Skip to main content
Log in

Clinical Pharmacokinetics of Vinorelbine

  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 1997

Summary

Vinorelbine (5′-noranhydrovinblastine) is a recently developed semisynthetic anticancer drug which belongs to the Catharanthus alkaloid family. Its mechanism of action is only partially known but it is assumed that it acts, like vinblastine and vincristine, as an antimicrotubule agent arresting cell division in mitosis. Clinically, vinorelbine has mainly shown activity in the treatment of advanced non—small-cell lung cancer and the treatment of metastatic breast cancer.

Early pharmacokinetic data were obtained with radioactive assays (radio-immunoassay or 3H-labelled vinorelbine), then with more selective high performance liquid Chromatographic techniques. Vinorelbine is usually administered intravenously but there has also been some experimentation with an oral formulation. The bioavailability of a liquid filled gelatin capsule ranges between 12 and 59% with a mean value of 27% [standard deviation (SD) 12%]. Vinorelbine is rapidly absorbed with peak serum concentration reached within 2 hours. In vitro, vinorelbine is mainly distributed into the blood cells, especially platelets (78%) and lymphocytes (4.8%). The unbound blood fraction is around 2%. In lung tissue vinorelbine concentrations are much higher than in serum, by up to 300-fold 3 hours after administration.

Little is known about the biotransformation of vinorelbine. Desacetylvinorelbine is considered to be a minor metabolite and is only found in urine fractions, representing 0.25% of the injected dose. Urinary excretion of vinorelbine is low, accounting for less than 20% of the dose. Faecal elimination has been demonstrated in 2 patients who were administered 3H-labelled vinorelbine; the amount of radioactivity recovered in the faeces was 33.9 and 58.4% for the 2 patients, respectively.

The pharmacokinetic profile of vinorelbine is often described as a 3-compartment model characterised by a long terminal half-life (t½) that varies between 20 and 40 hours and a large apparent volume of distribution (Vd) of around 70 L/kg. Systemic clearance ranges between 72.54 and 89.46 L/h (1209 and 1491 ml/min) when determined by high performance liquid chromatography and is higher than that reported by radioimmunoassay [46.2 L/h (770 ml/min)]. This could be due to the greater specificity of the Chromatographic method. Vinorelbine has been administered by continuous intravenous infusion over 4 days. Steady-state was reached and the concentrations obtained were above the in vitro IC50 (concentration of drug causing 50% inhibition).

The effect of liver disease on vinorelbine pharmacokinetics has been studied in patients with breast cancer. Patients with massive secondary liver disease had a lower systemic clearance than those who have no liver disease or a lesser invasion.

In children, vinorelbine seems to display a shorter t½ (14.7 hours) than that found in adults. In addition, the systemic clearance is highly variable [from 12 to 93.96 L/h/m2 (200 to 1566 ml/min/m2)].

Vinorelbine is often co-administered with cisplatin in the treatment of advanced non—small-cell lung cancer. The disposition of the alkaloid is not altered by concurrent administration of cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noble RL. The discovery of the vinca alkaloids-chemotherapeutic agents against cancer. Biochem Cell Biol 1990; 68: 1344–51

    Article  PubMed  CAS  Google Scholar 

  2. Barnett CJ, Cullinan GJ, Gerzon K, et al. Structure-activity relationships of dimeric Catharanthus alkaloids: 1. Deacetylvinblastine amide (vindesine) sulfate. J Med Chem 1978; 21: 88–96

    Article  PubMed  CAS  Google Scholar 

  3. Mangeney P, Andriamialisoa RZ, Lallemand JY, et al. 5′-noranhydrovinblastine. Prototype of a new class of vinblastine derivatives. Tetrahedron 1979; 35: 2175–9

    Article  CAS  Google Scholar 

  4. Owellen RJ, Hartke CA. The pharmacokinetics of 4-acetyl tritium vinblastine in two patients. Cancer Res 1975; 35: 975–80

    PubMed  CAS  Google Scholar 

  5. Bender RA, Castle MC, Margileth DA, et al. The pharmacokinetics of [3H]-vincristine in man. Clin Pharmacol Ther 1977; 22: 430–8

