Skip to main content
Log in

Caffeine and Endurance Performance

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

The belief among athletes that caffeine is an ergogenic aid is common, and several governing bodies of sport have barred use of the drug during competition. At the cellular level, caffeine has been implicated to affect the translocation of calcium in muscle, promote an increase in cellular levels of cyclic AMP and cause a blockade of adenosine receptors in the central nervous system. The general systemic effect of caffeine is to cause central nervous system arousal, mobilisation of free fatty acids and other metabolites, and possibly enhance the contractile status of muscle.

At present, the scientific community remains divided as to whether caffeine ingestion will indeed produce an ergogenic effect upon sport performance. Some evidence suggests that caffeine may improve performance in events relying upon strength and power; however, the lack of in vivo research in humans makes it difficult to form firm conclusions. In addition, reports concerning caffeine’s effect on V̇O2 max and performance during incremental exercise are not in agreement.

On the other hand, recent studies suggest that caffeine might indeed have ergogenic potential in endurance events (e.g. marathon running). It is hypothesised that the mechanism behind these findings is related to the increased availability of free fatty acids for muscle metabolism which has a glycogen-sparing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alles, G. and Feigen, G.: The influence of benzedrine on work decrement and patellar reflex. American Journal of Physiology 126: 392–400 (1942).

    Google Scholar 

  • Armanda, J.; Mazzarelli, M.; James, L.; Sergysets, M. and Milic-Emili, J.: Effect of caffeine on control of breathing. (Abstract.) Pediatric Research 11: 530 (1977).

    Article  Google Scholar 

  • Asmussen, E. and Boje, O.: The effect of alcohol and some drugs on the capacity for work. Acta Physiologica Scandinavica 15: 109–113 (1948).

    Article  PubMed  CAS  Google Scholar 

  • Axelrod, J. and Reichenthal, J.: The fate of caffeine in man and a method for its estimation in biological material. Journal of Pharmacology and Experimental Therapeutics 107: 519–523 (1953).

    PubMed  CAS  Google Scholar 

  • Bellet, S.; Kershbaum, A. and Finck, E.M.: Response of free fatty acids to coffee and caffeine. Metabolism 17: 702–707 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Berthet, J.; Sutherland, E. and Rail, T.W.: The assay of glucagon and epinephrine with use of liver homogenates. Journal of Biological Chemistry 229: 351–354 (1957).

    PubMed  CAS  Google Scholar 

  • Bianchi, C.P. and Narayan, S.: Muscle fatigue and the role of transverse tubules. Science 215: 295–296 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Blyth, C.S.; Allen, E.M. and Lovingood, B.W.: Effects of amphetamine (dexedrine) and caffeine on subjects exposed to heat and exercise stress. Research Quarterly 31: 553–559 (1960).

    Google Scholar 

  • Bugyi, G.J.: The effects of moderate doses of caffeine on fatigue parameters of the forearm flexor muscles. American Corrective Therapy Journal 34(3): 49–53 (1980).

    PubMed  CAS  Google Scholar 

  • Burg, A.: Physiological disposition of caffeine. Drug Metabolism Reviews 4: 199–228 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Butcher, R.W. and Sutherland, E.: Adenosine 3’5’ phosphate in biological materials. Journal of Biological Chemistry 237: 1244–1250 (1962).

    PubMed  CAS  Google Scholar 

  • Butcher, R.W.; Ho, R.J.; Meng, H.C. and Sutherland, E.W.: Adenosine 3’5’-monophosphate in biological materials. II. The measurement of adenosine 3’5’-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. Journal of Biological Chemistry 240: 4515–4523 (1965).

    PubMed  CAS  Google Scholar 

  • Costill, D.L.; Dalsky, G.P. and Fink, W.J.: Effects of caffeine ingestion on metabolism and exercise performance. Medicine and Science in Sports 10: 155–158 (1978).

    PubMed  CAS  Google Scholar 

  • Curatolo, P.W. and Robertson, D.: The health consequences of caffeine. Annals of Internal Medicine 98: 641–653 (1983).

