Skip to main content

Advertisement

Log in

The Pharmacogenetics of Immunosuppression for Organ Transplantation

A Route to Individualization of Drug Administration

  • Practical Pharmacogenomics
  • Published:
American Journal of Pharmacogenomics

Abstract

Transplantation has transformed the treatment of patients with organ failure in a number of clinical settings, and immunosuppressive drug therapy is fundamental to its success. However, all the drugs in current use have a narrow therapeutic index. Under-dosing can lead to rejection, while over-dosing increases the risks of infection, malignant disease, and serious drug-specific adverse effects, including diabetes mellitus, nephrotoxicity, hypertension, and hyperlipidemia.

Heterogeneity in the pharmacokinetics of these drugs makes initial dose determination difficult, as there is a poor correlation between dose and blood concentration. This results in difficulties in achieving target blood concentrations early after transplantation, which are important for reducing the rate of immunological rejection. This problem is compounded by the observation that neither drug dose nor drug blood concentration accurately predict clinical efficacy or toxicity.

The main determinant of heterogeneity in dose requirements is intestinal absorption of the active drug. The oxidative enzymes, cytochrome P450 (CYP) 3A4 and CYP3A5, and the drug efflux pump P-glycoprotein (P-gp) in enterocytes regulate this process. Most substrates for the P-gp pump are also substrates for the CYP3A enzymes. An efficient barrier to xenobiotic absorption is formed by the CYP enzymes and P-gp, and by the two systems working synergistically. Genetic polymorphisms have been reported for the genes associated with the expression of the CYP3A enzymes and P-gp. Genotyping patients for CYP3A genes has the potential to aid the establishment of optimal dosage regimens for transplant patients.

Genetic polymorphism of the multiple drug resistance gene-1 (MDR1, also known as ABCB1) [3435C/T] and the CYP3A5 genes (CYP3A5*1, CYP3AP1*1) have the greatest potential to influence the pharmacokinetics of immunosuppressants. Homozygosity of the T allele of the MDR1 3435C/T polymorphism has been associated with reduced enterocyte expression of P-gp resulting in increased drug absorption. The presence of the CYP3A5*1 allele is necessary for the production of a fully catalytic CYP3A5 protein, and also influences the ratio of CYP3A4 : CYP3A5 as well as the overall CYP3A catalytic activity. The CYP3A4 : CYP3A5 ratio may, in turn, influence the pattern of drug metabolites formed. Heterogeneity in the production of active and inactive metabolites has implications for both the pharmacokinetics and pharmacodynamics of these drugs.

Gene frequencies and drug dose requirements differ between ethnic groups. Ethnic differences in dose requirements for immunosuppressants have been discussed widely. However, ethnicity is a rather crude marker for genotype. Pharmacogenetic typing offers the possibility of significant improvement in the individualization of immunosuppressive drug prescribing with reduced rates of rejection and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. 11 The use of tradenames is for product identification purposes only and does not imply endorsement. and a possible solution to the problem of planning initial drug administration schedules.

References

  1. Matas AJ, Gillingham KJ, Chavers BM, et al. The importance of early cyclosporine levels in pediatric kidney transplantation. Clin Transplant 1996; 10 (6 Pt 1): 482–6

    PubMed  CAS  Google Scholar 

  2. Cohen D, Galbraith C. General health management and long-term care of the renal transplant recipient. Am J Kidney Dis 2001; 38 (6 Suppl. 6): S10–24

    Article  PubMed  CAS  Google Scholar 

  3. Weir MR, Fink JC. Risk for posttransplant Diabetes mellitus with current immunosuppressive medications. Am J Kidney Dis 1999; 34(1): 1–13

    Article  PubMed  CAS  Google Scholar 

  4. Solez K, Vincenti F, Filo RS. Histopathologic findings from 2-year protocol biopsies from a US multicenter kidney transplant trial comparing tarolimus versus cyclosporine: a report of the FK506 Kidney Transplant Study Group. Transplantation 1998; 66(12): 1736–40

    Article  PubMed  CAS  Google Scholar 

  5. Kahan BD, Podbielski J, Napoli KL, et al. Immunosuppressive effects and safety of a sirolimus/cyclosporine combination regimen for renal transplantation. Transplantation 1998; 66(8): 1040–6

    Article  PubMed  CAS  Google Scholar 

  6. Holt DW. Therapeutic drug monitoring of immunosuppressive drugs in kidney transplantation. Curr Opin Nephrol Hypertens 2002; 11(6): 657–63