    PubMed  CAS  Google Scholar 

  6. Navelbine. Dossier Technique, Laboratoires Pierre Fabre, Boulogne, France, 1989

  7. Owellen RJ, Donigian DW, Hartke CA, et al. Correlation of biologic data with physicochemical properties among the vinca alkaloids and their congeners. Biochem Pharmacol 1977; 26: 1213–9

    Article  PubMed  CAS  Google Scholar 

  8. Bender RA, Hamel E, Hande KR. Plant Alkaloids. In: Chabner BA, Collins JM, editors. Cancer chemotherapy, principles and practice. Philadelphia: JB Lippincott, 1990: 253–75

    Google Scholar 

  9. Palmer CG, Livengood D, Warren AK, et al. The action of vincaleukoblastine on mitosis in vitro. Exp Cell Res 1960; 20: 198–202

    Article  PubMed  CAS  Google Scholar 

  10. Jordan MA, Thrower D, Wilson L. Mechanism of inhibition of cell proliferation by vinca alkaloids. Cancer Res 1991; 51: 2212–22

    PubMed  CAS  Google Scholar 

  11. Jordan MA, Thrower D, Wilson L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci 1992; 102:401–16

    PubMed  CAS  Google Scholar 

  12. Binet S, Chaineau E, Fellous A, et al. Immunofluorescence study of the action of navelbine, vincristine and vinblastine on mitotic and axonal microtubules. Int J Cancer 1990; 46: 262–6

    Article  PubMed  CAS  Google Scholar 

  13. Ling V. P-glycoprotein: its role in drug resistance. Am J Med 1995; 99 Suppl. 6A: 31S–4S

    Article  PubMed  CAS  Google Scholar 

  14. Cole SPC, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992; 258: 1650–4

    Article  PubMed  CAS  Google Scholar 

  15. Grant CE, Valdimarsson G, Hipfner DR, et al. Overexpression of multidrug-associated protein (MRP) increases resistance to natural product drugs. Cancer Res 1994; 54: 357–61

    PubMed  CAS  Google Scholar 

  16. Zaman GJR, Flens MJ, van Leusden MR, et al. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci USA 1994; 91: 8822–6

    Article  PubMed  CAS  Google Scholar 

  17. Schibler MJ, Barlow SB, Cabrai F. Elimination of permeability mutants from selections for drug resistance in mammalian cells. FASEB J 1989; 3: 163–8

    PubMed  CAS  Google Scholar 

  18. Cabrai F, Barlow SB. Resistance to antimitotic agents as genetic probes of microtubule structure and function. Pharmacol Ther 1991; 52: 159–71

    Article  Google Scholar 

  19. Houghton JA, Houghton PJ, Hazelton BJ, et al. In situ selection of a human rhabdomyosarcoma resistant to vincristine altered β-tubulins. Cancer Res 1985; 45: 2706–12

    PubMed  CAS  Google Scholar 

  20. Brewer F, Warr JR. Verapamil reversal of vincristine resistance and cross-resistance patterns of vincristine-resistant Chinese hamster ovary cells. Cancer Treat Rep 1987; 71: 353–9

    PubMed  CAS  Google Scholar 

  21. Schlaifer D, Cooper MR, Attal M, et al. Myeloperoxidase: an enzyme involved in intrinsic vincristine resistance in human myeloblastic leukemia. Blood 1993; 81: 482–9

    PubMed  CAS  Google Scholar 

  22. Adams DJ, Knick VC. P-glycoprotein mediated resistance to 5′-nor-anhydro-vinblastine (Navelbine®). Invest New Drugs 1995; 13: 13–21

    Article  PubMed  CAS  Google Scholar 

  23. Debal V, Allam N, Morjani H, et al. Characterisation of the mechanism of cross-resistance to vinca alkaloids and taxoids in the J82 human bladder carcinoma cell line [in French]. Bull Cancer 1994; 81: 891–3

    PubMed  CAS  Google Scholar 

  24. Cros S, Wright M, Morimoto H, et al. Experimental antitumor activity of navelbine®. Semin Oncol 1989; 16 Suppl. 4: 15–20

