CAS  Google Scholar 

  • Constable SH, Favier RJ, McLane JA, Fell RD, Chen M, et al. Energy metabolism in contracting rat skeletal muscle: adaptation to exercise training. American Journal of Physiology 253: 316–322, 1987

    Google Scholar 

  • Costill DL, Daniels J, Evans W, Fink W, Krahenbuhl G, et al. Skeletal muscle enzymes and fibre composition in male and female track athletes. Journal of Applied Physiology 40: 149–154, 1976a

    PubMed  CAS  Google Scholar 

  • Costill DL, Fink WJ, Getchell LH, Ivy JL, Witzmann FA. Lipid metabolism in skeletal muscle of endurance trained males and females. Journal of Applied Physiology 47: 787–791, 1979

    PubMed  CAS  Google Scholar 

  • Costill DL, Fink WJ, Pollock ML. Muscle fibre composition and enzymatic activities of elite distance runners. Medicine and Science in Sports 8: 96–100, 1976b

    PubMed  CAS  Google Scholar 

  • Costill DL, Gollnick PD, Jansson ED, Saltin B, Stein EM. Glycogen depletion pattern in human muscle fibre during distance running. Acta Physiologica Scandinavica 89: 374–383, 1973

    Article  PubMed  CAS  Google Scholar 

  • Costill DL, Jansson E, Gollnick PD, Saltin B. Glycogen utilisation in leg muscles of men during level and uphill running. Acta Physiologica Scandinavica 91: 475–481, 1974

    Article  PubMed  CAS  Google Scholar 

  • Costill DL, Sparks K, Gregor R, Turner C. Muscle glycogen utilization during exhaustive running. Journal of Applied Physiology 31(3): 353–356, 1971

    PubMed  CAS  Google Scholar 

  • Davies KJA, Packer L, Brooks GA. Biochemical adaptation of mitochondria, muscle and whole animal respiration to endurance training. Archives of Biochemistry and Biophysics 209: 538–553, 1981

    Article  Google Scholar 

  • Dohm GL, Barakat H, Stephenson TP, Pennington SN, Tapscott EB. Changes in muscle mitochondrial lipid composition resulting from training and exhaustive exercise. Life Sciences 17: 1075–1080, 1975

    Article  PubMed  CAS  Google Scholar 

  • Dohm GL, Kasperek GJ, Tapscott EB, Barakat HA. Protein metabolism during endurance exercise. Federation Proceedings 44: 348–352, 1985

    PubMed  CAS  Google Scholar 

  • Dudley GA, Djamil R. Incompatability of endurance- and strength-training modes of exercise. Journal of Applied Physiology 54(2): 582–586, 1985

    Google Scholar 

  • Eller AK, Viru AA. Alterations of the content of free amino acids in skeletal muscle during prolonged exercise. In Knuttgen et al. (Eds) Biochemistry of exercise, Vol. 13, pp. 363–365, Human Kinetics, Champaign, 1983

    Google Scholar 

  • Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiologica Scandinavica 87: 485–497, 1973

    Article  PubMed  CAS  Google Scholar 

  • Essen B. Intramuscular substrate utilisation during prolonged exercise. Annals of the New York Academy of Sciences 301: 30–44, 1977

    Article  PubMed  CAS  Google Scholar 

  • Essen B. Glycogen depletion of different fibre types in human skeletal muscle during intermittent and continuous exercise. Acta Physiologica Scandinavica 103: 446–455, 1978a

    Article  PubMed  CAS  Google Scholar 

  • Essen B. Studies on the regulation of metabolism in human skeletal muscle using intermittent exercise as an experimental model. Acta Physiologica Scandinavica (Suppl. 454): 1978b

    Google Scholar 

  • Essen B, Hagenfeldt L, Kaijser L. Utilisation of blood-borne and intramuscular substrates during continuous and intermittent exercise in man. Journal of Physiology 265: 489–506, 1977

    PubMed  CAS  Google Scholar 

  • Essen B, Jansson E, Henriksson J, Taylor AW, Saltin B. Metabolic characteristics of fibre types in human muscle. Acta Physiologica Scandinavica 95: 153–165, 1975

    Article  PubMed  CAS  Google Scholar 

  • Essen-Gustavsson B, Borges O. Histochemical and metabolic characteristics of human skeletal muscle in relation to age. Acta Physiologica Scandinavica 126: 107–114, 1986

    Article  PubMed  CAS  Google Scholar 

  • Felig P. Amino acid metabolism in exercise. Annals of the New York Academy of Sciences 301: 56–63, 1977

    Article  PubMed  CAS  Google Scholar 

  • Felig P, Wahren J. Amino acid metabolism in exercising man. Journal of Clinical Investigation 50: 2703–2714, 1971