    PubMed  CAS  Google Scholar 

  • Daly, J.W.; Bruns, R.F. and Snyder, S.H.: Adenosine receptors in the central nervous system: Relationship to the central actions of methylxanthines. Life Sciences 28: 2083–2097 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Davi, M.J.; Korrangattu, S.; Simmons, K.; Simmons, F.; Seshia, M. and Rigatto, H.: Physiologic changes induced by theophylline in treatment of apnea in preterm infants. Fetal Neonatal Medicine 92: 91–95 (1978).

    CAS  Google Scholar 

  • Davis, I.: In vitro regulation of adipose tissue. Nature 218: 349–352 (1968).

    Article  Google Scholar 

  • Essig, D.; Costill, D.L. and Von Handel, P.J.: Effects of caffeine ingestion on utilization of muscle glycogen and lipid during the ergometer cycling. International Journal of Sports Medicine 1: 86–90 (1980).

    Article  CAS  Google Scholar 

  • Essig, D.A. and White, T.P.: Effects of caffeine on glycogen and triglyceride concentration in the roleus and plantaris muscles of the exercising rat. (Abstract.) Federation Proceedings (Suppl.): 513 (1981).

  • Fabiato, A. and Fabiato, F.: Dependence of the contractile activation of skinned cardiac cells on the sarcomere length. Nature (London) 256: 54–56 (1975).

    Article  CAS  Google Scholar 

  • Foltz, E.; Ivy, A. and Barborka, C.: The use of double work periods in the study of fatigue and the influence of caffeine on recovery. American Journal of Physiology 136: 79–86 (1942).

    CAS  Google Scholar 

  • Foltz, E.; Ivy, A. and Barborka, C.: The influence of amphetamine (Benzedrine) sulfate, D-desoryephedrine hydrochloride (Pervitan), and caffeine upon work output and recovery when rapidly exhausting work is done by trained subjects. Journal of Laboratory and Clinical Medicine 28: 603–606 (1943).

    CAS  Google Scholar 

  • Ganslen, R.V.; Balke, B.; Nagle, F.J. and Phillips, E.E.: Effects of some tranquilizing, analeptic and vasodilating drugs on physical work capacity and orthostatic tolerance. Aerospace Medicine 35: 630–633 (1964).

    PubMed  CAS  Google Scholar 

  • Goldstein, A.; Kaizer, S. and Warren, R.: Psychotropic effects of caffeine in man. II. Alertness, psychomotor coordination, and mood. Journal of Pharmacology and Experimental Therapeutics 150: 146–151 (1965).

    PubMed  CAS  Google Scholar 

  • Gordon, N.F.; Myburgh, J.L.; Kruger, P.E.; Kempff, P.G.; Cilliers, J.F.; Moolman, J. and Grobler, H.C.: Effects of caffeine ingestion on thermoregulatory and myocardial function during endurance performance. South African Medical Journal 62: 644–647 (1982).

    PubMed  CAS  Google Scholar 

  • Gould, L.; Venkataraman, K.; Goswami, M. and Gomprecht, R.F.: The cardiac effects of coffee. Angiology 24: 455–463 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Grollman, A.: The action of alcohol, caffeine and tobacco on the cardiac output (and its related functions) of normal man. Journal of Pharmacology and Experimental Therapeutics 39: 313–327 (1930).

    CAS  Google Scholar 

  • Haldi, J. and Wynn, W.: Action of drugs on the efficiency of swimmers. Research Quarterly 17: 96–101 (1946).

    PubMed  CAS  Google Scholar 

  • Harper, H.A.; Rodwell, V.W. and Mayes, P.A.: Review of physiological chemistry (Lange Medical, Los Altos 1977).

    Google Scholar 

  • Hemmingsson, P.: Effects of caffeine ingestion on exercise performance at low and high altitudes in cross-country skiers. International Journal of Sports Medicine 3: 234–236 (1982).