    PubMed  CAS  Google Scholar 

  25. Burris III HA, Fields S. Summary of data from in vitro and phase I vinorelbine (Navelbine) studies. Semin Oncol 1994; 21 Suppl. 10: 14–20

    PubMed  Google Scholar 

  26. Goa KL, Faulds D. Vinorelbine: a review of its pharmacological properties and clinical use in cancer chemotherapy. Drugs Aging 1994; 5: 200–34

    Article  PubMed  CAS  Google Scholar 

  27. Toso C, Lindley C. Vinorelbine: a novel vinca alkaloid. Am J Health-Syst Pharm 1995; 52: 1287–304

    PubMed  CAS  Google Scholar 

  28. Depierre A, Lemarie E, Dabouis G, et al. A phase II study of navelbine (Vinorelbine) in the treatment of non—small-cell lung cancer. Am J Clin Oncol 1991; 14: 115–9

    Article  PubMed  CAS  Google Scholar 

  29. Le Chevalier T, Brisgand D, Douillard JY, et al. Randomized study of vinorelbine and cisplatin versus vindesine and cisplatin versus vinorelbine alone in advanced non—small-cell lung cancer: results of a european multicenter trial including 612 patients. J Clin Oncol 1994; 12: 360–7

    PubMed  Google Scholar 

  30. Balbiani L, Coppola F, Blajman C, et al. Navelbine (NVB) vs NVB plus cisplatin (P) in non-small cell lung cancer (NSCLC) [abstract]. Proc Am Soc Clin Oncol 1993; 12: 352

    Google Scholar 

  31. Depierre A, Lebeau B, Chastang C, et al. Result of a phase III randomized study of vinorelbine (V) versus vinorelbine-cisplatin (VP) in non-small cell lung cancer (NSCLC) [abstract]. Proc Am Soc Clin Oncol 1993; 12: 340

    Google Scholar 

  32. Canobbio L, Boccardo F, Pastorino G, et al. Phase-II study of Navelbine® in advanced breast cancer. Semin Oncol 1989; 16 Suppl. 4: 33–6

    PubMed  CAS  Google Scholar 

  33. Gasparini G, Caffo O, Barni S, et al. Vinorelbine is an active antiproliferative agent in pretreated advanced breast cancer patients: a phase II study. J Clin Oncol 1994; 12: 2094–101

    PubMed  CAS  Google Scholar 

  34. Weber BL, Vogel C, Jones S, et al. Intravenous vinorelbine as first-line and second-line therapy in advanced breast cancer. J Clin Oncol 1995; 13:2722–30

    PubMed  CAS  Google Scholar 

  35. Jones S, Winer E, Vogel C, et al. Randomized comparison of vinorelbine and melphalan in anthracycline-refractory advanced breast cancer. J Clin Oncol 1995; 13: 2567–74

    PubMed  CAS  Google Scholar 

  36. Fumoleau P, Delgado FM, Delozier T, et al. Phase II trial of weekly intravenous vinorelbine in first-line advanced breast cancer chemotherapy. J Clin Oncol 1993; 11: 1245–52

    PubMed  CAS  Google Scholar 

  37. Romero A, Rabinovich MG, Vallejo CT, et al. Vinorelbine as first-line chemotherapy for metastatic breast carcinoma. J Clin Oncol 1994; 12: 336–41

    PubMed  CAS  Google Scholar 

  38. Spielmann M, Dorval T, Turpin F, et al. Phase II trial of vinorelbine/doxorubicin as first-line therapy of advanced breast cancer. J Clin Oncol 1994; 12: 1764–70

    PubMed  CAS  Google Scholar 

  39. Conroy T, Etienne PL, Adenis A, et al. Phase II trial of vinorelbine in metastatic squamous cell esophageal carcinoma. J Clin Oncol 1996; 14: 164–70

    PubMed  CAS  Google Scholar 

  40. Rahmani R, Martin M, Barbet J, et al. Radioimmunoassay and preliminary pharmacokinetic studies in rats of 5′-noranhydrovinblastine (Navelbine). Cancer Res 1984; 44: 5609–13