    Article  PubMed  CAS  Google Scholar 

  • Fournier M, Ricci J, Taylor AW, Ferguson RJ, Monpetit RR, et al. Skeletal muscle adaptation in adolescent boys: sprint and endurance training and detraining. Medicine and Science in Sports and Exercise 14: 453–456, 1982

    Article  PubMed  CAS  Google Scholar 

  • Friden J, Seger J, Ekblom B. Sublethal muscle fibre injuries after high tension anaerobic exercise. European Journal of Applied and Occupational Physiology 57: 360–368, 1988

    Article  CAS  Google Scholar 

  • Fridén J, Sjöström M, Ekblom B. Muscle fibre characteristics in endurance trained and untrained individuals. European Journal of Applied and Occupational Physiology 52: 266–271, 1984

    Article  Google Scholar 

  • Gale JB. Mitochondria! swelling associated with exercise and method of fixation. Medicine and Science in Sports and Exercise 6: 102–187, 1974

    Google Scholar 

  • Garber AJ, Karl IE, Kipinis DM. Alanine and glutamine synthesis and release from skeletal muscle. Journal of Biological Chemistry 251(3): 851–857, 1976

    PubMed  CAS  Google Scholar 

  • Gerard ES, Caiozzo ZJ, Rubin BD, Prietto CA, Davidson DM. Skeletal muscle profiles among elite long, middle and short distance swimmers. American Journal of Sports Medicine 14: 77–83, 1986

    Article  PubMed  CAS  Google Scholar 

  • Gollnick PD. Free fatty acid turnover and the availability of substrates as a limiting factor in prolonged exercise. Annals of the New York Academy of Sciences 301: 64–71, 1977

    Article  PubMed  CAS  Google Scholar 

  • Gollnick PD. Relationship of strength endurance with skeletal muscle structure and metabolic potential. International Journal of Sports Medicine (Suppl. 3): 26–32, 1982a

    Google Scholar 

  • Gollnick PD. Peripheral factors as limitations to exercise capacity. Canadian Journal of Applied Sport Sciences 7: 14–21, 1982c

    CAS  Google Scholar 

  • Gollnick PD, Armstrong RB, Saltin B, Saubert CW, Sembrowich WL, et al. Effect of training on enzyme activity and fibre composition of human skeletal muscle. Journal of Applied Physiology 34: 107–111, 1973a

    PubMed  CAS  Google Scholar 

  • Gollnick PD, Armstrong RB, Saubert CW, Piehl K, Saltin B. Enzyme activity and fibre composition in skeletal muscle of untrained and trained men. Journal of Applied Physiology 33: 312–319, 1972a

    PubMed  CAS  Google Scholar 

  • Gollnick PD, Armstrong RB, Sembrowich WL, Shepherd RE, Saltin B. Glycogen depletion in human skeletal muscle fibres after heavy exercise. Journal of Applied Physiology 34: 615–618, 1973b

    PubMed  CAS  Google Scholar 

  • Gollnick PD, King DW. Effect of exercise and training on mitochondria of rat skeletal muscle. American Journal of Physiology 216(6): 1502–1509, 1969

    PubMed  CAS  Google Scholar 

  • Gollnick PD, Pernow B, Essen B, Jansson E, Saltin B. Availability of glycogen and plasma FFA for substrate utilization in leg muscle of man during exercise. Clinical Physiology 1: 27–42, 1981

    Article  CAS  Google Scholar 

  • Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. Journal of Physiology 241: 45–57, 1974a

    PubMed  CAS  Google Scholar 

  • Gollnick PD, Piehl K, Saubert CW, Armstrong RB, Saltin B. Diet, exercise and glycogen changes in human muscle fibres. Journal of Applied Physiology 33: 421–425, 1972b

    PubMed  CAS  Google Scholar 

  • Gollnick PD, Saltin B. Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clinical Physiology 2: 1–12, 1982b

    Article  PubMed  CAS  Google Scholar 

  • Gollnick PD, Sjodin B, Karlsson J, Jansson E, Saltin B. Human soleus muscle: a comparison of fibre composition and enzyme activities with other leg muscles. Pflugers Archiv European Journal of Physiology 348: 247–255, 1974b

    Article  PubMed  CAS  Google Scholar 

  • Green HJ. Glycogen depletion patterns during continuous and intermittent ice skating. Medicine and Science in Sports 10: 183–187, 1978

    PubMed  CAS  Google Scholar 

  • Green HJ, Klug GA, Reichman H, Seedorf U, Wiehrer W, et al. Exercise-induced fibre type transitions with regard to myosin, parvalbumin and sarcoplasmic reticulum in muscles of the rat. Pflugers Archiv European Journal of Physiology 400: 432–438, 1984

    Article  PubMed  CAS  Google Scholar 

  • Green HJ, Reidmann H, Pette D. Fibre type specific transformations in the enzyme activity pattern of rat vastus lateralis muscle by prolonged endurance exercise. Pflugers Archiv European Journal of Physiology 399: 216–222, 1983