    Article  PubMed  Google Scholar 

  • Horst, K.; Wilson, R.J. and Smith, R.G.: The effect of coffee and decaffeinated coffee on oxygen consumption pulse rate and blood pressure. Journal of Pharmacology and Experimental Therapeutics 58: 294–304 (1936).

    Google Scholar 

  • Huddart, H. and Oates, K.: Localization of the intracellular site of caffeine on skeletal muscle. Comparative Biochemistry and Physiology 36: 677–682 (1970).

    Article  CAS  Google Scholar 

  • Ivy, J.L.; Costill, D.L.; Fink, W.J. and Lower, R.W.: Influence of caffeine and carbohydrate feedings on endurance performance. Medicine and Science in Sports 11: 6–11 (1979).

    PubMed  CAS  Google Scholar 

  • Kavaler, F.; Anderson, T. and Fister, V.: Sarcolemmal site of caffeine’s inotropic action on ventricular muscle of the frog. Circulation Research 42: 285–290 (1978).

    CAS  Google Scholar 

  • Lopes, J.M.; Aubier, M.; Jardin, J.; Aranda, J.V. and Macklem, P.T.: Effect of caffeine on skeletal muscle function before and after fatigue. Journal of Applied Physiology 54: 1303–1305 (1983).

    PubMed  CAS  Google Scholar 

  • Luttgau, H.C. and Detliker, H.: The action of caffeine on activation of the contractile mechanism in striated muscle fibers. Journal of Physiology 194: 51–74 (1968).

    PubMed  CAS  Google Scholar 

  • MacCormack, R.A.: The effects of coffee drinking on the cardiovascular system; Experimental and epidemiological research. Preventive Medicine 6: 104–119 (1977).

    Article  Google Scholar 

  • MacIntosh, B.R.; Barbee, R.W. and Stainsby, W.N.: Contractile response to caffeine of rested and fatigued skeletal muscle. Medicine and Science in Sports and Exercise 13: 95 (1981).

    Google Scholar 

  • Margaria, R.; Nghemo, P. and Rovelli, E.: The effect of some drugs on the maximal capacity of athletic performance in man. Internationale Zeitschrift für Angwandte Physiologie einsch-liesslich Arbeitsphysiologie 20: 281–287 (1964).

    CAS  Google Scholar 

  • Perkins, R. and Williams, M.H.: Effect of caffeine upon maximal muscular endurance of females. Medicine and Science in Sports 7: 221–224 (1975).

    PubMed  CAS  Google Scholar 

  • Powers, S.K.: Byrd, R.J.; Tulley, R. and Callender, T.: Effects of caffeine ingestion and metabolism and performance during graded exercise. European Journal of Applied Physiology 50: 301–307 (1983).

    Article  CAS  Google Scholar 

  • Powers, S.K.; Dodd, S.; Woodyard, J. and Mangum, M.: Effects of caffeine on ventilatory and gas exchange kinetics during exercise (submitted for publication, 1985).

  • Rall, T.W.: Central nervous system stimulants; in Gilman et al. (Eds) The Pharmacological Basis of Therapeutics, pp. 592–607 (MacMillan, New York 1980).

    Google Scholar 

  • Ramadoss, C.S.; Uyeda, K. and Johnson, J.M.: Studies on the fatty acid inactivation of phosphofructokinase. Journal of Biological Chemistry 251: 95–107 (1976).

    Google Scholar 

  • Rennie, M.; Winder, W.W. and Halloszy, I.O.: A sparing effect of increased free fatty acids on muscle glycogen content in exercising rats. Biochemical Journal 156: 647–655 (1976).

    PubMed  CAS  Google Scholar 

  • Rivers, W. and Webber, H.: The action of caffeine on the capacity for muscular work. Journal of Physiology 36: 33–47 (1907).

