Skip to main content
Log in

Metabolism of Drugs by Cytochrome P450 3A Isoforms

Implications for Drug Interactions in Psychopharmacology

  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Members of the P450 3A subfamily are the most abundant of the human hepatic cytochromes. CYP3A isoforms mediate the biotransformation of many drugs, including a number of psychotropic, cardiac, analgesic, hormonal, immunosuppressant, antineoplastic, and antihistaminic agents. Activity of CYP3A in humans is variable among individuals, but there is no evidence of genetic polymorphism. Significant amounts of CYP3A are present in the gastrointestinal tract, and may contribute to presystemic extraction of drugs such as cyclosporin. The azole antifungal agents ketoconazole and itraconazole are potent inhibitors of human CYP3A isoforms. Selective serotonin reuptake inhibitor (SSRI) antidepressants are also CYP3A inhibitors, but much less potent than ketoconazole or itraconazole. In vitro models can provide important information on the qualitative and quantitative activity of potential inhibitors of human cytochromes. However, in vitro inhibition constant (Ki) values alone do not predict the magnitude of an in vivo interaction, nor whether an interaction will be of clinical importance. For example, SSRIs are predicted to impair clearance of the antihistamine terfenadine in humans. However, the magnitude of this effect is much less than would be associated with a pharmacokinetic interaction of clinical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23

    PubMed  CAS  Google Scholar 

  2. Gonzalez FJ, Gelboin HV. Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins. Drug Metab Rev 1994; 26: 165–83

    Article  PubMed  CAS  Google Scholar 

  3. Gonzalez FJ. Human cytochromes P450: problems and prospects. Trends Pharmacol Sci 1992; 13: 346–52

    Article  PubMed  CAS  Google Scholar 

  4. Birkett DJ, MacKenzie PI, Veronese ME, et al. In vitro approaches can predict human drug metabolism. Trends Pharmacol Sci 1993; 14: 292–4

    Article  CAS  Google Scholar 

  5. Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992; 22: 1–21

    Article  PubMed  CAS  Google Scholar 

  6. Kitada M, Kamataki T. Cytochrome P450 in human fetal liver: significance and fetal-specific expression. Drug Metab Rev 1994; 26: 305–23

    Article  PubMed  CAS  Google Scholar 

  7. Schuetz JD, Kauma S, Guzelian PS. Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta. J Clin Invest 1993; 92: 1018–24

    Article  PubMed  CAS  Google Scholar 

  8. Schuetz JD, Beach DL, Guzelian PS. Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 1994; 4: 11–20

    Article  PubMed  CAS  Google Scholar 

  9. Raucy JL, Carpenter SJ. The expression of xenobiotic-metabolizing cytochromes P450 in fetal tissue. J Pharmacol Toxicol Methods 1993; 29: 121–8

    Article  PubMed  CAS  Google Scholar 

  10. Schwab GE, Raucy JL, Johnson EE. Modulation of rabbit and human hepatic cytochrome P-450-catalyzed steroid hydroxylations by a-naphthoflavone. Mol Pharmacol 1988; 33: 493–9

    PubMed  CAS  Google Scholar 

  11. Shou M, Grogan J, Mancewicz JA, et al. Activation of CYP3A4: evidence for the simultaneous binding of two substrates in a cytochrome P450 active site. Biochemistry 1994; 33: 6450–5

    Article  PubMed  CAS  Google Scholar 

  12. Andersson T, Miners JO, Veronese ME, et al. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol 1994; 38: 131–7

    Article  PubMed  CAS  Google Scholar 

  13. Friedman H, Greenblatt DJ, Burstein ES, et al. Population study of triazolam pharmacokinetics. Br J Clin Pharmacol 1986; 22: 639–42

    Article  PubMed  CAS  Google Scholar 

  14. Friedman H, Redmond Jr DE, Greenblatt DJ. Comparative pharmacokinetics of alprazolam and lorazepam in humans and in African Green Monkeys. Psychopharmacology 1991; 104: 103–5

    Article  PubMed  CAS  Google Scholar 

  15. Greenblatt DJ, Von Moltke LL, Harmatz JS, et al. Alprazolam pharmacokinetics, metabolism and plasma levels: clinical implications. J Clin Psychiatry 1993; 54 (Oct Suppl.): 4–11