    Article  PubMed  CAS  Google Scholar 

  • Green HJ, Thomson JA, Daub WD, Houston ME, Ranny DA. Fibre composition, fibre size and enzyme activities in vastus lateralis of elite athletes involved in high intensity exercise. European Journal of Applied and Occupational Physiology 41: 109–117, 1979

    Article  CAS  Google Scholar 

  • Gregor RJ, Edgerton VR, Rozenck R, Castleman KR. Skeletal muscle properties and performance in elite female tract athletes. European Journal of Applied and Occupational Physiology 47: 355–364, 1981

    Article  CAS  Google Scholar 

  • Gyntelberg F, Rennie MJ, Hickson RC, Holloszy JO. Effect of training on the response of plasma glucagon to exercise. Journal of Applied Physiology 43(2): 302–305, 1977

    PubMed  CAS  Google Scholar 

  • Haggmark T, Jansson E, Eriksson E. Fibre type area and metabolic potential of the thigh muscle in man after knee surgery and immobilisation. International Journal of Sports Medicine 2: 12–17, 1981

    Article  PubMed  CAS  Google Scholar 

  • Haller RG, Cook JD, Lewis SF, Blomqvist CG. Disordered oxidative metabolism in McArdle’s disease. Transactions of the American Neurological Association 106: 142–145, 1981

    Google Scholar 

  • Havel RJ, Pernow B, Jones NL. Uptake and release of free fatty acids and other metabolites in the legs of exercising men. Journal of Applied Physiology 23(1): 90–99, 1967

    PubMed  CAS  Google Scholar 

  • Henderson SA, Black AL, Brooks GA. Leucine turnover and oxidation in trained and untrained rats during rest and exercise. American Journal of Physiology 249: 137–144, 1985

    Google Scholar 

  • Henriksson J. Training induced adaptations of skeletal muscle and metabolism during submaximal exercise. Journal of Physiology 270: 661–675, 1977

    PubMed  CAS  Google Scholar 

  • Henriksson J, Reitman JS. Quantitative measures of enzyme activity in type I and type II muscle fibres of man after training. Acta Physiologica Scandinavica 97: 392–397, 1976

    Article  PubMed  CAS  Google Scholar 

  • Hermansen L, Vaage O. Lactate disappearance and glycogen synthesis in human muscle after maximal exercise. American Journal of Physiology 233: E422, E429, 1977

    PubMed  CAS  Google Scholar 

  • Hickson RC. Interference of strength development by simultaneously training for strength and endurance. European Journal of Applied and Occupational Physiology 45: 255–263, 1980

    Article  CAS  Google Scholar 

  • Hirvonen J, Rehunen S, Rusko H, Harkonen M. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise. European Journal of Applied and Occupational Physiology 56: 253–259, 1987

    Article  CAS  Google Scholar 

  • Holloszy JO. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. Journal of Biological Chemistry 242: 2278–2282, 1967

    PubMed  CAS  Google Scholar 

  • Holloszy JO, Adaptation of skeletal muscle to endurance exercise. Medicine and Science in Sports 7(3): 155–164, 1975

    PubMed  CAS  Google Scholar 

  • Hoppeler H. Exercise-induced ultrastructural changes in skeletal muscle. International Journal of Sports Medicine 7: 187–204, 1986

    Article  PubMed  CAS  Google Scholar 

  • Hoppeler H, Howald H, Conley K, Lindstedt SL, Classen H, et al. Endurance training in humans: aerobic capacity and structure of skeletal muscle. Journal of Applied Physiology 59(2): 320–327, 1985

    PubMed  CAS  Google Scholar 

  • Hoppeler H, Luthi P, Classen H, Weibel ER, Howald H. The ultrastructure of the normal human skeletal muscle: a morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Archiv European Journal of Physiology 344: 217–232, 1973

    Article  PubMed  CAS  Google Scholar 

  • Houston ME. The use of histochemistry in muscle adaptation: a critical assessment. Canadian Journal of Applied Sport Sciences 3: 109–119, 1978

    Google Scholar 

  • Houston ME, Bentzen H, Larsen H. Interrelationships between skeletal muscle adaptations and performance as studied by de-training and retraining. Acta Physiologica Scandinavica 105: 163–170, 1979

    Article  PubMed  CAS  Google Scholar 

  • Houston ME, Wilson DM, Green HJ, Thomson JA, Rainey DA. Physiological and muscle enzyme adaptations to two different intensities of swim training. European Journal of Applied and Occupational Physiology 46: 283–291, 1981

    Article  CAS  Google Scholar 

  • Howald H. Training-induced morphological and functional changes in skeletal muscle. International Journal of Sports Medicine 3: 1–12, 1982