    Article  PubMed  Google Scholar 

  7. Holt DW, Armstrong VW, Griesmacher A, et al. International Federation of Clinical Chemistry/International Association of Therapeutic Drug Monitoring and Clinical Toxicology working group on immunosuppressive drug monitoring. Ther Drug Monit 2002; 24(1): 59–67

    Article  PubMed  CAS  Google Scholar 

  8. Canadian Neoral Renal Transplantation Study Group. Absorption profiling of cyclosporine microemulsion (neoral) during the first 2 weeks after renal transplantation. Transplantation 2001 Sep 27; 72(6): 1024–32

    Article  Google Scholar 

  9. Mahalati K, Belitsky P, Sketris I, et al. Neoral monitoring by simplified sparse sampling area under the concentration-time curve: its relationship to acute rejection and cyclosporine nephrotoxicity early after kidney transplantation. Transplantation 1999; 68(1): 55–62

    Article  PubMed  CAS  Google Scholar 

  10. Fahr A. Cyclosporin clinical pharmacokinetics. Clin Pharmacokinet 1993; 24(6): 472–95

    Article  PubMed  CAS  Google Scholar 

  11. Undre N, Moller A. Pharmacokinetic interpretation of FK506 levels in blood and in plasma during a European randomised study in primary liver transplant patients. Transpl Int 1994; 7Suppl. 1: S15–21

    Article  PubMed  Google Scholar 

  12. Sketris I, Yatscoff R, Keown P, et al. Optimizing the use of cyclosporine in renal transplantation. Clin Biochem 1995; 28(3): 195–211

    Article  PubMed  CAS  Google Scholar 

  13. Tsunoda SM, Aweeka FT. The use of therapeutic drug monitoring to optimise immunosuppressive therapy. Clin Pharmacokinet 1996; 30(2): 107–40

    Article  PubMed  CAS  Google Scholar 

  14. Lindholm A. Cyclosporine A: clinical experience and therapeutic drug monitoring. Ther Drug Monit 1995; 17(6): 631–7

    Article  PubMed  CAS  Google Scholar 

  15. Kerman RH, Kimball PM, Lindholm A, et al. Immune risk factors: impact on the incidence and diagnosis of rejection. Transplant Proc 1993; 25 (4 Suppl. 3): 23–5

    PubMed  CAS  Google Scholar 

  16. Zheng J, Sambol NC, Zimmerman J, et al. Population pharmacokinetics (PK) of sirolimus [abstract]. Clin Pharmacol Ther 1996; 59Suppl. 2: S150

    Article  Google Scholar 

  17. Christians U, Jacobsen W, Benet LZ, et al. Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin Pharmacokinet 2002; 41(11): 813–51

    Article  PubMed  CAS  Google Scholar 

  18. Ducharme MP, Warbasse LH, Edwards DJ. Disposition of intravenous and oral cyclosporin after administration with grapefruit juice. Clin Pharmacol Ther 1995; 57(5): 485–91

    Article  PubMed  CAS  Google Scholar 

  19. Mueller EA, Kovarik JM, van Bree BJ, et al. Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion formulation. Pharm Res 1994; 11(2): 301–4

    Article  PubMed  CAS  Google Scholar 

  20. Kolars JC, Awni WM, Merion RM, et al. First-pass metabolism of cyclosporin by the gut. Lancet 1991; 338(8781): 1488–90

    Article  PubMed  CAS  Google Scholar 

  21. Mancinelli LM, Frassetto L, Floren LC, et al. The pharmacokinetics and metabolic disposition of tacrolimus: a comparison across ethnic groups. Clin Pharmacol Ther 2001 Jan; 69(1): 24–31

    Article  PubMed  CAS  Google Scholar 

  22. Rendic S, Di CF. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 1997; 29(1-2): 413–580

    Article  PubMed  CAS  Google Scholar 

  23. Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97(7): 3473–8

    Article  PubMed  CAS  Google Scholar 

  24. Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Ann Rev Pharmacol Toxicol 1999; 39: 1–17

    Article  CAS  Google Scholar 

  25. Lo A, Burckart GJ. P-glycoprotein and drug therapy in organ transplantation. J Clin Pharmacol 1999; 39(10): 995–1005

    Article  PubMed  CAS  Google Scholar 

  26. Christians U, Bleck JS, Lampen A, et al. Are cytochrome P450 3A enzymes in the small intestine responsible for different cyclosporine metabolite patterns in stable male and female renal allograft recipients after co-administration of diltiazem? Transplant Proc 1996; 28(4): 2159–61