    PubMed  CAS  Google Scholar 

  41. Boré P, Rahmani R, Van Cantfort J, et al. Pharmacokinetics of a new anticancer drug, navelbine, in patients. Cancer Chemother Pharmacol 1989; 23: 247–51

    Article  PubMed  Google Scholar 

  42. Krikorian A, Rahmani R, Bromet M, et al. Pharmacokinetics and metabolism of navelbine®. Semin Oncol 1989; 16 Suppl. 4: 21–5

    PubMed  CAS  Google Scholar 

  43. Jehl F, Debs J, Herlin C, et al. Determination of navelbine and desacetylnavelbine in biological fluids by high-performance liquid chromatography. J Chromatogr Biomed Appl 1990; 525: 225–33

    Article  CAS  Google Scholar 

  44. Nicot G, Lachatre G, Marquet P, et al. High-performance liquid Chromatographic determination of navelbine in human plasma and urine. J Chromatogr Biomed Appl 1990; 528: 258–66

    Article  CAS  Google Scholar 

  45. Van Tellingen O, Kuijpers A, Beijnen JH, et al. Bio-analysis of vinorelbine by high-performance liquid chromatography with fluorescence detection. J Chromatogr Biomed Appl 1992; 573: 328–32

    Article  Google Scholar 

  46. Van Belle SJP, De Smet M, Monsaert C, et al. High-performance liquid Chromatographic determination of navelbine in MO4 mouse fibrosarcoma cells and biological fluids. J Chromatogr Biomed Appl 1992; 576: 351–7

    Article  Google Scholar 

  47. Mouchard-Delmas C, Gourdier B, Visteile R. Determination of vinorelbine in rabbit plasma by high-performance liquid chromatography with coulometric detection. J Chromatogr Biomed Appl 1995; 663: 390–4

    Article  CAS  Google Scholar 

  48. Debal V, Morjani H, Millot JM, et al. Determination of vinorelbine (Navelbine) in tumour cells by high-performance liquid chromatography. J Chromatogr Biomed Appl 1992; 581: 93–9

    Article  CAS  Google Scholar 

  49. Levêque D, Quoix E, Dumont P, et al. Pulmonary distribution of vinorelbine in patients with non-small-cell lung cancer. Cancer Chemother Pharmacol 1993; 33: 176–8

    Article  PubMed  Google Scholar 

  50. Hodes ME, Rohn RJ, Bond WH, et al. Vincaleukoblastine: III. Clinical trial with the oral preparation. Cancer Chemother Rep 1961; 14: 129–33

    PubMed  CAS  Google Scholar 

  51. Korst DR, Nixon JC. Oral administration of vinblastine sulfate (NSC-49842) to cancer patients. Cancer Chemother Rep 1965; 45: 53–6

    PubMed  CAS  Google Scholar 

  52. MacDonald Jr CA, Lacher MJ. Oral vinblastine sulfate in Hodgkin’s disease. Clin Pharmacol Ther 1966; 7: 534–41

    PubMed  Google Scholar 

  53. Wilson HE, Louis J. The response of Hodgkin’s disease to treatment with oral vinblastine sulfate. Ann Int Med 1967; 67: 303–8

    PubMed  CAS  Google Scholar 

  54. Takasugi BJ, Jones SE, Robertone AB. Phase II trial of vinzolidine, an oral vinca alkaloid in Hodgkin’s disease and non-Hodgkin’s lymphoma. Cancer Treat Rep 1984; 68: 1399–401

    PubMed  CAS  Google Scholar 

  55. Sarna G, Mitsuyasu R, Figlin R, et al. Oral vinzolidine as therapy for Kaposi’s sarcoma and carcinomas of lung, breast, and colon/rectum. Cancer Chemother Pharmacol 1985; 14: 12–4

    Article  PubMed  CAS  Google Scholar 

  56. Pinedo HM, van Groeningen CJ. Vinorelbine: a horse of a different color? J Clin Oncol 1994; 12: 1745–7

    PubMed  CAS  Google Scholar 

  57. Rahmani R, Zhou XJ, Boré P, et al. Oral administration of [3H]navelbine in patients: comparative pharmacokinetics using radioactive and radioimmunologic determination methods. Anticancer Drugs 1991; 2: 405–10

