Skip to main content
Log in

Clinical Pharmacokinetics in the Treatment of Tropical Diseases

Some Applications and Limitations

  • Review Article
  • Pharmacokinetics-Therapeutics
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

In recent years major advances have been made in the clinical pharmacology of many drugs used for the treatment of tropical diseases, particularly in the design and development of dosage regimens for the treatment of severe malaria.

For example, by careful manipulation of its rate of administration, chloroquine has been shown to be well tolerated when used for treatment of severe disease caused by susceptible parasites. Similarly, important advances have been made in the rational design of quinine dosage regimens for patients in South East Asia and Africa. Investigation of the pharmacokinetics of mefloquine has drawn attention to the problems associated with its administration as combination therapy with pyrimethamine and sulfadoxine in Thailand. Similarly, evaluation of the pharmacokinetic properties of halofantrine has led to the demonstration that poor and erratic absorption could be just as likely to explain therapeutic failure as resistance of the parasite to effects of this drug.

Disposition of the antimalarial biguanides has highlighted the role of host-related effects in the determination of drug response. For example, a small percentage of individuals are unable to convert proguanil (chloroguanide) to its active triazine metabolite, cycloguanil.

Finally, agents that reverse chloroquine resistance are currently under development for the treatment of malaria. The importance of assessing the clinical pharmacokinetic properties of potential resistance reversers must be recognised.

While limited success has been achieved in antifilarial chemotherapy, other parasitic diseases have been largely neglected with advances in the laboratory still awaiting full recognition of their clinical application. For example, clinical pharmacokinetic concepts may be used to improve the therapy of human hydatid disease.

We believe that clinical management of tropical diseases can be improved by the application of clinical pharmacokinetic principles. However, this may not be universally advantageous. For example, the artemisinin (qinghaosu) derivatives are among the most recently developed antimalarials that have great therapeutic promise. Recent evidence suggests that pharmacokinetic data would be of limited value in the design and optimisation of dosage regimens because of its chemical reactivity and the unusual mechanism by which these drugs kill parasites. Similar limitations may apply to the microfilaricidal drug, ivermectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. White NJ. Clinical pharmacokinetics of antimalarial drugs. Clin Pharmacokinet 1985; 10: 187–215

    Article  PubMed  CAS  Google Scholar 

  2. White NJ. Drug treatment and prevention of malaria. Eur J Clinical Pharmacol 1988; 34: 1–14

    Article  CAS  Google Scholar 

  3. White NJ. Antimalarial pharmacokinetics and treatment regimens. Br J Clin Pharmacol 1992; 34: 1–10

    Article  PubMed  CAS  Google Scholar 

  4. Breckenridge AM, Orme M, Edwards G. Clinical pharmacology looks at tropical medicine. Trans R Soc Trop Med Hyg 1987; 81: 529–33

    Article  PubMed  CAS  Google Scholar 

  5. Edwards G, Breckenridge AM. Clinical pharmacokinetics of anthelmintic drugs. Clin Pharmacokinet 1988; 15: 67–93

    PubMed  CAS  Google Scholar 

  6. Edwards G, Ward SA. Methods in tropical pharmacology. Br J Clin Pharmacol 1992; 33: 573–4

    Article  PubMed  CAS  Google Scholar 

  7. Winstanley PA, Watkins WM. Pharmacology and parasitology: integrating experimental methods and approaches to falciparum malaria. Br J Clin Pharmacol 1993; 34: 574–81

    Google Scholar 

  8. Wernsdorfer WH. The development and spread of drug resistant malaria. Parasitol Today 1991; 7: 297–303

    Article  PubMed  CAS  Google Scholar 

  9. World Health Organisation. WHO Model Prescribing Information. Drugs used in Parasitic Diseases. Geneva: World Health Organisation, 1990

    Google Scholar 

  10. World Health Organization. Practical chemotherapy of malaria. WHO Technical Report Series 805. Geneva: World Health Organization, 1990

    Google Scholar 

  11. Gustaffson LL, Walker O, Alvan G, et al. Disposition of chloroquine in man after single intravenous and oral doses. Br J Clin Pharmacol, 1983; 15: 471–9