    Article  PubMed  CAS  Google Scholar 

  • Howald H, Hoppeler H, Claasen H, Mathieu O, Straub R. Influence of endurance training on the ultrastructural composition of different muscle fibre types in humans. Pflugers Archiv European Journal of Physiology 403: 369–376, 1985

    Article  PubMed  CAS  Google Scholar 

  • Hultman E. Studies in muscle metabolism of glycogen and active phosphate in man with special reference to exercise and diet. Scandinavian Journal of Clinical and Laboratory Investigation 19(Suppl.): 94, 1967

    Google Scholar 

  • Hurley BF, Nemeth PM, Martin WH, Hagberg JM, Dalsky GP, et al. Muscle triglycéride utilisation during exercise: effect of training. Journal of Applied Physiology 60(2): 562–567, 1986

    PubMed  CAS  Google Scholar 

  • Ianuzzo D, Patel P, Chen V, O’Brien P, Williams C. Thyroidal trophic influence on skeletal muscle myosin. Nature 270: 74–76, 1977

    Article  PubMed  CAS  Google Scholar 

  • Ingjer F. Effects of endurance training on muscle fibre ATPase activity, capillary supply and mitochondrial content in man. Journal of Physiology 294: 419–422, 1979

    PubMed  CAS  Google Scholar 

  • Ivy JL. Muscle glycogen synthesis before and after exercise. Sports Medicine 11: 6–19, 1991

    Article  PubMed  CAS  Google Scholar 

  • Ivy JL, Withers RT, Van Handel PJ, Elger DH, Costill DL. Muscle respiratory capacity and fibre types as determinants of the lactate threshold. Journal of Applied Physiology 48(3): 523–527, 1980

    PubMed  CAS  Google Scholar 

  • Jacobs I. Lactate, muscle glycogen and exercise performance in man. Acta Physiologica Scandinavica (Suppl. 495): 1981

    Google Scholar 

  • Jacobs I, Bar-Or O, Karlsson J, Dotan R, Tesch P, et al. Changes in muscle metabolites in females with 30-s exhaustive exercise. Medicine and Science in Sports and Exercise 14(6): 457–460, 1982

    Article  PubMed  CAS  Google Scholar 

  • Jacobs I, Esbörnsson M, Sylvén C, Holm I, Jansson E. Sprint training effects on muscle myoglobin, enzymes, fibre types and blood lactate. Medicine and Science in Sports and Exercise 19(4): 368–374, 1987

    PubMed  CAS  Google Scholar 

  • Jacobs I, Tesch P, Bar-Or O, Karlsson J, Dotan R. Lactate in human skeletal muscle after 10 and 30s of supramaximal exercise. Journal of Applied Physiology 55: 365–367, 1983

    PubMed  CAS  Google Scholar 

  • Jansson E, Dudley G, Norman B, Sollevi A, Tesch P. ATP and IMP in single human muscle fibres. Clinical Physiology (Suppl. 4): 156, 1985

    Google Scholar 

  • Jansson E, Kaijser L. Muscle adaptation to extreme endurance training in man. Acta Physiologica Scandinavica 100: 315–324, 1977

    Article  PubMed  CAS  Google Scholar 

  • Jansson E, Sjodin B, Tesch P. Changes in muscle fibre type distribution in man after physical training. Acta Physiologica Scandinavica 104: 235–237, 1978

    Article  PubMed  CAS  Google Scholar 

  • Jansson E, Sylven C, Nordevang E. Myoglobin in the quadriceps femoris muscle of competitive cyclists and in untrained men. Acta Physiologica Scandinavica 114: 627–629, 1982

    Article  PubMed  CAS  Google Scholar 

  • Jolesz F, Streter FA. Development, innervation, and activity-pattern induced changes in skeletal muscle. Annual Review of Physiology 43: 531–552, 1981

    Article  PubMed  CAS  Google Scholar 

  • Karlsson J, Diamant B, Saltin B. Muscle metabolites during sub-maximal and maximal exercise in man. Scandinavian Journal of Clinical and Laboratory Investigation 26: 385–394, 1971

    Article  Google Scholar 

  • Karlsson J, Nordesco LO, Jorfeldt L, Saltin B. Muscle lactate, ATP and CP levels during exercise after physical training in man. Journal of Applied Physiology 33(2): 194–203, 1972

    Google Scholar 

  • Karlsson J, Nordesco LO, Saltin B. Muscle glycogen utilisation during exercise after physical training. Acta Physiologica Scandinavica 90: 210–217, 1974

    Article  PubMed  CAS  Google Scholar 

  • Karlsson J, Saltin B. Lactate, ATP and CP in working muscles during exhaustive exercise in man. Journal of Applied Physiology 29(5): 598–602, 1970

    Google Scholar 

  • Katsuta D, Kanas Y, Aoyagi Y. Is exhaustive training adequate preparation for endurance performance? European Journal of Applied and Occupational Physiology 58: 68–73, 1988