    PubMed  CAS  Google Scholar 

  27. Gomez DY, Wacher VJ, Tomlanovich SJ, et al. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 1995; 58(1): 15–9

    Article  PubMed  CAS  Google Scholar 

  28. Gupta SK, Bakran A, Johnson RW, et al. Cyclosporin-erythromycin interaction in renal transplant patients. Br J Clin Pharmacol 1989; 27(4): 475–81

    Article  PubMed  CAS  Google Scholar 

  29. Hebert MF, Roberts JP, Prueksaritanont T, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 1992; 52(5): 453–7

    Article  PubMed  CAS  Google Scholar 

  30. Tuteja S, Alloway RR, Johnson JA, et al. The effect of gut metabolism on tacrolimus bioavailability in renal transplant recipients. Transplantation 2001 May 15; 71(9): 1303–7

    Article  PubMed  CAS  Google Scholar 

  31. Lown KS, Kolars JC, Thummel KE, et al. Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel: lack of prediction by the erythromycin breath test. Drug Metab Dispos 1994; 22(6): 947–55

    PubMed  CAS  Google Scholar 

  32. Gerk PM, Vore M. Regulation of expression of the multidrug resistance-associated protein 2 (MRP2) and its role in drug disposition. J Pharmacol Exp Ther 2002 Aug; 302(2): 407–15

    Article  PubMed  CAS  Google Scholar 

  33. Wahlberg J, Wilczek HE, Fauchald P, et al. Consistent absorption of cyclosporine from a microemulsion formulation assessed in stable renal transplant recipients over a one-year study period. Transplantation 1995; 60(7): 648–52

    Article  PubMed  CAS  Google Scholar 

  34. Kovarik JM, Mueller EA, van Bree BJ, et al. Cyclosporine pharmacokinetics and variability from a microemulsion formulation: a multicenter investigation in kidney transplant patients. Transplantation 1994; 58(6): 658–63

    PubMed  CAS  Google Scholar 

  35. Kovarik JM, Mueller EA, van Bree BJ, et al. Reduced inter- and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J Pharm Sci 1994; 83(3): 444–6

    Article  PubMed  CAS  Google Scholar 

  36. d’Uscio CH, Aweeka FT, Prueksaritanont T, et al. Immunopharmacodynamic studies of cyclosporine in patients awaiting renal transplantation. J Clin Pharmacol 1995; 35(10): 967–73

    PubMed  Google Scholar 

  37. Yoshimura N, Kahan BD. Pharmacodynamic assessment of the in vivo cyclosporine effect on interleukin-2 production by lymphocytes in kidney transplant recipients. Transplantation 1985; 40(6): 661–6

    Article  PubMed  CAS  Google Scholar 

  38. Awni WM. Pharmacodynamic monitoring of cyclosporin. Clin Pharmacokinet 1992; 23(6): 428–48

    Article  PubMed  CAS  Google Scholar 

  39. Hirano T, Oka K, Takeuchi H, et al. Immunosuppressant pharmacodynamics on lymphocytes from healthy subjects and patients with chronic renal failure, nephrosis, and psoriasis: possible implications for individual therapeutic efficacy. Clin Pharmacol Ther 1997; 62(6): 652–64

    Article  PubMed  CAS  Google Scholar 

  40. Simpson MA, Young-Fadok TM, Madras PN, et al. Sequential interleukin 2 and interleukin 2 receptor levels distinguish rejection from cyclosporine toxicity in liver allograft recipients. Arch Surg 1991; 126(6): 717–9

    Article  PubMed  CAS  Google Scholar 

  41. Phillips KA, Veenstra DL, Oren E, et al. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 2001 Nov 14; 286(18): 2270–9

    Article  PubMed  CAS  Google Scholar 

  42. Lennard L, van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther 1989; 46(2): 149–54

    Article  PubMed  CAS  Google Scholar 

  43. Bertilsson L, Dahl ML, Tybring G. Pharmacogenetics of antidepressants: clinical aspects. Acta Psychiatr Scand Suppl 1997; 391: 14–21

    Article  PubMed  CAS  Google Scholar 

  44. Evans DA, Mahgoub A, Sloan TP, et al. A family and population study of the genetic polymorphism of debrisoquine oxidation in a white British population. J Med Genet 1980; 17(2): 102–5

    Article  PubMed  CAS  Google Scholar 

  45. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286(5439): 487–91

    Article  PubMed  CAS  Google Scholar 

  46. Kirschner BS. Safety of azathioprine and 6-mercaptopurine in pediatric patients with inflammatory bowel disease. Gastroenterology 1998; 115(4): 813–21

