Skip to main content

Advertisement

Log in

The Effects of Sodium Bicarbonate Ingestion on Exercise Performance

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Costill DL, Verstappen F, Kuipers H, et al. Acid-base balance during repeated bouts of exercise: influence of HCO3. Int J Sports Med 1988; 5: 228–31

    Article  Google Scholar 

  2. Edington DW, Edgerton VR. The biology of physical activity. Boston: Houghton Mifflin, 1976

    Google Scholar 

  3. Osnes J-B, Hermansen L. Acid-base balance after maximal exercise of short duration. J Appl Physiol 1972; 32 (1): 59–63

    PubMed  CAS  Google Scholar 

  4. Mainwood GW, Cechetto D. The effect of bicarbonate concentration on fatigue and recovery in isolated rat diaphragm muscle. Can J Physiol Pharmacol 1980; 58: 624–32

    Article  PubMed  CAS  Google Scholar 

  5. Johnson WR, Black DH. Comparison of effects of certain blood alkalinizer and glucose upon competitive endurance. J Appl Physiol 1953; 5: 577–8

    PubMed  CAS  Google Scholar 

  6. George KP, MacLaren DPM. The effects of induced alkalosis and acidosis on endurance running at an intensity corresponding to 4mM blood lactate. Ergonomics 1988; 31: 1639–45

    Article  PubMed  CAS  Google Scholar 

  7. Horswill CA, Costill DL, et al. Influence of sodium bicarbonate on sprint performance: relationship to dosage. Med Sci Sports Exerc 1988; 20: 556–69

    Google Scholar 

  8. Inbar O, Rotstein A, Jacobs I, et al. The effects of alkaline treatment on short-term maximal exercise. J Sports Sci 1983; 1: 95–104

    Article  Google Scholar 

  9. Jones NL, Sutton JR, Taylor R, et al. Effect of pH on cardiorespiratory and metabolic responses to exercise. J Appl Physiol 1977; 43: 959–64

    PubMed  CAS  Google Scholar 

  10. Katz A, Costill DL, King DS, et al. Maximal exercise tolerance after induced alkalosis. Int J Sports Med 1984; 5: 107–10

    Article  PubMed  CAS  Google Scholar 

  11. Kindermann W, Keul J, Huber G. Physical exercise after induced alkalosis (bicarbonate or tris buffer). Eur J Appl Physiol 1977; 37: 197–204

    Article  CAS  Google Scholar 

  12. Linderman J, Kirk L, Musselman J, et al. The effects of sodium bicarbonate and pyridoxine-alpha-ketoglutarate on short-term maximal exercise. J Sports Sci 1992; 10: 243–53

    Article  PubMed  CAS  Google Scholar 

  13. McCartney N, Heigenhauser GJF, Jones NL. Effect of pH on maximal power output and fatigue during short-term dynamic exercise. J Appl Physiol 1983; 55: 225–9

    PubMed  CAS  Google Scholar 

  14. McKenzie DC, Coutts KD, Stirling DR, et al. Maximal work production following two levels of induced metabolic alkalosis. J Sports Sci 1986; 4: 35–8

    Article  PubMed  CAS  Google Scholar 

  15. Parry-Billings M, MacLaren DPM. The effect of sodium bicarbonate and sodium citrate ingestion on anaerobic power during intermittent exercise. Eur J Appl Physiol 1986; 55: 524–9

    Article  CAS  Google Scholar 

  16. Rupp JC, Bartels RL, Zuelzer W, et al. Effect of sodium bicarbonate ingestion on blood and muscle pH and exercise performance [abstract]. Med Sci Sports Exerc 1983; 15: 115

    Google Scholar 

  17. Sutton JR, Jones NL, Toews CJ. Effect of pH on muscle glycolysis during exercise. Clin Sci 1981; 61: 331–8

    PubMed  CAS  Google Scholar 

  18. Webster, MJ, Webster MN, Crawford RE, et al. Effect of bicarbonate loading on exhaustive resistance exercise performance. Med Sci Sports Exerc 1993; 25: 960–5

    PubMed  CAS  Google Scholar 

  19. Wijnen S, Verstappen F, Kuipers H. The influence of intravenous NaHCO3-administration on interval exercise: acid-base balance and endurance. Int J Sports Med 1984; 5 (Suppl.): 130–2

    Article  Google Scholar 

  20. Wilkes D, Gledhill N, Smyth R. Effect of induced metabolic alkalosis on 800-m racing time. Med Sci Sports Exerc 1983; 15: 277–80

    Article  PubMed  CAS  Google Scholar 

  21. Brooks GA. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 1985; 17: 22–31

    PubMed  CAS  Google Scholar 

  22. Fuchs F, Reddy Y, Briggs FN. The interactions of cations with the binding site of troponin. Biochem Biophys Acta 1969; 221: 407–9

    Google Scholar 

  23. Chase PB, Kushmerick M. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophys J 1988; 53: 935–46

    Article  PubMed  CAS  Google Scholar 

  24. Trivedi B, Danforth WH. Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 1966; 10: 4110–4

    Google Scholar 

  25. Hill AV, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med 1923; 16: 135–71

    CAS  Google Scholar 

  26. Hill AV. The influence of external medium on the internal pH of muscle. Proc R Soc Lond B Biol Sci 1955; 144: 1–22

    Article  PubMed  CAS  Google Scholar 

  27. Roth DA, Brooks GA. Lactate transport is mediated by a membrane-bound carrier in rat skeletal muscle sarcolemmal vesicles. Arch Biochem Biophys 1990; 279: 377–85

    Article  PubMed  CAS  Google Scholar 

  28. Linderman J, Fahey TD. Sodium bicarbonate ingestion and exercise performance: an update. Sports Med 1991; 11: 71–7

    Article  PubMed  CAS  Google Scholar 

  29. Mainwood GW, Worsley-Brown P. The effects of extracellular pH and buffer concentration on the efflux of lactate from frog sartorius muscle. J Physiol 1975; 250: 1–22

    PubMed  CAS  Google Scholar 

  30. Roth DA, Brooks GA. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles. Arch Biochem Biophys 1990; 279: 386–94

    Article  PubMed  CAS  Google Scholar 

  31. Linderman JK, Fahey TD, Lauten G, et al. A comparison of blood gases and acid-base measurements in arterial, arterialized-venous, and venous blood during short-term maximal exercise. Eur J Appl Physiol 1990; 61: 294–301

    Article  CAS  Google Scholar 

  32. Sharp RL, Costill DL, Fink WJ, King DS. Effects of eight weeks of bicycle ergometer sprint training on human muscle buffer capacity. Int J Sports Med 1986; 7: 13–7

    Article  PubMed  CAS  Google Scholar 

  33. Gledhill N. Bicarbonate ingestion and anaerobic performance. Sports Med 1984; 1: 177–80

    Article  PubMed  CAS  Google Scholar 

  34. Newson M, editor. United States Olympic Committee Drug Education Handbook. Colorado Springs: USOC, 1989–1992: 4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linderman, J.K., Gosselink, K.L. The Effects of Sodium Bicarbonate Ingestion on Exercise Performance. Sports Med. 18, 75–80 (1994). https://doi.org/10.2165/00007256-199418020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199418020-00001

Keywords

Navigation