    Article  CAS  Google Scholar 

  • Kayor SR, Hoppeler H, Howald H, Classen H, Oberholzer F. Acute effects of endurance exercise on mitochondrial distribution and skeletal muscle morphology. European Journal of Applied and Occupational Physiology 54: 578–584, 1986

    Article  Google Scholar 

  • Keul J, Simon G, Berg A, Dickhuth H. Bestimmung der individuellen anaeroben Scwelle zur Leistungsbewertung und Trainingsgestaltung. Deutsch Zeitschrift fuer Sportmedizin 7: 212–218, 1979

    Google Scholar 

  • Kiessling KH, Pilstrom L, Bylund A-CH, Saltin B, Piehl K. Enzyme activities and morphometry in skeletal muscle of middle-aged men after training. Scandinavian Journal of Clinical and Laboratory Investigation 33: 63–69, 1974

    Article  PubMed  CAS  Google Scholar 

  • Kiessling KH, Pilstrom L, Karlsson J, Piehl K. Mitochondrial volume in skeletal muscle from young and old physically untrained and trained healthy men and from alcoholics. Clinical Science 44: 547–554, 1973

    PubMed  CAS  Google Scholar 

  • Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic threshold for the determination of workload intensities during endurance training. European Journal of Applied and Occupational Physiology 42: 25–34, 1979

    Article  CAS  Google Scholar 

  • Knuttgen HG, Saltin B. Muscle metabolites and oxygen uptake on short term submaximal exercise in man. Journal of Applied Physiology 32: 690–694, 1972

    PubMed  CAS  Google Scholar 

  • Komi PV, Viitasalo JHT, Haw M, Thorstensson A, Sjodin B, et al. Skeletal muscle fibres and muscle enzyme activities in mon-ozygous and dizygous twins of both sexes. Acta Physiologica Scandinavica 100: 385–392, 1977

    PubMed  CAS  Google Scholar 

  • Lavoie JM, Taylor AW, Montpetit RR. Skeletal muscle fibre size adaptation to an eight week swimming program. European Journal of Applied and Occupational Physiology 44: 161–165, 1980

    Article  CAS  Google Scholar 

  • Lemon PWR, Dolny DG, Dherman BA. Effect of intense prolonged running on protein catabolism. In Knuttgen et al. (Eds) Biochemistry of exercise, Vol. 13, pp. 367–372, Human Kinetics, Champaign, 1983

    Google Scholar 

  • Lemon PWR, Nagle FJ. Effects of exercise on protein and amino acid metabolism. Medicine and Science in Sports and Exercise 13: 141–149, 1981

    Article  PubMed  CAS  Google Scholar 

  • Lemon PWR, Yarasheski KE, Dolney DG. The importance of protein for athletes. Sports Medicine 1: 474–484, 1984

    Article  PubMed  CAS  Google Scholar 

  • Lexell J, Henriksson-Larsen K, Sjöström M. Distribution of different fibre types in human skeletal muscle. Acta Physiologica Scandinavica 117: 115–122, 1983

    Article  PubMed  CAS  Google Scholar 

  • Lithell H, Cedarmark M, Froberg J, Tesch P, Karlsson J. Increase in lipoprotein lipase activity in skeletal muscle during heavy exercise. Metabolism 30: 1130–1134, 1981

    Article  PubMed  CAS  Google Scholar 

  • Lithell H, Hellsing K, Lundquist G, Malmberg P. Lipoprotein-lipase activity of human skeletal muscle and adipose tissue after exercise. Acta Physiologica Scandinavica 105: 312–315, 1979b

    Article  PubMed  CAS  Google Scholar 

  • Lithell H, Orlander J, Schele R, Sjodin B, Karlsson J. Changes in lipoprotein-lipase activity and lipid stores in human skeletal muscle with prolonged heavy exercise. Acta Physiologica Scandinavica 107: 257–261, 1979a

    Article  PubMed  CAS  Google Scholar 

  • Lowrie CV, Kimmey JS, Felder S, Chi MM-Y, Kaiser KK, et al. Enzyme patterns in single human fibres. Journal of Biological Chemistry 253: 8269–8277, 1978

    Google Scholar 

  • Mader A, Leissen H, Heck H, Philippi H, Rost R, et al. Zur Bedeutung der Stoffwechselleistungfahigkeit des Fliterudererd im Trainind und Wettzampf. Leistungsport 9: 8–62, 1977

    Google Scholar 

  • Maier A, Pette D. The time course of glycogen depletion of single fibres of chronically stimulated fast-twitch muscle. Pflugers Archiv European Journal of Physiology 408: 338–342, 1987

    Article  PubMed  CAS  Google Scholar 

  • Mansour TE. Studies on heart phosphofructokinase purification, inhibition and activation. Journal of Biological Chemistry 238: 2285–2292, 1963