    Article  PubMed  CAS  Google Scholar 

  47. Connell WR, Kamm MA, Ritchie JK, et al. Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. Gut 1993; 34(8): 1081–5

    Article  PubMed  CAS  Google Scholar 

  48. Present DH, Meltzer SJ, Krumholz MP, et al. 6-Mercaptopurine in the management of inflammatory bowel disease: short- and long-term toxicity. Ann Intern Med 1989; 111(8): 641–9

    PubMed  CAS  Google Scholar 

  49. Thervet E, Anglicheau D, Toledano N, et al. Long-term results of TMPT activity monitoring in azathioprine-treated renal allograft recipients. J Am Soc Nephrol 2001 Jan; 12(1): 170–6

    PubMed  CAS  Google Scholar 

  50. Soria-Royer C, Legendre C, Mircheva J, et al. Thiopurine-methyl-transferase activity to assess azathioprine myelotoxicity in renal transplant recipients. Lancet 1993; 341(8860): 1593–4

    Article  PubMed  CAS  Google Scholar 

  51. Relling MV, Rubnitz JE, Rivera GK, et al. High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet 1999; 354(9172): 34–9

    Article  PubMed  CAS  Google Scholar 

  52. Chocair PR, Duley JA, Simmonds HA, et al. The importance of thiopurine methyltransferase activity for the use of azathioprine in transplant recipients. Transplantation 1992; 53(5): 1051–6

    Article  PubMed  CAS  Google Scholar 

  53. Yates CR, Krynetski EY, Loennechen T, et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997; 126(8): 608–14

    PubMed  CAS  Google Scholar 

  54. Weinshilboum RM, Otterness DM, Szumlanski CL. Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol 1999; 39: 19–52

    Article  PubMed  CAS  Google Scholar 

  55. Steimer W, Potter JM. Pharmacogenetic screening and therapeutic drugs. Clin Chim Acta 2002; 315(1-2): 137–55

    Article  PubMed  CAS  Google Scholar 

  56. Schwab M, Schaffeler E, Marx C, et al. Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: impact of thiopurine S-methyltransferase polymorphism. Pharmacogenetics 2002; 12(6): 429–36

    Article  PubMed  CAS  Google Scholar 

  57. Evans WE. Thiopurine S-methyltransferase deficiency: a genetic polymorphism that affects a small number of drugs in a big way. Pharmacogenetics 2002; 12: 421–3

    Article  PubMed  CAS  Google Scholar 

  58. Weinshillboum R. Inheritance and drug response. New Engl J Med 2003; 348(6): 529–37

    Article  Google Scholar 

  59. Evans WE, McLeod HL. Pharmacogenomics: drug disposition, drug targets, and side effects. New Engl J Med 2003; 348(6): 538–49

    Article  PubMed  CAS  Google Scholar 

  60. Stronceck D, Procter J, Johnson J. Drug-induced hemolysis: cefotetan-dependent hemolytic anemia mimicking an acute intravascular immune transfusion reaction. Am J Hematol 2000; 64: 67–70

    Article  Google Scholar 

  61. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270(1): 414–23

    PubMed  CAS  Google Scholar 

  62. Domanski TL, Finta C, Halpert JR, et al. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 2001; 59(2): 386–92

    PubMed  CAS  Google Scholar 

  63. Finta C, Zaphiropoulos PG. The human cytochrome P450 3A locus: gene evolution by capture of downstream exons. Gene 2000; 260(1-2): 13–23

    Article  PubMed  CAS  Google Scholar 

  64. Karanam BV, Vincent SH, Newton DJ, et al. FK 506 metabolism in human liver microsomes: investigation of the involvement of cytochrome P450 isozymes other than CYP3A4. Drug Metab Dispos 1994; 22(5): 811–4

    PubMed  CAS  Google Scholar 

  65. Gellner K, Eiselt R, Hustert E, et al. Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics 2001; 11(2): 111–21

    Article  PubMed  CAS  Google Scholar 

  66. Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 1996; 60(1): 14–24

    Article  PubMed  CAS  Google Scholar 

  67. Watkins PB. Cyclosporine and liver transplantation: will the midazolam test make blood level monitoring obsolete? Hepatology 1995; 22(3): 994–6

    PubMed  CAS  Google Scholar 

  68. Koch I, Weil R, Wolbold R, et al. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos 2002; 30(10): 1108–14

    Article  PubMed  CAS  Google Scholar 

  69. Ball SE, Scatina J, Kao J, et al. Population distribution and effects on drug metabolism of a genetic variant in the 5′promoter region of CYP3A4. Clin Pharmacol Ther 1999; 66(3): 288–94

