Skip to main content
Log in

Bioelectrical Impedance Analysis to Determine Fat-Free Mass, Total Body Water and Body Fat

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Allison RD. Volumetric dynamics of respiration as measured by electrical impedance. Ph. D. dissertation, 1962

  • Barillas-Mury C, Vettorazzi C, Molina S, Pineda O. Experience with bioelectrical impedance analysis in young children: sources of variability. In Ellis KJ et al. (Eds) In vivo body composition studies, pp. 87–90, Institute of Physical Science and Medicine, London, 1987

    Google Scholar 

  • Barnett A. The basic factors involved in proposed electrical methods for measuring thyroid function (parts I–IV). Western Journal of Surgery 45: 322–380, 1937

    Google Scholar 

  • Baumgarter RN, Chumlea WC, Roche AF. Association between bioelectrical impedance and anthropometric variables. Human Biology 59: 235–244, 1987

    Google Scholar 

  • Boileau RA, Slaughter MH, Stillman RJ, Markham WA, Lohman TG, et al. Bioelectrical impedance estimates of body composition in 50–70 year old adults. Medicine and Science in Sports and Exercise 21: S39, 1989

    Google Scholar 

  • Chumlea WC, Baumgartner RN, Roche AF. Segmental bioelectrical impedance measures of body composition. In Ellis KJ et al. (Eds) In vivo body composition studies, pp. 103–107, Institute of Physical Science and Medicine, London, 1987a

    Google Scholar 

  • Chumlea WC, Baumgartner RN, Roche AF. Specific resistivity to estimate fat-free mass from segmental body measurements of bioelectrical impedance. American Journal of Clinical Nutrition 48: 7–15, 1988

    PubMed  CAS  Google Scholar 

  • Chumlea WC, Roche AF, Guo S, Woynarowska B. The influence of physiological varibles and oral contraceptives on bioelectrical impedance. Human Biology 59: 257–269, 1987b

    PubMed  CAS  Google Scholar 

  • Cordain L, Whicker RE, Johnson JE. Body composition determination in children using bioelectrical impedance. Growth, Development & Aging 52: 37–40, 1988

    CAS  Google Scholar 

  • Cremer H. Ueber die Registrierung mechanischer Vorgäange auf elektrischen Wege, speziell mit Hilfe des Saitengalvanometers und Saitenelktrometers. München Medizinische Wochenschrift 54: 1629, 1907

    Google Scholar 

  • de Cossio TG, Diaz E, Delgado HL, Mendoza R, Gramajo L. Accuracy and precision of bioelectrical impedance and anthropometry for estimating body composition. In Ellis KJ et al. (Eds) In vivo body composition studies, pp. 195–200, Institute of Physical Science and Medicine, London, 1987

    Google Scholar 

  • Deurenberg P, Westrate JA, Hautvast GA. Changes in fat-free mass during weight loss measured by bioelectrical impedance and densitometry. American Journal of Clinical Nutrition 49: 33–36, 1989

    PubMed  CAS  Google Scholar 

  • Elsen R, Siu M-L, Pineda O, Solomons NW. Sources of variability in bioelectrical impedance determinations in adults. In Ellis KJ et al. (Eds) In vivo body composition studies, pp. 184–188, Institute of Physical Science and Medicine, London, 1987

    Google Scholar 

  • Forbes TW. Skin potential and impedance response. American Journal of Physiology 117: 189, 1936

    Google Scholar 

  • Forbes TW, Landis C. The limiting AC frequency for the exhibition of the galvanic skin (psychogalvanic) response. Journal of General Psychology 13: 188, 1935

    Article  Google Scholar 

  • Geddes LA, Hoff HE. The measurement of physiological events by electrical impedance. American Journal of Medical Electronics (Jan–March): 16–27, 1964

    Google Scholar 

  • Gleichauf CN, Roe DA. The menstrual cycle’s effect on the reliability of bioimpedance measurements for assessing body composition. Amerian Journal of Clinical Nutrition 50: 903–907, 1989