    CAS  Google Scholar 

  • Mansour TE. Studies on heart phosphofructokinase: active and inactive forms of the enzyme. Journal of Biological Chemistry 240: 2165–2171, 1965

    PubMed  CAS  Google Scholar 

  • Millward DJ, Davies CTM, Halliday D, Wolman SL, Matthews D, et al. Effect of exercise on protein metabolism in humans as explored with stable isotopes. Federation Proceedings 41: 2686–2691, 1982

    PubMed  CAS  Google Scholar 

  • Mole PA, Baldwin KM, Oscai LB, Holloszy JO. Adaptations of muscle to exercise increase in levels of palmityl CoA synthetase, Carnitine palmityltransferase, and palmityl CoA dehydrogenase, and in the capacity to oxidise fatty acids. Journal of Clinical Investigation 50: 2323–2330, 1971

    Article  PubMed  CAS  Google Scholar 

  • Mole PA, Baldwin KM, Terjung RL, Holloszy JO. Enzymatic pathways of pyruvate metabolism in skeletal muscle. American Journal of Physiology 244: 50–54, 1973

    Google Scholar 

  • Nikkila EA, Taskinen MR, Rehunen S, Harknen M. Lipoprotein lipase activity in adipose tissue and skeletal muscle of runners: relation to serum lipoproteins. Metabolism 27: 1661–1671, 1978

    Article  PubMed  CAS  Google Scholar 

  • Nimmo MA, Snow DH. Time course of ultrastructural changes in skeletal muscle after two types of exercise. Journal of Applied Physiology 52: 910–913, 1982

    PubMed  CAS  Google Scholar 

  • Orlander J, Keissling K-H, Karlsson J, Ekblom B. Low intensity training, inactivity and resumed training in sedentary man. Acta Physiologica Scandinavica 101: 351–362, 1977

    Article  PubMed  CAS  Google Scholar 

  • Oscai L, Caruso RA, Wergeles AC. Lipoprotein lipase hydrolyzes endogenous triglycerols in muscles of exercised rats. Journal of Applied Physiology 52(4): 1059–1063. 1982

    PubMed  CAS  Google Scholar 

  • Oscai LB, Palmer WK. Muscle lipolysis during exercise: an update. Sports Medicine 6: 23–26, 1988

    Article  PubMed  CAS  Google Scholar 

  • Pette D. Activity-induced fast to slow transitions in mammalian muscle. Medicine and Science in Sports and Exercise 16(6): 517–528, 1984

    PubMed  CAS  Google Scholar 

  • Pette D, Spamer C. Metabolic subpopulations of muscle fibers: a quantitative study. Diabetes 28(Suppl. 1): 25–29, 1979

    PubMed  CAS  Google Scholar 

  • Pette D, Spamer C. Metabolic properties of muscle fibres. Federation Proceedings 45: 2910–2914, 1986

    PubMed  CAS  Google Scholar 

  • Pette D, Tyler KR. Response of succinic dehydrogenase activity in fibres of rabbit tibialis anterior muscle to chronic nerve stimulation. Journal of Physiology 338: 1–9, 1983

    PubMed  CAS  Google Scholar 

  • Pette D, Wimmer M, Nemeth P. Do enzyme activities vary along muscle fibres? Histochemistry 67: 225–231, 1980

    Article  PubMed  CAS  Google Scholar 

  • Pickett JB. Nerve terminals are as metabolically different as the fibres they innervate. Science 210(21): 927–928, 1980

    Article  PubMed  CAS  Google Scholar 

  • Piehl K. Glycogen storage and depletion in human skeletal muscle fibres. Acta Physiologica Scandinavica 402: 1–32, 1974

    CAS  Google Scholar 

  • Pilstorm L, Vihko V, Astram E, Arstila AU. Activity of acid hydrolyses in skeletal muscle of untrained, trained and detrained mice of different ages. Acta Physiologica Scandinavica 104: 217–224, 1978

    Article  Google Scholar 

  • Prince FP, Hikida RS, Hagerman FC. Human muscle fibre types in power lifters, distance runners and untrained subjects. Pflugers Archiv (European Journal of Physiology) 363: 19–26, 1976

    Article  CAS  Google Scholar 

  • Rennie MJ, Edwards RHT, Krywawych S, Davies CTM, Halliday S. Effect of exercise on protein turnover in man. Clinical Science 61: 627–639, 1981

    PubMed  CAS  Google Scholar 

  • Ritz E, Heidland A. Lactic acidosis. Clinical Nephrology 7: 231–240, 1977

    PubMed  CAS  Google Scholar 

  • Roberts AD, Billeter R, Howald H. Anaerobic muscle enzyme changes after interval training. International Journal of Sports Medicine 3: 18–21, 1982