    Article  PubMed  CAS  Google Scholar 

  70. Felix CA, Walker AH, Lange BJ, et al. Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci U S A 1998; 95(22): 13176–81

    Article  PubMed  CAS  Google Scholar 

  71. Rebbeck TR, Jaffe JM, Walker AH, et al. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 1998; 90(16): 1225–9

    Article  PubMed  CAS  Google Scholar 

  72. Sata F, Sapone A, Elizondo G, et al. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Ther 2000 Jan; 67(1): 48–56

    Article  PubMed  CAS  Google Scholar 

  73. Garcia-Martin E, Martinez C, Pizarro RM, et al. CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity. Clin Pharmacol Ther 2002 Mar; 71(3): 196–204

    Article  PubMed  CAS  Google Scholar 

  74. Westlind A, Lofberg L, Tindberg N, et al. Interindividual differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5′-up-stream regulatory region. Biochem Biophys Res Commun 1999; 259(1): 201–5

    Article  PubMed  CAS  Google Scholar 

  75. Eiselt R, Domanski TL, Zibat A, et al. Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics 2001 Jul; 11(5): 447–58

    Article  PubMed  CAS  Google Scholar 

  76. Wandel C, Witte JS, Hall JM, et al. CYP3A activity in African American and European American men: population differences and functional effect of the CYP3A4*1B5′-promoter region polymorphism. Clin Pharmacol Ther 2000; 68(1): 82–91

    Article  PubMed  CAS  Google Scholar 

  77. Rivory LP, Qin H, Clarke SJ, et al. Frequency of cytochrome P450 3A4 variant genotype in transplant population and lack of association with cyclosporin clearance. Eur J Clin Pharmacol 2000 Aug; 56(5): 395–8

    Article  PubMed  CAS  Google Scholar 

  78. von Ahsen N, Richter M, Grupp C, et al. No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin Chem 2001; 47(6): 1048–52

    Google Scholar 

  79. Lamba JK, Lin YS, Thummel K, et al. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 2002 Mar; 12(2): 121–32

    Article  PubMed  CAS  Google Scholar 

  80. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27(4): 383–91

    Article  PubMed  CAS  Google Scholar 

  81. Lin YS, Dowling AL, Quigley SD, et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002 Jul; 62(1): 162–72

    Article  PubMed  CAS  Google Scholar 

  82. MacPhee IA, Fredericks S, Tai T, et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation 2002 Dec15; 74(11): 1486–9

    Article  PubMed  CAS  Google Scholar 

  83. Paulussen A, Lavrijsen K, Bohets H, et al. Two linked mutations in transcriptional regulatory elements of the CYP3A5 gene constitute the major genetic determinant of polymorphic activity in humans. Pharmacogenetics 2000 Jul; 10(5): 415–24

    Article  PubMed  CAS  Google Scholar 

  84. Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11(9): 773–9

    Article  PubMed  CAS  Google Scholar 

  85. van Schaik RH, van der Heiden IP, van den Anker JN, et al. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 2022; 48(10): 1668–71

    Google Scholar 

  86. Kahan BD, Shaw LM, Holt D, et al. Consensus document: Hawk’s Cay meeting on therapeutic drug monitoring of cyclosporine. Clin Chem 1990; 36 (8 Pt 1): 1510–6

    PubMed  CAS  Google Scholar 

  87. Aoyama T, Yamano S, Waxman DJ, et al. Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem 1989; 264(18): 10388–95

    PubMed  CAS  Google Scholar 

  88. Johnston A, Chusney G, Schutz E, et al. Monitoring cyclosporin in blood: between-assay differences at trough and 2 hours post-dose (C2). Ther Drug Monit 2003; 25(2): 167–73

    Article  PubMed  CAS  Google Scholar 

  89. Steimer W. Performance and specificity of monoclonal immunoassays for cyclosporine monitoring: how specific is specific? Clin Chem 1999; 45(3): 371–81

    PubMed  CAS  Google Scholar 

  90. Morris RG, Ilett KF, Tett SE, et al. Cyclosporin monitoring in Australasia: 2002 update of consensus guidelines. Ther Drug Monit 2002; 24(6): 677–88

    Article  PubMed  CAS  Google Scholar 

  91. Zaman GJ, Flens MJ, van Leusden MR, et al. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci U S A 1994; 91(19): 8822–6

    Article  PubMed  CAS  Google Scholar 

  92. Ambudkar SV, Dey S, Hrycyna CA, et al. Biochemical, cellular, and pharmacological aspects of the multidrug trans-porter. Annu Rev Pharmacol Toxicol 1999; 39: 361–98