    Article  Google Scholar 

  12. Frisk-Holmberg M, Bergqvist Y, Termond E, et al. The single dose kinetics of chloroquine and its major metabolite desethylchloroquine in healthy subjects. Eur J Clin Pharmacol 1984; 26: 521–30

    Article  PubMed  CAS  Google Scholar 

  13. Edwards G, Looareesuwan S, Davies AJ, et al. Pharmacokinetics of chloroquine in Thais: Plasma concentrations following an intravenous infusion to healthy subjects and patients with Plasmodium vivax malaria. Br J Clin Pharmacol 1988; 25: 477–86

    Article  PubMed  CAS  Google Scholar 

  14. Looareesuwan S, White NJ, Chanthavanich P, et al. Cardiovascular toxicity and distribution kinetics of intravenous chloroquine. Br J Clin Pharmacol 1986; 22: 31–6

    Article  PubMed  CAS  Google Scholar 

  15. Phillips RE, Warrell DA, Edwards G, et al. Divided-dose intramuscular and subcutaneous regimens for chloroquine. Plasma concentration and toxicity in patients with malaria. BMJ 1986; 293: 13–6

    Article  PubMed  CAS  Google Scholar 

  16. White NJ, Watt G, Bergqvist Y, et al. Parenteral chloroquine in the treatment of falciparum malaria. J Infect Dis 1987; 155: 192–201

    Article  PubMed  CAS  Google Scholar 

  17. White NJ, Miller KD, Churchill FC, et al. Chloroquine treatment of severe malaria in children: pharmacokinetics, toxicity and revised dosage regimens. N Engl J Med 1988; 319: 1493–500

    Article  PubMed  CAS  Google Scholar 

  18. World Health Organization Advances in malaria chemotherapy. WHO Technical Report Series 411. Geneva: World Health Organization, 1984

    Google Scholar 

  19. Bray PG, Ward SA. Malaria chemotherapy: resistance to quinoline containing drugs in Plasmodium falciparum. FEMS Microbiol Lett 1993; 113: 1–8

    Article  PubMed  CAS  Google Scholar 

  20. Martin SK, Oduola AMJ, Milhous WK. Reversal of chloroquine resistance of Plasmodium falciparum by verapamil. Science 1987; 235: 899–901

    Article  PubMed  CAS  Google Scholar 

  21. Bitonti AJ, McCann PP. Desipramine and cyprohepatadine for reversal of chloroquine resistance in Plasmodium falciparum. Lancet 1989; 2: 1282–93

    Article  PubMed  CAS  Google Scholar 

  22. Peters W, Ekong R, Robinson BL, et al. Antihistaminic drugs, that reverse chloroquine resistance in Plasmodium falciparum. Lancet 1989; 2: 334–5

    Article  PubMed  CAS  Google Scholar 

  23. Warsame M, Wernsdorfer WH, Bjorkman A. Lack of effect of desipramine on the response to chloroquine in patients with chloroquine-resistant falciparum malaria. Trans R Soc Trop Med Hyg 1992; 86: 235–6

    Article  PubMed  CAS  Google Scholar 

  24. Sjoqvist F. A pharmacokinetic approach to the treatment of depression. Int Pharmacopsychiatry 1971; 6: 147–69

    PubMed  CAS  Google Scholar 

  25. Suzuki Y, Sugiyama Y, Sawada, Y et al. Assessment of the concentration of alpha-1-acid glycoprotein to the serum binding of basic drugs using serum treated with sulphosalicylic acid and DEAE-cellulose. J Pharm Pharmacol 1985; 87: 712–7

    Article  Google Scholar 

  26. Boulter MK, Bray PG, Howells RE, et al. The potential of desipramine to reverse chloroquine resistance of Plasmodium falciparum is reduced by its binding to plasma protein. Trans R Soc Trop Med Hyg 1993; 87: 303

    Article  PubMed  CAS  Google Scholar 

  27. Javaid JI, Davies JM, Maiorano M. Uptake and/or binding of tricyclic antidepressants in human red cells. Life Sci 1985; 36: 1765–9

    Article  Google Scholar 

  28. Mansor SM, Molyneux ME, Taylor TE. Effect of Plasmodium falciparum malaria infection on the plasma concentration of alpha1 acid glycoprotein and the binding of quinine in Malawian children. Br J Clin Pharmacol 1991; 32: 317–23