    Article  PubMed  CAS  Google Scholar 

  58. Zhou XJ, Boré P, Monjanel S, et al. Pharmacokinetics of navelbine after oral administration in cancer patients. Cancer Chemother Pharmacol 1991; 29: 66–70

    Article  PubMed  CAS  Google Scholar 

  59. Zhou XJ, Zhou-Pan XR, Favre R, et al. Relative bioavailability of two oral formulations of navelbine in cancer patients. Biopharm Drug Dispos 1994; 15: 577–86

    Article  PubMed  CAS  Google Scholar 

  60. Wargin WA, Lucas VS. The clinical pharmacokinetics of vinorelbine (Navelbine). Semin Oncol 1994; 21 Suppl. 10: 21–7

    PubMed  CAS  Google Scholar 

  61. Rowinsky EK, Noe DA, Trump DL, et al. Pharmacokinetic, bioavailability, and feasibility study of oral vinorelbine in patients with solid tumors. J Clin Oncol 1994; 12: 1754–63

    PubMed  CAS  Google Scholar 

  62. Vokes EE, Rosenberg RK, Jahanzeb M, et al. Multicenter phase II study of weekly oral vinorelbine for stage IV non-small-cell lung cancer. J Clin Oncol 1995; 13: 637–44

    PubMed  CAS  Google Scholar 

  63. Lucas S, Rowinsky E, Wargin W, et al. Results of a study of the effect of food on the bioavailability (BA) and pharmacokinetics (PK) of navelbine® (NVB) liquid-filled soft gelatin capsules [abstract]. Proc Am Soc Clin Oncol 1993; 12: 160

    Google Scholar 

  64. Hunter J, Jepson MA, Tsuruo T, et al. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. J Biol Chem 1993; 268: 14991–7

    PubMed  CAS  Google Scholar 

  65. Hunter J, Hirst BH, Simmons NL. Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm Res 1993; 10: 743–9

    Article  PubMed  CAS  Google Scholar 

  66. Winer EP, Chu L, Spicer DV Oral vinorelbine (Navelbine) in the treatment of advanced breast cancer. Semin Oncol 1995; 22 Suppl. 5: 72–9

    PubMed  CAS  Google Scholar 

  67. Urien S, Brée F, Breillout F, et al. Vinorelbine high-affinity binding to human platelets and lymphocytes: distribution in human blood. Cancer Chemother Pharmacol 1993; 32: 231–4

    Article  PubMed  CAS  Google Scholar 

  68. Rosazza JPN, Duffel MW, El-Marakby S, Ahn SH. Metabolism of the Catharanthus alkaloids: from Streptomyces griseus to monoamine oxidase B. J Nat Prod 1992; 55: 269–84

    Article  PubMed  CAS  Google Scholar 

  69. Zhou-Pan XR, Sérée E, Zhou XJ, et al. Involvement of human liver cytochrome P450 3A in vinblastine metabolism: drug interactions. Cancer Res 1993; 53: 5121–6

    PubMed  CAS  Google Scholar 

  70. Zhou XJ, Zhou-Pan XR, Gauthier T, et al. Human liver microsomal cytochrome P450 3A isozymes mediated vindesine biotransformation. Biochem Pharmacol 1993; 45: 853–61

    Article  PubMed  CAS  Google Scholar 

  71. Jehl F, Quoix E, Levêque D, et al. Pharmacokinetic and preliminary metabolic fate of navelbine in humans as determined by high performance liquid chromatography. Cancer Res 1991; 51: 2073–6

    PubMed  CAS  Google Scholar 

  72. Levêque D, Jehl F, Quoix E, et al. Pharmacokinetic profile of vinorelbine, a new semi-synthetic vinca alkaloid, determined by high-performance liquid chromatography. Xenobiotica 1993; 23: 1325–33

    Article  PubMed  Google Scholar 

  73. Levêque D, Merle-Melet M, Bresler L, et al. Biliary elimination and pharmacokinetics of vinorelbine in micropigs. Cancer Chemother Pharmacol 1993; 32: 487–90