    Article  PubMed  CAS  Google Scholar 

  93. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002 Jan; 2(1): 48–58

    Article  PubMed  CAS  Google Scholar 

  94. Llorente L, Richaud-Patin Y, Diaz-Borjon A, et al. Multidrug resistance-1 (MDR-1) in rheumatic autoimmune disorders: part I. Increased P-glycoprotein activity in lymphocytes from rheumatoid arthritis patients might influence disease outcome. Joint Bone Spine 2000 Jan; 67(1): 30–9

    PubMed  CAS  Google Scholar 

  95. Farrell RJ, Murphy A, Long A, et al. High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy. Gastroenterology 2000 Feb; 118(2): 279–88

    Article  PubMed  CAS  Google Scholar 

  96. Siddiqui A, Kerb R, Weale ME, et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 2003 Apr 10; 348(15): 1442–8

    Article  PubMed  CAS  Google Scholar 

  97. Hebert MF. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv Drug Deliv Rev 1997; 27(2-3): 201–14

    Article  PubMed  CAS  Google Scholar 

  98. Kwei GY, Alvaro RF, Chen Q, et al. Disposition of ivermectin and cyclosporin A in CF-1 mice deficient in mdr1a P-glycoprotein. Drug Metab Dispos 1999; 27(5): 581–7

    PubMed  CAS  Google Scholar 

  99. Wacher VJ, Silverman JA, Wong S, et al. Sirolimus oral absorption in rats is increased by ketoconazole but is not affected by D-alpha-tocopheryl poly (ethylene glycol 1000) succinate. J Pharmacol Exp Ther 2002; 303(1): 308–13

    Article  PubMed  CAS  Google Scholar 

  100. Paine MF, Leung LY, Lim HK, et al. Identification of a novel route of extraction of sirolimus in human small intestine: roles of metabolism and secretion. J Pharmacol Exp Ther 2002; 301(1): 174–86

    Article  PubMed  CAS  Google Scholar 

  101. Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97(11): 2517–24

    Article  PubMed  CAS  Google Scholar 

  102. Kim RB, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70(2): 189–99

    Article  PubMed  CAS  Google Scholar 

  103. Kim BR. MDR1 single nucleotide polymorphisms: multiplicity of haplotypes and functional consequences. Pharmacogenetics 2002; 12: 425–7

    Article  PubMed  CAS  Google Scholar 

  104. Tang K, Ngoi SM, Gwee PC, et al. Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics 2002; 12(6): 437–50

    Article  PubMed  CAS  Google Scholar 

  105. Anglicheau D, Verstuyft C, Laurent-Puig P, et al. Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients. J Am Soc Nephrol 2003; 14: 1889

    Article  PubMed  CAS  Google Scholar 

  106. Hashimoto Y, Sasa H, Shimomura M, et al. Effects of intestinal and hepatic metabolism on the bioavailability of tacrolimus in rats. Pharm. Res 1998; 15(10): 1609–13

    Article  PubMed  CAS  Google Scholar 

  107. Hashida T, Masuda S, Uemoto S, et al. Pharmacokinetic and prognostic significance of intestinal MDR1 expression in recipients of living-donor liver transplantation. Clin Pharmacol Ther 2001; 69(5): 308–16

    Article  PubMed  CAS  Google Scholar 

  108. Masuda S, Uemoto S, Hashida T, et al. Effect of intestinal P-glycoprotein on daily tacrolimus trough level in a living-donor small bowel recipient. Clin Pharmacol Ther 2000 Jul; 68(1): 98–103

    Article  PubMed  CAS  Google Scholar 

  109. Kaplan B, Lown K, Craig R, et al. Low bioavailability of cyclosporine microemulsion and tacrolimus in a small bowel transplant recipient: possible relationship to intestinal P-glycoprotein activity. Transplantation 1999; 67(2): 333–5

    Article  PubMed  CAS  Google Scholar 

  110. Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 1997; 62(3): 248–60

    Article  PubMed  CAS  Google Scholar 

  111. Min DI, Ellingrod VL. C3435T mutation in exon 26 of the human MDR1 gene and cyclosporine pharmacokinetics in healthy subjects. Ther Drug Monit 2002 Jun; 24(3): 400–4

    Article  PubMed  CAS  Google Scholar 

  112. Yokogawa K, Takahashi M, Tamai I, et al. P-glycoprotein-dependent disposition kinetics of tacrolimus: studies in mdr1a knockout mice. Pharm Res 1999; 16(8): 1213–8