    Article  PubMed  CAS  Google Scholar 

  • Rose CP, Goresky CA. Constraints on the uptake of labelled palmitate by the heart. Clinical Research 41: 534–545, 1977

    CAS  Google Scholar 

  • Rosler K, Hoppeler H, Conley KE, Claasen H, Gehr P, Howald H. Transfer effects in endurance exercise: adaptations in trained and untrained muscles. European Journal of Applied and Occupational Physiology 54: 355–362, 1985

    Article  CAS  Google Scholar 

  • Rusko H, Rahkila P, Karvinen E. Anaerobic threshold, skeletal muscle enzymes and fibre composition in young female cross-country skiers. Acta Physiologica Scandinavica 108: 263–268, 1980

    Article  PubMed  CAS  Google Scholar 

  • Sale DG, MacDougall JD, Jacobs I, Garner S. Interaction between concurrent strength and endurance training. Journal of Applied Physiology 68(1): 260–270, 1990

    PubMed  CAS  Google Scholar 

  • Saltin B, Nazar K, Costill DL, Stein E, Jansson E. et al. The nature of the training response: peripheral and central adaptations to one-legged exercise. Acta Physiologica Scandinavica 96: 289–305, 1976

    Article  PubMed  CAS  Google Scholar 

  • Saltin B, Henriksson J, Nygaard E, Anderson P, Jansson E. Fibre types and metabolic potentials of skeletal muscle in sedentary men and endurance runners. Annals of the New York Academy of Sciences 301: 3–29, 1977

    Article  PubMed  CAS  Google Scholar 

  • Schantz P, Billeter R, Henriksson J, Jansson E. Training induced increase in myofibrillar ATPase intermediate fibres in human skeletal muscle. Muscle and Nerve 5: 628–636, 1982

    Article  PubMed  CAS  Google Scholar 

  • Schantz P, Randall-Fox E, Hutchenson W, Tyden A, Åstrand PO. Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiologica Scandinavica 117: 219–226, 1983

    Article  PubMed  CAS  Google Scholar 

  • Schantz PG, Sjoberg B, Svedenhag J. Malate-asparate and alphaglycerphosphate shuttle enzyme levels in human skeletal muscle: methodological considerations and effect of endurance training. Acta Physiologica Scandinavica 128: 397–407, 1986

    Article  PubMed  CAS  Google Scholar 

  • Simoneau JA, Lortie G, Bonlay MR, Marcotte CM, Thibault MC, Bouchard C. Human skeletal muscle fibre type alteration with high-intensity intermittent training. European Journal of Applied and Occupational Physiology 54: 250–253, 1985

    Article  CAS  Google Scholar 

  • Sjodin B. Lactate dehydrogenase in human skeletal muscle. Acta Physiologica Scandinavica (Suppl. 436): 1976a

    Google Scholar 

  • Sjodin B, Thorstensson A, Frith K, Karlsson J. Effect of physical training on LDH activity and LDH isoenzyme pattern in human skeletal muscle. Acta Physiologica Scandinavica 97: 150–157, 1976b

    Article  PubMed  CAS  Google Scholar 

  • Sjostrom M, Friden J, Ekblom B. Endurance, what is it? Muscle morphology after an extremely long distance run. Acta Physiologica Scandinavica 130: 513–520, 1987

    Article  PubMed  CAS  Google Scholar 

  • Skinner JS, McLellan TM. The transition from aerobic to anaerobic metabolism. Research Quarterly 51: 234–248, 1980

    CAS  Google Scholar 

  • Snow DH, Harris RC, Gash SP. Metabolic response of equine muscle to intermittent maximal exercise. Journal of Applied Physiology 58: 1689–1697, 1985

    Article  PubMed  CAS  Google Scholar 

  • Staudte HW, Exner GV, Pette D. Effects of short term high intensity (sprint) training on some contractile and metabolic characteristics of fast and slow muscle of rat. Pflugers Archiv (European Journal of Physiology) 344: 159–168, 1973

    Article  CAS  Google Scholar 

  • Svedenuhag J, Henriksson J, Gylven C. Dissociation of training effects on skeletal muscle mitochondrial enzymes and myoglobin in man. Acta Physiologica Scandinavica 117: 213–218, 1983

    Article  Google Scholar 

  • Tamaki N. Effect of endurance training on muscle fibre type composition and capillary supply in rat diaphragm. European Journal of Applied and Occupational Physiology 56: 127–131, 1987

    Article  CAS  Google Scholar 

  • Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR. Gender differences in substrate for endurance exercise. Journal of Applied Physiology 68(1): 302–308, 1990

    PubMed  CAS  Google Scholar 

  • Tate CA, Bonner HW, Leslie SW. Calcium uptake in skeletal muscle mitochondria. European Journal of Applied and Occupational Physiology 39: 117–122, 1978