    PubMed  Google Scholar 

  16. Kassai A, Toth G, Eichelbaum M, et al. No evidence of a genetic polymorphism in the oxidative metabolism of midazolam. Clin Pharmacokinet 1988; 15: 319–25

    Article  PubMed  CAS  Google Scholar 

  17. May DG, Porter J, Wilkinson GR, et al. Frequency distribution of dapsone N-hydroxylase, a putative probe for P4503A4 activity, in a white population. Clin Pharmacol Ther 1994; 55: 492–500

    Article  PubMed  CAS  Google Scholar 

  18. Lown KS, Kolars JC, Turgeon K, et al. The erythromycin breath test selectively measures P450IIIA in patients with severe liver disease. Clin Pharmacol Ther 1992; 51: 229–38

    Article  PubMed  CAS  Google Scholar 

  19. Watkins PB, Turgeon DK, Saenger P, et al. Comparison of urinary 6-β-cortisol and the erythromycin breath test as measures of hepatic P450IIIA (CYP3A) activity. Clin Pharmacol Ther 1992; 52: 265–73

    Article  PubMed  CAS  Google Scholar 

  20. Turgeon DK, Leichtman AB, Lown KS, et al. P450 3A activity and cyclosporine dosing in kidney and heart transplant recipients. Clin Pharmacol Ther 1994; 56: 253–60

    Article  PubMed  CAS  Google Scholar 

  21. Thummel KE, Shen DD, Podoll TD, et al. Use of midazolam as a human cytochrome P450 3A probe: I. In vitro-in vivo correlations in liver transplant patients. J Pharmacol Exp Ther 1994; 271: 549–56

    PubMed  CAS  Google Scholar 

  22. Watkins PB. Noninvasive tests of CYP3A enzymes. Pharmacogenetics 1994; 4: 171–84

    Article  PubMed  CAS  Google Scholar 

  23. Kinirons MT, O’Shea D, Downing TE, et al. Absence of correlations among three putative in vivo probes of human cytochrome P4503A activity in young healthy men. Clin Pharmacol Ther 1993; 54: 621–9

    Article  PubMed  CAS  Google Scholar 

  24. Krivoruk Y, Kinirons MT, Wood AJJ, et al. Metabolism of cytochrome P4503A substrates in vivo administered by the same route: lack of correlation between alfentanil clearance and erythromycin breath test. Clin Pharmacol Ther 1994; 56: 608–14

    Article  PubMed  CAS  Google Scholar 

  25. Anderson KE. Influences of diet and nutrition on clinical pharmacokinetics. Clin Pharmacokinet 1988; 14: 325–46

    Article  PubMed  CAS  Google Scholar 

  26. Guengerich FP, Shimada T, Yun CH, et al. Interactions of ingested food, beverage, and tobacco components involving human cytochrome P4501A2, 2A6, 2E1, and 3A4 enzymes. Environ Health Perspect 1994; 102Suppl. 9: 49–53

    Article  PubMed  CAS  Google Scholar 

  27. Bailey DG, Arnold JMO, Spence JD. Grapefruit juice and drugs: how significant is the interaction? Clin Pharmacokinet 1994; 26: 91–8

    Article  PubMed  CAS  Google Scholar 

  28. Farrell GC. Drug metabolism in extrahepatic diseases. Pharmacol Ther 1987; 35: 375–404

    Article  PubMed  CAS  Google Scholar 

  29. Greenblatt DJ, Harmatz JS, Shader RI. Clinical pharmacokinetics of anxiolytics and hypnotics in the elderly: therapeutic considerations. Clin Pharmacokinet 1991; 21: 165–77,262-73

    Article  PubMed  CAS  Google Scholar 

  30. Durnas C, Loi CM, Cusack BJ. Hepatic drug metabolism and aging. Clin Pharmacokinet 1990; 19: 359–89

    Article  PubMed  CAS  Google Scholar 

  31. Loi CM, Vestal RE. Drug metabolism in the elderly. Pharmacol Ther 1988; 36: 131–49

    Article  PubMed  CAS  Google Scholar 

  32. Barnhill JG, Greenblatt DJ, Miller LG, et al. Kinetic and dynamic components of increased benzodiazepine sensitivity in aging animals. J Pharmacol Exp Ther 1990; 253: 1153–61