    Article  PubMed  CAS  Google Scholar 

  29. White NJ, Looareesuwan S, Warrell DA, et al. Quinine pharmacokinetics and toxicity in cerebral and uncomplicated falciparum malaria. Am J Med 1982; 73: 564–71

    Article  PubMed  CAS  Google Scholar 

  30. White NJ, Looareesuwan S, Warrell DA, et al. Quinine loading dose in cerebral malaria. Am J Trop Med Hyg 1983; 32: 1–5

    PubMed  CAS  Google Scholar 

  31. White NJ, Chanthavanich P, Krishna S, et al. Quinine disposition kinetics. Br J Clin Pharmacol 1983; 16: 399–403

    Article  PubMed  CAS  Google Scholar 

  32. Davis TME, White NJ, Looareesuwan S, et al. Quinine pharmacokinetics in cerebral malaria: Predicted plasma concentrations after rapid intravenous loading using a two-compartment model. Trans R Soc Trop Med Hyg 1988; 82: 542–7

    Article  PubMed  CAS  Google Scholar 

  33. Davis TME, Supanaranond W, Pukrittayakamee S, et al. A safe and effective consecutive-infusion regimen for rapid quinine loading in severe falciparum malaria. J Infect Dis 1990; 161: 1305–8

    Article  PubMed  CAS  Google Scholar 

  34. Tropical Disease Research, Progress 1991–1992. Eleventh programme report of the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases [TDR]. Geneva: WHO, 1993

    Google Scholar 

  35. Pasvol G, Newton CRJC, Winstanley PA, et al. Quinine treatment of severe falciparum malaria in African children: a randomised trial of three regimens. Am J Trop Med Hyg 1992; 45: 702–13

    Google Scholar 

  36. Wongsrichanalai C, Webster HK, Wimonwattrawatee T, et al. In vitro sensitivity of Plasmodium falciparum isolates in Thailand to quinine and chloroquine, 1984-1990. Southeast Asian J Trop Med Public Health 1992; 23: 533–6

    PubMed  CAS  Google Scholar 

  37. Shann F, Stace J, Edstein M. Pharmacokinetics of quinine in children. J Pediatrics 1985; 106: 506–10

    Article  CAS  Google Scholar 

  38. Winstanley PA, Newton CR, Watkins WM, et al. Towards optimal parenteral quinine regimens for young children with cerebral malaria: importance of unbound quinine concentration. Trans R Soc Trop Med Hyg 1993; 87: 201–6

    Article  PubMed  CAS  Google Scholar 

  39. Dyson EH, Proudfoot AT, Presott LF, et al. Death and blindness due to overdose of quinine. BMJ 1985; 291: 31–3

    Article  PubMed  CAS  Google Scholar 

  40. Bowman E, Brennan-Roper SM, Henry JA. Complications of quinine poisoning. Lancet 1985; 1: 384–5

    Google Scholar 

  41. Mansor SM, Taylor TE, McGrath CS, et al. The safety and kinetics of intramuscular quinine in Malawian children with moderately severe falciparum malaria. Trans R Soc Trop Med Hyg 1990; 84: 482–8

    Article  PubMed  CAS  Google Scholar 

  42. Silamut K, White NJ, Looareesuwan S, et al. Binding of quinine to plasma proteins in falciparum malaria. Am J Trop Med Hyg 1985; 34: 681–6

    PubMed  CAS  Google Scholar 

  43. Silamut K, Molunto P, Ho M, et al. Alpha1 acid glycoprotein [orosomucoid] and plasma protein binding of quinine in falciparum malaria. Br J Clin Pharmacol 1991; 32: 311–7

    Article  PubMed  CAS  Google Scholar 

  44. Mihaly, GW, Ching MS, Klejn MB, et al. Differences in the binding of quinine and quinidine to plasma proteins. Br J Clin Pharmacol 1987; 24: 769–74

    Article  PubMed  CAS  Google Scholar 

  45. Weidekamm E, Plozza-Nottebrock H, Forgo I, et al. Plasma concentrations of pyrimethamine and sulfadoxine and evaluation of pharmacokinetic data by computerised curve fitting. Bull World Health Organ 1982; 60: 115–21