    CAS  Google Scholar 

  • Going SB, Lohman TG, Wilmore JH, Boileau RA, Van Loan M, et al. Segmental versus whole body bioelectrical impedance measurements for estimation of body composition. Medicine and Science in Sports and Exercise 19: S39, 1987

    Google Scholar 

  • Going SB, Lohman TG, Williams DP, Hewitt MJ, Haber A. Prediction of trunk soft tissue composition from trunk bioelectrical impedance analysis in older men and women. Medicine and Science in Sports and Exercise 21: S39, 1989

    Google Scholar 

  • Graves JE, Pollock ML, Colvin AB, Van Loan M, Lohman TG. Comparison of different bioelectrical impedance analyzers in the prediction of body composition. American Journal of Human Biology 1: 603–611, 1989

    Article  Google Scholar 

  • Guo S, Roche AF, Chumlea WC, Miles DS, Pohlman RL. Body composition predictions from bioelectrical impedance. Human Biology 59: 221–233, 1987

    PubMed  CAS  Google Scholar 

  • Helenius MYT, Albanes D, Micozzi MS, Taylor PR, Heinonen OP. Studies of bioelectrical resistance in overweight, middle-aged subjects. Human Biology 59: 271–279, 1987

    PubMed  CAS  Google Scholar 

  • Hodgdon JA, Fitzgerald PI. Validity of impedance predictions at various levels of fatness. Human Biology 59: 281–298, 1987

    PubMed  CAS  Google Scholar 

  • Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body water volume. Journal of Applied Physiology 27: 531–534, 1969

    PubMed  CAS  Google Scholar 

  • Houtkooper LB, Lohman TG, Going SB, Hall MC. Validity of bioelectrical impedance for body composition assessment in children. Journal of Applied Physiology 66: 814–821, 1989

    PubMed  CAS  Google Scholar 

  • Jackson AS, Pollock ML, Graves JE, Mahar MT. Reliability and validity of bioelectrical impedance in determining body composition. Journal of Applied Physiology 64: 529–534, 1988

    PubMed  CAS  Google Scholar 

  • Jenin P, Lenoir J, Roullet C, Thomasset AL, Ducrot H. Determination of body fluid compartments by electrical impedance measurements. Aviation, Space, Environmental Medicine 46: 152–155, 1975

    CAS  Google Scholar 

  • Katch FI. Assessment of lean body tissues by radiography and by bioelectrical impedance. In Body-composition assessment in youth and adults: report of the Sixth ROSS Conference on Medical Research, pp. 46–53, Williamsburg, VA, December 16–19, 1984

  • Khaled MA, McCutcheon MJ, Reddy S, Pearman PL, Hunter GR, et al. Electrical impedance in assessing human body composition: the BIA method. American Journal of Clinical Nutrition 47: 789–792, 1988

    PubMed  Google Scholar 

  • Kushner RF, Haas A. Estimation of lean body mass by bioelectrical impedance analysis compared to skinfold anthropometry. European Journal of Clinical Nutrition 42: 101–106, 1988

    PubMed  CAS  Google Scholar 

  • Kushner RF, Schoeller DA. Estimation of total body water by bioelectrical impedance analysis. American Journal of Clinical Nutrition 44: 417–424, 1986

    PubMed  CAS  Google Scholar 

  • Little KD, Sinning WE, Wilmore JH, Pollock ML, Graves JE, et al. Bioelectrical impedance and anthropometric estimates of body composition in middle-aged adults. Medicine and Science in Sports and Exercise 21: S38, 1989

    Google Scholar 

  • Lohman TG. Skinfolds and body density and their relation to body fatness: a review. Human Biology 53: 181–225, 1981

    PubMed  CAS  Google Scholar 

  • Lukaski HC, Bolonchuk WW. Theory and validation of the tetrapolar bioelectrical impedance method to assess human body composition. In Ellis et al. (Eds) In vivo body composition studies, pp. 410–414, Institute of Physical Science and Medicine, London, 1987

    Google Scholar 

  • Lukaski HC, Bolonchuk WW. Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviation, Space, Environmental Medicine 59: 1163–1169, 1988