    PubMed  CAS  Google Scholar 

  33. Yonkers KA, Kando JC, Cole JO, et al. Gender differences in pharmacokinetics and pharmacodynamics of psychotropic medication. Am J Psychiatry 1992; 149: 587–95

    PubMed  CAS  Google Scholar 

  34. Kolars JC, Schmiedlin-Ren P, Schuetz JD, et al. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest 1992; 90: 1871–8

    Article  PubMed  CAS  Google Scholar 

  35. Kolars JC, Lown KS, Schmiedlin-Ren P, et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics 1994; 4: 247–59

    Article  PubMed  CAS  Google Scholar 

  36. Lown KS, Kolars JC, Thummel KE, et al. Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel: lack of prediction by the erythromycin breath test. Drug Metab Dispos 1994; 22: 947–55

    PubMed  CAS  Google Scholar 

  37. Watkins PB. Drug metabolism by cytochromes P450 in the liver and small bowel. Gastrointest Pharmacol 1992; 21: 511–26

    CAS  Google Scholar 

  38. Kaminsky LS, Fasco MJ. Small intestinal cytochromes P450. Crit Rev Toxicol 1992; 21: 407–22

    Article  CAS  Google Scholar 

  39. Hebert MF, Roberts JP, Prueksaritanont T, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 1992; 52: 453–7

    Article  PubMed  CAS  Google Scholar 

  40. Kroboth PD, McAuley JW, Kroboth FJ, et al. Triazolam pharmacokinetics after intravenous, oral, and sublingual administration. J Clin Psychopharmacol 1995; 15: 259–62

    Article  PubMed  CAS  Google Scholar 

  41. Vanderveen RP, Jirak JL, Peters GR, et al. Effect of ranitidine on the disposition of orally and intravenously administered triazolam. Clin Pharmacy 1991; 10: 539–43

    CAS  Google Scholar 

  42. Greenblatt DJ, Abernethy DR, Locniskar A, et al. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 1984; 61: 27–35

    PubMed  CAS  Google Scholar 

  43. Divoll M, Greenblatt DJ, Ochs HR, et al. Absolute bioavailability of oral and intramuscular diazepam: effects of age and sex. Anesth Analg 1983; 62: 1–8

    Article  PubMed  CAS  Google Scholar 

  44. Smith RB, Kroboth PD, Vanderlugt JT, et al. Pharmacokinetics and pharmacodynamics of alprazolam after oral and IV administration. Psychopharmacology 1984; 84: 452–6

    Article  PubMed  CAS  Google Scholar 

  45. Lin KM, Lau JK, Smith R, et al. Comparison of alprazolam plasma levels in normal Asian and Caucasian male volunteers. Psychopharmacology 1988; 96: 365–9

    Article  PubMed  CAS  Google Scholar 

  46. Segel IH. Biochemical calculations. 2nd ed. New York: John Wiley, 1976

    Google Scholar 

  47. Newton DJ, Wang RW, Lu AYH. Evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes. Drug Metab Dispos 1995; 23: 154–8

    PubMed  CAS  Google Scholar 

  48. Halpert JR. Structural basis of selective cytochrome P450 inhibition. Annu Rev Pharmacol Toxicol 1995; 35: 29–53

    Article  PubMed  CAS  Google Scholar 

  49. Tucker GT. The rational selection of drug interaction studies: implications of recent advances in drug metabolism. Int J Clin Pharmacol Ther Toxicol 1992; 30: 550–3

    PubMed  CAS  Google Scholar 

  50. Chang TKH, Gonzalez FJ, Waxman DJ. Evaluation of triacetyloleandomycin, ±-naphthoflavone and diethyldithiocarbamate as selective chemical probes for inhibition of human cytochromes P450. Arch Biochem Biophys 1994; 311: 437–42

    Article  PubMed  CAS  Google Scholar 

  51. Spector T, Cleland WW. Meanings of Ki for conventional and alternate-substrate inhibitors. Biochem Pharmacol 1981; 30: 1–7