    PubMed  CAS  Google Scholar 

  46. Hellgren U, Angel VH, Bergqvist Y, et al. Plasma concentrations of sulfadoxine-pyrimethamine and of mefloquine during regular long-term malaria prophylaxis. Trans R Soc Trop Med Hyg 1990; 84: 46–9

    Article  PubMed  CAS  Google Scholar 

  47. Winstanley PA, Watkins WM, Newton, CRJC et al. The disposition of oral and intramuscular pyrimethamine/sulphadoxine in Kenyan children with high parasitaemia but clinically non-severe falciparum malaria. Br J Clin Pharmacol 1992; 33: 143–8

    Article  PubMed  CAS  Google Scholar 

  48. Hyde JE. The dihydrofolate-thymidylate synthetase gene in the drug resistance of malaria parasites. Pharmacol Ther 1990; 48: 45–59

    Article  PubMed  Google Scholar 

  49. Watkins WM, Mosobo M. Treatment of Plasmodium falciparum malaria with pyrimethamine and sulphadoxine: a selective pressure for resistance is a function of long elimination half-life. Trans R Soc Trop Med Hyg 1993; 87: 75–9

    Article  PubMed  CAS  Google Scholar 

  50. Karbwang J, White NJ. Clinical Pharmacokinetics of mefloquine. Clin Pharmacokinet 1990; 19: 264–179

    Article  PubMed  CAS  Google Scholar 

  51. Palmer KJ, Holliday SM, Brogden RN. Mefloquine: a review of its antimalarial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1993; 45: 430–75

    Article  PubMed  CAS  Google Scholar 

  52. White NJ. Combination treatment for P. falciparum prophylaxis. Lancet 1987; 1: 680–1

    Article  PubMed  CAS  Google Scholar 

  53. Nosten F, ter Kuile F, Chongsuphajaisiddhi T, et al. Mefloquine-resistant falciparum malaria on the Thai-Burmese border Lancet 1991; 337: 1140–3

    CAS  Google Scholar 

  54. Boudreau EF, Pang LW, Dixon KE, et al. Malaria: Treatment efficacy of halofantrine (WR 171669) in initial field trials in Thailand. Bull World Health Organ 1988; 66: 227–35

    PubMed  CAS  Google Scholar 

  55. Watkins WM, Oloo JA, Lury JD, et al. Efficacy of multiple dose halofantrine in treatment of chloroquine resistant malaria in children in Kenya. Lancet 1988; 2: 247–50

    Article  PubMed  CAS  Google Scholar 

  56. Wirima J, Khoromana C, Molyneux ME, et al. Clinical trials with halofantrine hydrochloride in Malawi. Lancet 1988; 2: 250–2

    Article  PubMed  CAS  Google Scholar 

  57. Bryson HM, Goa KL. Halofantrine: a review of its antimalarial activity, pharmacokinetic properties and therapeutic potential. Drugs 1992; 43: 236–58

    Article  PubMed  CAS  Google Scholar 

  58. Karbwang J, Milton KA, Na Bangchang K, et al. Pharmacokinetics of halofantrine in Thai patients with acute complicated falciparum malaria. Br J Clin Pharmacol 1991; 31: 484–7

    Article  PubMed  CAS  Google Scholar 

  59. Milton KA, Edwards G, Ward SA, et al. Pharmacokinetics of halofantrine in man: effect of food and dose size. Br J Clin Pharmacol 1989; 28: 71–9

    Article  PubMed  CAS  Google Scholar 

  60. Shanks GD, Watt G, Edstein MD, et al. Halofantrine given with food for falciparum malaria. Trans R Soc Trop Med Hyg 1992; 86: 233–4

    Article  PubMed  CAS  Google Scholar 

  61. Eagle S, Gill C, Acton G, et al. Relative bioavailability of a new micronised formulation of halofantrine. Br J Clin Pharmacol 1993; 36: 176–177P

    Google Scholar 

  62. Nosten F, ter Kuile FO, Luxemburger C, et al. Cardiac effects of antimalarial treatment with halofantrine. Lancet 1993; 341: 1054–6