    Article  CAS  Google Scholar 

  • Taylor AW, Lappage R, Rao S. Skeletal muscle glycogen stores after submaximal and maximal work. Medicine and Science in Sport 3(2): 75–78, 1971

    CAS  Google Scholar 

  • Taylor AW, Thayer R, Rao S. Human skeletal muscle glycogen synthetase activities with exercise and training. Canadian Journal of Physiology and Pharmacology 50: 411–415, 1972a

    Article  PubMed  CAS  Google Scholar 

  • Taylor AW, Booth M, Rao S. Human skeletal muscle phosphorylase activities with exercise and training. Canadian Journal of Physiology and Pharmacology 50: 1038–1042, 1972b

    Article  PubMed  CAS  Google Scholar 

  • Taylor AW, Essen B, Saltin B. Myosin ATPase in skeletal muscle of healthy men. Acta Physiologica Scandinavica 91: 568–570, 1974

    Article  PubMed  CAS  Google Scholar 

  • Taylor AW, Lavoie S, Lemieux G, Dufresse C, Skinner JS, et al. Effects of endurance training of fibre area and enzyme activities of skeletal muscle of French Canadians. Third International Symposium in Biochemistry of Exercise, pp. 267–278, Symposia Specialists Inc, Miami, 1978

    Google Scholar 

  • Taylor AW, Ferguson RJ, Petitclerc R, Fournier M, Montpetit RR, et al. Cardiac and skeletal muscle adaptation to continuous and short-interval training in adolescent boys. In Poortmans & Niset (Eds) Biochemistry of exercise IV-B, pp. 283–289, University Park Press, Baltimore, 1981

    Google Scholar 

  • Taylor PB, Lamb DR, Budd GC. Structure and function of cardiac mitochondria in exhausted guinea pigs. European Journal of Applied and Occupational Physiology 35: 111–118, 1976

    Article  CAS  Google Scholar 

  • Terjung RL, Baldwin KM, Molé PA, Klinkerfuss GH, Holloszy JO. Effect of running to exhaustion on skeletal muscle mitochondria: a biochemical study. American Journal of Physiology 223(3): 549–554, 1972

    PubMed  CAS  Google Scholar 

  • Thomson JA, Green HJ, Houston ME. Muscle glycogen depletion patterns in fast twitch fibre subgroups of man during submaximal and supramaximal exercise. Pflugers Archiv European Journal of Physiology 379: 105–108, 1979

    Article  PubMed  CAS  Google Scholar 

  • Thorstensson A, Sjodin B, Karlsson J. Enzyme activities and muscle strength after sprint training in man. Acta Physiologica Scandinavica 94: 313–318, 1975

    Article  PubMed  CAS  Google Scholar 

  • Thorstensson A, Sjodin B, Tesch P, Karlsson J. Actomyosin ATPase, myokinase, CPk and LDH in human fast and slow twitch muscle fibres. Acta Physiologica Scandinavica 99: 225–229, 1977

    Article  PubMed  CAS  Google Scholar 

  • Viitasalo JT, Komi PV. Force time characteristics and fibre composition in human extensor muscles. European Journal of Applied and Occupational Physiology 40: 7–15, 1978

    Article  CAS  Google Scholar 

  • Viru A. Mobilisation of structural proteins during exercise. Sports Medicine 4: 95–128, 1987

    Article  PubMed  CAS  Google Scholar 

  • Wasserman K, Mcllroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. American Journal of Cardiology 14: 844–852, 1964

    Article  PubMed  CAS  Google Scholar 

  • Weiker H, Bert H, Rettenmeier A, Ottinger U, Hagele H, et al. Alanine formation during maximal short-term exercise. In Knuttgen et al. (Eds) Biochemistry of exercise, Vol. 13, pp. 385–394, Human Kinetics, Champaign, 1983

    Google Scholar 

  • White A, Handler P, Smith EL. Principles of biochemistry, McGraw-Hill Ltd, Tokyo, 1978 White TP, Brooks G A. [U-14C] glucose, -alanine, and -leucine oxidation in rats at rest and two intensities of running. American Journal of Physiology 240: E155–E165, 1981

    CAS  Google Scholar 

  • Wolfe RR, Goodennough RD, Wolfe MH, Royl GT, Nadel ER. Isotopic analysis of leucine and urea metabolism in exercising humans. Journal of Applied Physiology 52: 458–466, 1982

    PubMed  CAS  Google Scholar 

  • Varasheski KE, Lemon PWR. Effect of endurance training on protein catabolism during prolonged exercise in males. Canadian Journal of Applied Sport Sciences 8: 195, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abernethy, P.J., Thayer, R. & Taylor, A.W. Acute and Chronic Responses of Skeletal Muscle to Endurance and Sprint Exercise. Sports Med 10, 365–389 (1990). https://doi.org/10.2165/00007256-199010060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199010060-00004

Keywords

Navigation