    Article  PubMed  CAS  Google Scholar 

  52. Jurima-Romet M, Crawford K, Cyr T, et al. Terfenadine metabolism in human liver: in vitro inhibition by macrolide antibiotics and azole antifungals. Drug Metab Dispos 1994; 22: 849–57

    PubMed  CAS  Google Scholar 

  53. Von Moltke LL, Greenblatt DJ, Duan SX, et al. In vitro prediction of the terfenadine-ketoconazole pharmacokinetic interaction. J Clin Pharmacol 1994; 34: 1222–7

    CAS  Google Scholar 

  54. Ling KHJ, Leeson GA, Burmaster SD, et al. Metabolism of terfenadine associated with CYP3A(4) activity in human hepatic microsomes. Drug Metab Dispos 1995; 23: 631–6

    PubMed  CAS  Google Scholar 

  55. Yun CH, Okerholm RA, Guengerich FP. Oxidation of the antihistaminic drug terfenadine in human liver microsomes: role of cytochrome P-450 3A(4) in N-dealkylation and C-hydroxylation. Drug Metab Dispos 1993; 21: 403–9

    PubMed  CAS  Google Scholar 

  56. Gelboin HV. Cytochrome P450 and monoclonal antibodies. Pharmacol Rev 1993; 45: 413–53

    PubMed  CAS  Google Scholar 

  57. Von Moltke LL, Greenblatt DJ, Court MH, et al. Inhibition of alprazolam and desipramine hydroxylation in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. J Clin Psychopharmacol 1995; 15: 125–31

    Article  Google Scholar 

  58. Guengerich FP, Gillam EMJ, Ohmori S, et al. Expression of human cytochrome P450 enzymes in yeast and bacteria and relevance to studies on catalytic specificity. Toxicology 1993; 82: 21–37

    Article  PubMed  CAS  Google Scholar 

  59. Remmel RP, Burchell B. Validation and use of cloned, expressed human drug-metabolizing enzymes in heterologous cells for analysis of drug metabolism and drug-drug interactions. Biochem Pharmacol 1993; 46: 559–66

    Article  PubMed  CAS  Google Scholar 

  60. Von Moltke LL, Greenblatt DJ, Cotreau-Bibbo MM, et al. Inhibition of desipramine hydroxylation in vitro by serotoninreuptake-inhibitor antidepressants, and by quinidine and ketoconazole: a model system to predict drug interactions in vivo. J Pharmacol Exp Ther 1994; 268: 1278–83

    Google Scholar 

  61. Von Moltke LL, Greenblatt DJ, Cotreau-Bibbo MM, et al. Inhibitors of alprazolam metabolism in vitro: effect of serotonin-reuptake-inhibitor antidepressants, ketoconazole and quinidine. Br J Clin Pharmacol 1994; 38: 23–31

    Article  CAS  Google Scholar 

  62. Schmider J, Greenblatt DJ, von Moltke LL, et al. N-demethylation of amitriptyline in vitro: role of cytochrome P-450 3A (CYP3A) isoforms, and effect of metabolic inhibitors. J Pharmacol Exp Ther. In press

  63. Lasher TA, Fleishaker JC, Steenwyk RC, et al. Pharmacokinetic pharmacodynamic evaluation of the combined administration of alprazolam and fluoxetine. Psychopharmacology 1991; 104: 323–7

    Article  PubMed  CAS  Google Scholar 

  64. Greenblatt DJ, Preskorn SH, Cotreau MM, et al. Fluoxetine impairs clearance of alprazolam but not of clonazepam. Clin Pharmacol Ther 1992; 52: 479–86

    Article  PubMed  CAS  Google Scholar 

  65. Fleishaker JC, Hulst LK. A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine. Eur J Clin Pharmacol 1994; 46: 35–9

    Article  PubMed  CAS  Google Scholar 

  66. Swims SP. Potential terfenadine-fluoxetine interaction. Ann Pharmacother 1993; 27: 1404–5

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Moltke, L.L., Greenblatt, D.J., Schmider, J. et al. Metabolism of Drugs by Cytochrome P450 3A Isoforms. Clin. Pharmacokinet. 29 (Suppl 1), 33–44 (1995). https://doi.org/10.2165/00003088-199500291-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199500291-00007

Keywords

Navigation