    Article  PubMed  CAS  Google Scholar 

  63. Castot A, Rapoport P, Le Coz P. Prolonged QT interval with halofantrine. Lancet 1993; 341: 1541

    Article  PubMed  CAS  Google Scholar 

  64. Monlun E, Pillet C, Cochard JF, et al. Prolonged QT interval with halofantrine. Lancet 1993; 341: 1541–2

    PubMed  CAS  Google Scholar 

  65. Karbwang J, Na Bangchang K, Bunnag D, et al. Cardiac effect of halofantrine. Lancet 1993; 342: 501

    Article  PubMed  CAS  Google Scholar 

  66. Karbwang J, Na Bangchang K. Clinical Pharmacokinetics of halofantrine. Clin Pharmacokinet 1994; 27: 104–19

    Article  PubMed  CAS  Google Scholar 

  67. Karbwang J, Davis TME, Looareesuwan S, et al. A comparison of the pharmacokinetic and pharmacodynamic effect of quinine and quinidine in healthy Thai males. Br J Clin Pharmacol 1993; 35: 265–71

    Article  PubMed  CAS  Google Scholar 

  68. Miller KD, Greenberg AF, Campbell CC. Treatment of severe malaria in the United States with a continuous infusion of quinidine gluconate and exchange transfusion. N Engl J Med 1989; 329: 65–70

    Article  Google Scholar 

  69. ter Kuile FO, Dolan G, Nosten F, et al. Halofantrine versus mefloquine in treatment of multidrug resistant falciparum malaria. Lancet 1993; 341: 1044–9

    Article  PubMed  Google Scholar 

  70. Watkins WM, Brandling-Bennett D, Nevill CG, et al. Chlorproguanil/dapsone for the treatment of non-severe Plasmodium falciparum in Kenya. Trans R Soc Trop Med Hyg 1988; 82: 398–403

    Article  PubMed  CAS  Google Scholar 

  71. Steffen R, Behrens RH. Traveller’s Malaria. Parasitol Today 1992; 8: 61–6

    Article  PubMed  CAS  Google Scholar 

  72. Peterson DA, Milhous WK, Wellems TE. Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Proc Natl Acad Sci 1990; 87: 3018–22

    Article  PubMed  CAS  Google Scholar 

  73. Ward SA, Watkins WM, Mberu E, et al. Intersubject variability in the metabolism of proguanil to the active metabolite cycloguanil in man. Br J Clin Pharmacol 1989; 27: 781–7

    Article  PubMed  CAS  Google Scholar 

  74. Helsby NA, Ward SA, Howells RE, et al. In vitro metabolism of the biguanide antimalarials in human liver microsomes: evidence for a role of the mephenytoin hydroxylase (P450 MP enzyme). Br J Clin Pharmacol 1990; 30: 287–91

    Article  PubMed  CAS  Google Scholar 

  75. Ward SA, Helsby NA, Skjelbo E, et al. The activation of the biguanide antimalarial proguanil co-segregates with the mephenytoin oxidation polymorphism: a panel study. Br J Clin Pharmacol 1991; 31: 689–92

    Article  PubMed  CAS  Google Scholar 

  76. Funck-Brentano C, Bosco O, Jacqz-Aigrain E, et al. Relation between chloroguanide bioactivation to cycloguanil and the genetically determined metabolism of mephenytoin in humans. Clin Pharmacol Ther 1992; 51: 507–12

    Article  PubMed  CAS  Google Scholar 

  77. Helsby NA, Ward SA, Edwards G, et al. The pharmacokinetics and activation of proguanil in man: consequences of variability in drug metabolism. Br J Clin Pharmacol 1990; 30: 593–8

    Article  PubMed  CAS  Google Scholar 

  78. Helsby NA, Edwards G, Breckenridge AM, et al. The multiple dose pharmacokinetics of proguanil. Br J Clin Pharmacol 1993; 35: 653–6

    Article  PubMed  CAS  Google Scholar 

  79. Wedlund PJ, Aslanian WS, Jacqz E, et al. Phenotypic differences in mephenytoin pharmacokinetics in normal subjects. J Pharmacol Exp Ther 1985; 234: 662–9

    PubMed  CAS  Google Scholar 

  80. Nakamura K, Gota F, Ray WA, et al. Inter-ethnic differences in genetic polymorphism of debrisoquine and mephenytoin hydroxylation in Japanese and Caucasian populations. Clin Pharmacol Ther 1985; 38: 402–8