    Article  PubMed  CAS  Google Scholar 

  113. Sonneveld P, Durie BG, Lokhorst HM, et al. Modulation of multidrug-resistant multiple myeloma by cyclosporin: the Leukaemia Group of the EORTC and the HOVON. Lancet 1992; 340(8814): 255–9

    Article  PubMed  CAS  Google Scholar 

  114. Hauser IA, Koziolek M, Hopfer U, et al. Therapeutic concentrations of cyclosporine A, but not FK506, increase P-glycoprotein expression in endothelial and renal tubule cells. Kidney Int 1998; 54(4): 1139–49

    Article  PubMed  CAS  Google Scholar 

  115. Laplante A, Demeule M, Murphy GF, et al. Interaction of immunosuppressive agents rapamycin and its analogue SDZ-RAD with endothelial P-gp. Transplant Proc 2002 Dec; 34(8): 3393–5

    Article  PubMed  CAS  Google Scholar 

  116. Jette L, Beaulieu E, Leclerc JM, et al. Cyclosporin A treatment induces over-expression of P-glycoprotein in the kidney and other tissues. Am J Physiol 1996; 270 (5 Pt 2): F756–65

    PubMed  CAS  Google Scholar 

  117. Watkins PB. The barrier function of CYP3A4 and P-glycoprotein in the small bowel. Adv Drug Deliv Rev 1997; 27(2-3): 161–70

    Article  PubMed  CAS  Google Scholar 

  118. Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet 2001; 40(3): 159–68

    Article  PubMed  CAS  Google Scholar 

  119. Hall SD, Thummel KE, Watkins PB, et al. Molecular and physical mechanisms of first-pass extraction. Drug Metab Dispos 1999; 27(2): 161–6

    PubMed  CAS  Google Scholar 

  120. Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 1995; 13(3): 129–34

    Article  PubMed  CAS  Google Scholar 

  121. Cummins CL, Jacobsen W, Benet LZ. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 2002 Mar; 300(3): 1036–45

    Article  PubMed  CAS  Google Scholar 

  122. Lin JH, Chiba M, Baillie TA. Is the role of the small intestine in first pass metabolism overemphazised? Pharmacol Rev 1999; 51: 135–58

    PubMed  CAS  Google Scholar 

  123. Goto M, Masuda S, Saito H, et al. C3435T polymorphism in the MDR1 gene affects the enterocyte expression level of CYP3 A4 rather than Pgp in recipients of living-donor liver transplantation. Pharmacogenetics 2002 Aug; 12(6): 451–7

    Article  PubMed  CAS  Google Scholar 

  124. Schuetz EG, Umbenhauer DR, Yasuda K, et al. Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes. Mol Pharmacol 2000 Jan; 57(1): 188–97

    PubMed  CAS  Google Scholar 

  125. Fellay J, Marzolini C, Meaden ER, et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 2002; 359(9300): 30–6

    Article  PubMed  CAS  Google Scholar 

  126. Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998; 101(2): 289–94

    Article  PubMed  CAS  Google Scholar 

  127. Jones K, Hoggard PG, Sales SD, et al. Differences in the intracellular accumulation of HIV protease inhibitors in vitro and the effect of active transport. AIDS 2001; 15(6): 675–81

    Article  PubMed  CAS  Google Scholar 

  128. Yamauchi A, Ieri I, Kataoka Y, et al. Neurotoxicity induced by tacrolimus after liver transplatation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. Transplantation 2002; 74(4): 571–8

    Article  PubMed  CAS  Google Scholar 

  129. Drach J, Gsur A, Hamilton G, et al. Involvement of P-glycoprotein in the transmembrane transport of interleukin-2 (IL-2), IL-4, and interferon-gamma in normal human T lymphocytes. Blood 1996; 88(5): 1747–54

    PubMed  CAS  Google Scholar 

  130. Randolph GJ, Beaulieu S, Pope M, et al. A physiologic function for p-glycoprotein (MDR-1) during the migration of dendritic cells from skin via afferent lymphatic vessels. Proc Natl Acad Sci U S A 1998; 95(12): 6924–9

    Article  PubMed  CAS  Google Scholar 

  131. Nakamoto T, Hase I, Imaoka S, et al. Quantitative RT-PCR for CYP3A4 mRNA in human peripheral lymphocytes: induction of CYP3A4 in lymphocytes and in liver by rifampicin. Pharmacogenetics 2000; 10(6): 571–5