    PubMed  CAS  Google Scholar 

  • Robertson, D.; Frolich, J.C. and Carr, R.K.: Effects of caffeine on plasma renin activity, catecholamines and blood pressure. New England Journal of Medicine 298: 181–186 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Robertson, D.; Wade, D.; Workman, R.; Wooslen, R.L. and Oates, J.A.: Tolerance to the humoral and hemodynamic effects of caffeine in man. Journal of Clinical Investigation 67: 1111–1117 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Robertson, G.; Butcher, R. and Sutherland, E.: Cyclic AMP (Academic Press, New York 1971).

    Google Scholar 

  • Sollman, T. and Pilcher, J.D.: The actions of caffeine on the mammalian circulation. I. The persistent effects of caffeine on the circulation. Journal of Pharmacology and Experimental Therapeutics 3: 19–92 (1911–1912).

    CAS  Google Scholar 

  • Starr, I.; Gamble, C.J. and Margolies, A.: A clinical study of the action of 10 commonly used drugs on cardiac output, work, and size: On respiration, on metabolic rate, and on the electrocardiogram. Journal of Clinical Investigation 16: 795–823 (1937).

    Article  Google Scholar 

  • Stround, M.; Lambertsen, C.; Ewing, J.; Kough, R.; Gould, R. and Schmidt, C.: The effects of aminophylline and merpher-idine alone and in combination on the respiratory response to carbon dioxide inhalation. Journal of Pharmacology and Therapeutics 114: 461–469 (1955).

    Google Scholar 

  • Sutherland, E.W. and Rall, R.T.: Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. Journal of Biological Chemistry 232: 1077–1091 (1958).

    PubMed  CAS  Google Scholar 

  • Sutherland, E.; Robertson, G. and Butcher, K.: Some aspects of the biological role of adenosine 3’5’ monophosphate (cyclic AMP). Circulation 37: 279–306 (1968).

    Article  CAS  Google Scholar 

  • Syed, I.B.: The effects of caffeine. Journal of the American Pharmaceutical Association 16: 568–572 (1976).

    PubMed  CAS  Google Scholar 

  • Toner, M.M.; Kirkendall, D.T.; Delio, D.J.; Chase, J.M.; Ckary, P.A. and Fox, E.L.: Metabolic and cardiovascular responses to exercise with caffeine. Ergonomics 25: 1175–1183 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Trippenbach, R.; Zinman, R. and Milic-Emili, J.: Caffeine’s effect on breathing patterns and vagal reflexes in newborn rabbits. Respiration Physiology 40: 211–223 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Van Handel, P.: Caffeine; in Williams (Ed.) Ergogenics Aids in Sport, pp. 163–182 (Human Kinetics, Champaign 1983).

    Google Scholar 

  • Waldeck, B.: Sensitization by caffeine of central catecholamine receptors. Journal of Neural Transmission 34: 61–72 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Weber, A. and Hertz, R.: The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. Journal of General Physiology 51: 750–759 (1968).

    Article  Google Scholar 

  • Weiss, B. and Laties, V.: Enhancement of human performance by caffeine and the amphetamines. Pharmacology Reviews 14: 1–36 (1962).

    CAS  Google Scholar 

  • Wood, D.S.: Human skeletal muscle: Analysis of calcium regulation in skinned fibers using caffeine. Experimental Neurology 58: 218–230 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Woodcock, A.; Gross, E.R.; Gellert, A.; Shah, S.; Johnson, M. and Geedes, D.M.: Effects of dihydrocodeine, alcohol, and caffeine on breathlessness and exercise tolerance in patients with chronic obstructive lung disease and normal blood gases. New England Journal of Medicine 305: 1611–1616 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, T.: Caffeine induced potentiation of twitches in frog single muscle fibers. Japanese Journal of Physiology 25: 695–704 (1975).

    Article  Google Scholar 

  • Ziment, I.: Respiratory Pharmacology and Therapeutics (W.B. Saunders, Philadelphia 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powers, S.K., Dodd, S. Caffeine and Endurance Performance. Sports Medicine 2, 165–174 (1985). https://doi.org/10.2165/00007256-198502030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-198502030-00002

Keywords

Navigation