    Article  PubMed  CAS  Google Scholar 

  81. Watkins WM, Mberu EK, Nevill CG, et al. Variability in the metabolism of proguanil to its active metabolic cycloguanil in healthy Kenyan adults. Trans R Soc Trop Med Hyg 1990; 84: 492–5

    Article  PubMed  CAS  Google Scholar 

  82. Watkins WM, Chulay JD, Sixsmith, DG et al. A preliminary pharmacokinetic study of the antimalarial drugs proguanil and chlorproguanil. J Pharm Pharmacol 1987; 39: 261–5

    Article  PubMed  CAS  Google Scholar 

  83. Duke BOL. Human onchocerciasis — An overview of the disease. Acta Leidensia 1990; 89: 9–24

    Google Scholar 

  84. Greene BM, Taylor HR, Cupp EW, et al. Comparison of ivermectin and diethylcarbamazine in the treatment of onchocerciasis. N Engl J Med 1985; 313; 133–8

    Article  PubMed  CAS  Google Scholar 

  85. Lariviere M, Vingtain P, Aziz MA, et al. Double blind study of ivermectin and diethylcarbamazine in African onchocerciasis patients with ocular involvement. Lancet 1985; 2: 174–7

    Article  PubMed  CAS  Google Scholar 

  86. Diallo S, Aziz MA, Lariviere M, et al. A double blind comparison of the efficacy and safety of ivermectin and diethylcarbamazine in a placebo controlled study of Senegalese patients with onchocerciasis. Trans R Soc Trop Med Hyg 1986; 80: 927–34

    Article  PubMed  CAS  Google Scholar 

  87. Mazzotti L. Possibilidad de utilizar como medico diagnostico auxiliar en la onchocercosis las reacciones alergicas consecuvatas a la administration del ‘Heterazan’. Rev Inst Salubr Enferm Trop 1948; 9: 235–7

    Google Scholar 

  88. Anderson J, Fuglsang H, Marshall TF, et al. Effects of diethylcarbamazine on ocular onchocerciasis. Trop Med Parasitol 1976; 27: 263–78

    CAS  Google Scholar 

  89. Awadzi K. The chemotherapy of onchocerciasis II: quantitation of the clinical reaction to microfilaricides. Ann Trop Med Parasitol 1980; 74: 190–7

    Google Scholar 

  90. Awadzi K, Orme ML’E, Breckenridge AM, et al. The chemotherapy of onchocerciasis VII; The effect of prednisone on the Mazzotti reaction. Ann Trop Med Parasitol 1982; 76: 331–8

    PubMed  CAS  Google Scholar 

  91. Awadzi K, Orme ML’E, Breckenridge AM, et al. The effect of prednisone, plus cyproheptadine on the Mazzotti reaction. Ann Trop Med Parasitol 1982; 76: 547–55

    PubMed  CAS  Google Scholar 

  92. Sowa J, Sowa SC. Long-term treatment of onchocerciasis in children with low doses of diethylcarbamazine. Ann Trop Med Parasitol 1978; 72: 79–85

    PubMed  CAS  Google Scholar 

  93. Hutchinson DB, El Sheik H, Jones BR, et al. Adverse reactions to cutaneous diethylcarbamazine in onchocerciasis [correspondence]. Lancet 1979; 2: 46

    Article  PubMed  CAS  Google Scholar 

  94. Taylor HR, Greene BM. Ocular changes with oral and transdermal diethylcarbamazine therapy of onchocerciasis. Br J Opthalmol 1980; 65: 494–502

    Article  Google Scholar 

  95. Taylor HR, Langham ME, De Stahl EM, et al. Chemotherapy of onchocerciasis: a controlled clinical trial of topical diethylcarbamazine in Guatemala. Trop Med Parasitol 1980; 35: 78–80

    Google Scholar 

  96. Anderson J, Fuglsang H. Topical diethylcarbamazine in ocular onchocerciasis. Trans R Soc Trop Med Hyg 1973; 67: 710–7

    Article  PubMed  CAS  Google Scholar 

  97. Aviel E, David R. Topical diethylcarbamazine in ocular onchocerciasis. Isr J Med Sci 1972; 8: 1166–8

    PubMed  CAS  Google Scholar 

  98. Ben-Sira I, Aviel E, Lazar M, et al. Topical heterazan in the treatment of ocular onchocerciasis. Am J Opthalmol 1970; 70: 741–3