    CAS  Google Scholar 

  • Lukaski HC, Bolonchuk WW, Hall CB, Siders WA. Validation of tetrapolar bioelectrical impedance method to assess human body composition. Journal of Applied Physiology 60: 1327–1332, 1986

    PubMed  CAS  Google Scholar 

  • Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. American Journal of Clinical Nutrition 41: 810–817, 1985

    PubMed  CAS  Google Scholar 

  • Mann H. Study of peripheral circulation by means of an alternating current bridge. Proceedings of the Society for Experimental Biology and Medicine 36: 670, 1937

    Google Scholar 

  • McCaughey M, Graves J, Pollock M, Boileau RA, Lohman TG, et al. Development of prediction equations for determining body composition from bioresistance in obese women. Medicine and Science in Sports and Exercise 21: S39, 1989

    Google Scholar 

  • McDougall D, Shizgal HM. Body composition measurements from whole body resistance and reactance. Surgical Forum 37: 42–44, 1986

    Google Scholar 

  • Nyboer J. Electrical impedance plethysmography, 2nd ed., Charles C. Thomas, Springfield, 1970

    Google Scholar 

  • Nyboer J. Workable volume and flow concepts of bio-segments by electrical impedance plethysmography. TIT Journal of Life Sciences 2: 1–13, 1972

    PubMed  CAS  Google Scholar 

  • Nyboer J, Bagno S, Barnett A, Halsey RH. Radio cardiograms: electrical impedance changes of the heart in relation to electrocardiograms and heart sounds. Journal of Clinical Investigation 19: 963, 1940

    Google Scholar 

  • Ross R, Leger L, Martin P, Roy R. Sensitivity of bioelectrical impedance to detect changes in human body composition. Journal of Applied Physiology 67: 1643–1648, 1989

    PubMed  CAS  Google Scholar 

  • Segal KR, Gutin B, Presta E, Wang J, Van Itallie TB. Estimation of human body composition by electrical impedance methods: a comparative study. Journal of Applied Physiology 58: 1565–1571, 1985

    PubMed  CAS  Google Scholar 

  • Segal KR, Van Loan M, Fitzgerald PI, Hodgdon JA. Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. American Journal of Clinical Nutrition 47: 7–14, 1988

    PubMed  CAS  Google Scholar 

  • Siu M-L, Elsen R, Mazariegos M, Solomons NW, Pineda O. Evaluation through sequential determination of the stability of bioelectrical impedance measurements for body composition analysis. In Ellis KJ et al. (Eds) In vivo body composition studies, pp. 189–194, Institute of Physical Science and Medicine, London, 1987

    Google Scholar 

  • Thomassett A. Bio-electrical properties of tissues. Lyon Medical 209: 1325–1352, 1963

    Google Scholar 

  • Van Loan MD, Boileau RA, Slaughter MH, Stillman RJ, Lohman TG, et al. Association of bioelectrical resistance with estimates of fat-free mass determined by densitometry and hydrometry. American Journal of Human Biology, in press, 1990

    Google Scholar 

  • Van Loan M, Lohman T, Williams D, Boileau RA, Graves J, et al. Bioelectrical impedance analysis: measurment of body axes for the prediction of body composition. Medicine and Science in Sports and Exercise 21: S38, 1989

    Google Scholar 

  • Van Loan M, Mayclin P. Bioelectrical impedance analysis: is it a reliable estimator of lean body mass and total body water? Human Biology 59: 299–309, 1987

    PubMed  Google Scholar 

  • Williams DP, Going SB, Hewitt MJ, Lohman TG, Graves JE, et al. The prediction of fat-free body mass from segmental impedance and anthropometry in middle aged men and women. Medicine and Science in Sports and Exercise 21: S102, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Loan, M.D. Bioelectrical Impedance Analysis to Determine Fat-Free Mass, Total Body Water and Body Fat. Sports Med 10, 205–217 (1990). https://doi.org/10.2165/00007256-199010040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199010040-00001

Keywords

Navigation