    Article  PubMed  CAS  Google Scholar 

  132. Andrews PA, Sen M, Chang RW. Racial variation in dosage requirements of tacrolimus. Lancet 1996; 348(9039): 1446

    Article  PubMed  CAS  Google Scholar 

  133. Neylan JF. Racial differences in renal transplantation after immunosuppression with tacrolimus versus cyclosporine. FK506 Kidney Transplant Study Group. Transplantation 1998; 65(4): 515–23

    Article  PubMed  CAS  Google Scholar 

  134. Felipe CR, Silva HT, Machado PG, et al. The impact of ethnic miscegenation on tacrolimus clinical pharmacokinetics and therapeutic drug monitoring. Clin Transplant 2002 Aug; 16(4): 262–72

    Article  PubMed  Google Scholar 

  135. Lindholm A, Welsh M, Alton C, et al. Demographic factors influencing cyclosporine pharmacokinetic parameters in patients with uremia: racial differences in bioavailability. Clin Pharmacol Ther 1992; 52(4): 359–71

    Article  PubMed  CAS  Google Scholar 

  136. Min DI, Lee M, Ku YM, et al. Gender-dependent racial difference in disposition of cyclosporine among healthy African American and white volunteers. Clin Pharmacol Ther 2000 Nov; 68(5): 478–86

    Article  PubMed  CAS  Google Scholar 

  137. Pollak R, Wong RL, Chang CT. Cyclosporine bioavailability of Neoral and Sandimmune in white and black de novo renal transplant recipients: Neoral Study Group. Ther Drug Monit 1999; 21(6): 661–3

    Article  PubMed  CAS  Google Scholar 

  138. Stein CM, Sadeque AJ, Murray JJ, et al. Cyclosporine pharmacokinetics and pharmacodynamics in African American and white subjects. Clin Pharmacol Ther 2001 May; 69(5): 317–23

    Article  PubMed  CAS  Google Scholar 

  139. Vasquez EM, Benedetti E, Pollak R. Ethnic differences in clinical response to corticosteroid treatment of acute renal allograft rejection. Transplantation 2001 Jan 27; 71(2): 229–33

    Article  PubMed  CAS  Google Scholar 

  140. Shaw LM, Korecka M, Aradhye S, et al. Mycophenolic acid area under the curve values in African American and Caucasian renal transplant patients are comparable. J Clin Pharmacol 2000 Jun; 40(6): 624–33

    Article  PubMed  CAS  Google Scholar 

  141. Xie HG, Kim RB, Wood AJ, et al. Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol 2001; 41: 815–50

    Article  PubMed  CAS  Google Scholar 

  142. McLeod HL. Pharmacogenetics: more than skin deep. Nat Genet 2001 Nov; 29(3): 247–8

    Article  PubMed  CAS  Google Scholar 

  143. Wood AJ. Racial differences in the response to drugs: pointers to genetic differences. N Engl J Med 2001 May 3; 344(18): 1394–6

    Article  PubMed  CAS  Google Scholar 

  144. Exner DV, Dries DL, Domanski MJ, et al. Lesser response to angiotensin-converting-enzyme inhibitor therapy in black as compared with white patients with left ventricular dysfunction. N Engl J Med 2001 May 3; 344(18): 1351–7

    Article  PubMed  CAS  Google Scholar 

  145. Zhou HH, Koshakji RP, Silberstein DJ, et al. Altered sensitivity to and clearance of propranolol in men of Chinese descent as compared with American whites. N Engl J Med 1989; 320(9): 565–70

    Article  PubMed  CAS  Google Scholar 

  146. Yancy CW, Fowler MB, Colucci WS, et al. Race and the response to adrenergic blockade with carvedilol in patients with chronic heart failure. N Engl J Med 2001 May 3; 344(18): 1358–65

    Article  PubMed  CAS  Google Scholar 

  147. McLeod HL. Race and responsiveness to drugs for heart failure. N Engl J Med 2001 Sep 6; 345(10): 766–7

    Article  PubMed  CAS  Google Scholar 

  148. Genes, drugs and race [editorial]. Nat Genet 2001 Nov; 29(3): 239–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No external funding was used to assist in the preparation of this manuscript. Iain MacPhee has received research funding and travel bursaries from several of the pharmaceutical companies that manufacture immunosuppressive drugs (Fujisawa, Novartis, Roche, and Wyeth).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain A. M. MacPhee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fredericks, S., Holt, D.W. & MacPhee, I.A.M. The Pharmacogenetics of Immunosuppression for Organ Transplantation. Am J Pharmacogenomics 3, 291–301 (2003). https://doi.org/10.2165/00129785-200303050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200303050-00001

Keywords

Navigation