    CAS  Google Scholar 

  99. Jones BR, Anderson J, Fuglsang H. Effects of various concentrations of diethylcarbamazine citrate applied as eye drops in ocular onchocerciasis and the possibilities of impaired therapy from continuous, non-pulsed delivery. Br J Opthalmol 1978; 62: 428–39

    Article  CAS  Google Scholar 

  100. Lazar M, Liebermann TW, Leopold IH. Topical diethylcarbamazine in the treatment of onchocerciasis. Am J Trop Med Hyg 1970; 19: 232–3

    PubMed  CAS  Google Scholar 

  101. Awadzi K. Therapy of Tropical Diseases: Filariasis. In: Turner P, editor. Clinical Pharmacology and Therapeutics. Proceedings of the First World Conference. London: MacMillan, 1980: 449–60

    Google Scholar 

  102. Prod’hon J, Moreau JP, Mongin C. Chimotherapie de l’onchocerose. I. Essais de traitement de masse par la diethylcarbamazine, le levamisole et l’association diethylcarbamazine et levamisole. Med Trop 1979; 39: 619–28

    Google Scholar 

  103. Prod’hon J, Sainte’Marie FF, Moreau JP, et al. Chimotherapie de l’onchocercose. II. Evaluation de l’activite de deux schemas therapeutiques associant diethylcarbamazine et levamisole sur la densite microfilarienne d’Onchocerca volvulus (Leukart, 1893). Med Trop 1979; 39: 631–5

    Google Scholar 

  104. Awadzi K, Adjepon Yamoah KK, Edwards G, et al. The effect of moderate urine alkalinisation on diethylcarbamazine therapy in patients with onchocerciasis. Br J Clin Pharmacol 1986; 21: 669–76

    Article  PubMed  CAS  Google Scholar 

  105. Edwards G, Awadzi K, Breckenridge AM, et al. Diethylcarbamazine disposition in patients with onchocerciasis. Clin Pharmacol Ther 1981; 30: 551–7

    Article  PubMed  CAS  Google Scholar 

  106. Edwards G, Breckenridge AM, Adjepon-Yamoah KK, et al. The effect of variations in urinary pH on the pharmacokinetics of diethylcarbamazine. Br J Clin Pharmacol 1981; 12: 807–12

    Article  PubMed  CAS  Google Scholar 

  107. Adjepon-Yamoah KK, Edwards G, Breckenridge AM, et al. The effect of renal disease on the pharmacokinetics of diethylcarbamazine. Br J Clin Pharmacol 1982; 13: 829–34

    Article  PubMed  CAS  Google Scholar 

  108. Awadzi K, Gilles HM. Diethylcarbamazine in the treatment of onchocerciasis. Br J Clin Pharmacol 1992; 34: 281–8

    Article  PubMed  CAS  Google Scholar 

  109. Dull HB. Mectizan donation and the Mectizan Expert Committee Acta Leidensia 1990; 59: 399–403

    CAS  Google Scholar 

  110. Davis A, Pawlowski ZS, Doxon H. Multicentre clinical trials of benzimidazole carbamates in human echinococcus. Bull World Health Organ 1986; 64: 383–8

    PubMed  CAS  Google Scholar 

  111. Horton RJ. Chemotherapy of Echinococcus infection in man with albendazole. Trans R Soc Trop Med 1989; 83: 97–102

    Article  CAS  Google Scholar 

  112. Bekhti A, Pirotte J. Cimetidine increases serum mebendazole concentrations: implications for treatment of hepatic hydatid cysts. Br J Clin Pharmacol 1987; 24: 390–2

    Article  PubMed  CAS  Google Scholar 

  113. Gottschall DW, Theodorides VJ, Wang R. The metabolism of benzimidazole anthelmintics. Parasitol Today 1990; 6: 115–24

    Article  PubMed  CAS  Google Scholar 

  114. Amri HS, Mothe Totis M, Masson C, et al. Albendazole sulfonation by rat liver cytochrome P-450. J Pharmacol Exp Ther 1988; 246: 758–64