    Article  PubMed  Google Scholar 

  74. Rahmani R, Bruno R, Iliadis A, et al. Clinical pharmacokinetics of the antitumor drug navelbine (5′-noranhydrovinblastine). Cancer Res 1987; 47: 5796–9

    PubMed  CAS  Google Scholar 

  75. Rahmani R, Guéritte F, Martin M, et al. Comparative pharmacokinetics of antitumor vinca alkaloids: intravenous bolus injections of navelbine and related alkaloids to cancer patients and rats. Cancer Chemother Pharmacol 1986; 16: 223–8

    Article  PubMed  CAS  Google Scholar 

  76. Marquet P, Lachatre G, Debord J, et al. Pharmacokinetics of vinorelbine in man. Eur J Clin Pharmacol 1992; 42: 545–7

    Article  PubMed  CAS  Google Scholar 

  77. Robieux I, Sorio R, Vitali V, et al. Pharmacokinetics of vinorelbine in breast cancer patients with liver métastases [abstract]. Proc Am Soc Clin Oncol 1995; 14: 458

    Google Scholar 

  78. Khayat D, Covelli A, Variol Ph. Phase I and pharmacologic study of intravenous (i.v.) vinorelbine (VRL) in patients (PTS) with solid tumors [abstract]. Proc Am Soc Clin Oncol 1995; 14: 469

    Google Scholar 

  79. Lengsfeld AM, Dietrich J, Schultze-Maurer B. Accumulation and release of vinblastine and vincristine by HeLa cells: light microscopic, cinematographic, and biochemical study. Cancer Res 1982; 42: 3798–805

    PubMed  CAS  Google Scholar 

  80. Ferguson PJ, Cass CE. Differential cellular retention of vincristine and vinblastine by cultured human promyelocytic leukemia HL-60/Cl cells: the basis of differential toxicity. Cancer Res 1985; 45: 5480–8

    PubMed  CAS  Google Scholar 

  81. Singer WD, Hirnes RH. Cellular uptake and tubulin binding properties of four vinca alkaloids. Biochem Pharmacol 1992; 43: 545–51

    Article  PubMed  CAS  Google Scholar 

  82. Levêque D, Wihlm J, Jehl F. Pharmacology of Catharanthus alkaloids [in French]. Bull Cancer 1996; 83: 176–86

    PubMed  Google Scholar 

  83. Yau JC, Yap YY, Buzdar AU, et al. A comparative randomized trial of vinca alkaloids in patients with metastatic breast carcinoma. Cancer 1985; 55: 337–40

    Article  PubMed  CAS  Google Scholar 

  84. Jackson DV, Bender RA. Cytotoxic thresholds of vincristine in a murine and a human leukemia cell line in vitro. Cancer Res 1979; 39: 4346–9

    PubMed  CAS  Google Scholar 

  85. Ferguson PJ, Phillips JR, Sciner M, et al. Differential activity of vincristine and vinblastine against cultures cells. Cancer Res 1984; 44: 3307–12

    PubMed  CAS  Google Scholar 

  86. Toussaint C, Izzo I, Spielmann M, et al. Phase I/II trial of continuous infusion vinorelbine for advanced breast cancer. J Clin Oncol 1994; 12: 2102–12

    PubMed  CAS  Google Scholar 

  87. Madden T, Bleyer A, Hohnecker J, et al. The pharmacokinetics of vinorelbine (Navelbine, NVB) in pediatric cancer patients [abstract]. Proc Am Soc Clin Oncol 1995; 14: 168

    Google Scholar 

  88. Crom WR, de Graaf SSN, Synold T, et al. Pharmacokinetics of vincristine in children and adolescents with acute lymphocytic leukemia. J Pediatr 1994; 125: 642–9

    Article  PubMed  CAS  Google Scholar 

  89. Levêque D, Jehl F, Quoix E, et al. Clinical pharmacokinetics of vinorelbine alone and combined with cisplatin. J Clin Pharmacol 1992; 32: 1096–8

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03257498.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levêque, D., Jehl, F. Clinical Pharmacokinetics of Vinorelbine. Clin-Pharmacokinet 31, 184–197 (1996). https://doi.org/10.2165/00003088-199631030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199631030-00003

Keywords

Navigation