    Google Scholar 

  115. Lanusse CE, Prichard RK. Clinical Pharmacokinetics and metabolism of benzimidazole anthelmintics in ruminants. Drug Metab Rev 1993; 25: 235–79

    Article  PubMed  CAS  Google Scholar 

  116. Wen H, Zhang HW, Muhmut M, et al. Initial observation on albendazole in combination with Cimetidine for the treatment of human cystic echinococcosis. Ann Trop Med Parasitol 1994; 88: 49–52

    PubMed  CAS  Google Scholar 

  117. Klayman D. Artemisinin (qinghaosu): an antimalarial drug from China. Science 1985; 228: 1049–55

    Article  PubMed  CAS  Google Scholar 

  118. Brossi A, Venugopolan B, DominguezGerpe L, et al. Arteether: a new antimalarial drug; Synthesis and properties. J Med Chem 1988; 31: 645–50

    Article  PubMed  CAS  Google Scholar 

  119. Idowu OR, Edwards G, Ward SA, et al. Determination of arteether in blood plasma by high-performance liquid chromatography with ultraviolet detection after hydrolysis by acid. J Chromatogr 1989; 493: 125–36

    Article  PubMed  CAS  Google Scholar 

  120. Melendez V, Peggins JO, Brewer TG, et al. Determination of arteether and its de-ethylated metabolite dihydroartemisinin by high-performance liquid chromatography with reductive electrochemical detection. J Pharm Sci 1991; 80: 132–8

    Article  PubMed  CAS  Google Scholar 

  121. Thomas CG, Ward SA, Edwards G. The simultaneous determination of artemether and its major metabolite dihydroartemisinin in plasma by high-performance liquid chromatography. J Chromatogr 1992; 583: 131–6

    Article  PubMed  CAS  Google Scholar 

  122. Edwards G, Ward SA, Breckenridge AM. Interaction of arteether with the red blood cell in vitro and its possible importance in the interpretation of plasma concentrations in vivo. J Pharm Pharmacol 1992; 44: 280–1

    Article  PubMed  CAS  Google Scholar 

  123. Zhang F, Gosser DK, Meshnick SR. Hemin catalysed decomposition of artemisinin (qinghaosu). Biochem Pharmacol 1992; 43: 1805–9

    Article  PubMed  CAS  Google Scholar 

  124. Yang Y-Z, Asawamhasakda W, Meshnick SR. Alkylation of human albumin by the antimalarial artemisinin. Biochem Pharmacol 1993; 46: 336–9

    Article  PubMed  CAS  Google Scholar 

  125. Asawamhasakda W, Benakis A, Meshnick SR. The interaction of artemisinin with red cell membranes. J Lab Clin Med. In press

  126. Teja-Isvadharm P, Kyle DE, White NJ, et al. A Plasmodium falciparum bioassay for measurement of artemisinin concentrations in plasma or serum. In Tharavanij S, Fungladda W, Khusmith S, et al., editors. Proceedings of the XIIIth International Congress for Tropical Medicines and Malaria. 1992 Nov 29–Dec 4; Jomtien, Pattaya, Thailand. Faculty of Tropical Medicine, Mahidol University, Bangkok, 1992

    Google Scholar 

  127. Fink DW, Porras AG. Pharmacokinetics of Ivermectin in animals and humans. In: Cambell WC, editor. Ivermectin and Abamectin. New York, Springer Verlag, 1989: 113–30

    Chapter  Google Scholar 

  128. Greene BM, Brown KR, Taylor HR. Use of Ivermectin in humans. In: Campbell WC, editor. Ivermectin and Abamectin. New York, Springer Verlag, 1989: 113–30

    Google Scholar 

  129. White NJ, Krishna S. Treatment of malaria; Some considerations and limitations of current methods of assessment. Trans R Soc Trop Med Hyg 1989; 83: 767–77

    Article  PubMed  CAS  Google Scholar 

  130. ter Kuile F, White NJ, Holloway P, et al. Plasmodium falciparum; In vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp Parasitol 1993; 76: 85–95

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, G., Winstanley, P.A. & Ward, S.A. Clinical Pharmacokinetics in the Treatment of Tropical Diseases. Clin. Pharmacokinet. 27, 150–165 (1994). https://doi.org/10.2165/00003088-199427020-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199427020-00006

Keywords

Navigation