Skip to main content

Advertisement

Log in

Amyotrophic Lateral Sclerosis

Current and Future Treatment Strategies

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 1996

Summary

Amyotrophic lateral sclerosis (ALS) is a fatal, enigmatic disorder characterised by relentless progression of muscle wasting and weakness until death ensues due to respiratory muscle failure. Intellectual functions are usually spared. ALS, known also as motor neuron disease (MND) in the UK, maladie de Charcot in France and Lou Gehrig’s disease in the US, is usually sporadic, but between 5 and 10% of all cases are hereditary, usually inherited as autosomal dominant.

Previously thought to be untreatable, as well as incurable, just in the last 3 years ALS has seen the greatest clinical application of recent exciting breakthroughs in preclinical neurobiology research. Although definitive information regarding the cause(s) and pathogenesis of ALS still escapes us, meaningful demonstration of intercession in the downhill course with specific therapy has been suggested, giving reason to be hopeful, if cautiously and critically optimistic. This review focuses on the recent work from the fields of growth/trophic factors, glutamate/neurotoxicity, neuroprotection and proteases and inhibitors, as well as the approaches to measuring specific effects in patients with the illness. It ends with an eye to the horizon, and the future, and where ALS treatment strategies may be heading after the millennium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Tandan R, Bradley WG. Amyotrophic lateral sclerosis: part I. Clinical features, pathology, and ethical issues in management. Ann Neurol 1985; 18: 271–80

    Article  PubMed  CAS  Google Scholar 

  2. Festoff BW. Amyotrophic lateral sclerosis: the syndrome, its pathophysiology and approach to treatment. In: Davidoff RA, editor. The spinal cord. New York: Marcel Dekker, Inc., 1987: 607–64

    Google Scholar 

  3. Ringel SP, Murphy JR, Alderson MK, et al. The natural history of amyotrophic lateral sclerosis. Neurology 1993; 43: 1316–22

    Article  PubMed  CAS  Google Scholar 

  4. Festoff BW, Perurena OH, Singer PA. ‘Unbeatable’ neuromuscular disease: treatment trials and symptomatic treatment of amyotrophic lateral sclerosis. J Kans Med Soc 1983; 84: 312–7

    PubMed  CAS  Google Scholar 

  5. Norris F, Shepherd R, Denys E, et al. Onset, natural history and outcome in idiopathic adult motor neuron disease. J Neurol Sci 1993; 118: 48–55

    Article  PubMed  CAS  Google Scholar 

  6. Askmark H, Aquilonius S-M. Amyotrophic lateral sclerosis: practical treatment recommendations. CNS Drugs 1994; 2: 102–9

    Article  Google Scholar 

  7. Festoff BW. Protocol for a model therapeutic trial in amyotrophic lateral sclerosis. In: Rose FC, editor. Research progress in motor neurone disease. London: Pitman, 1984: 432–42

    Google Scholar 

  8. Munsat TL, Hollander D, Andres P, et al. Clinical trials in ALS: measurement and natural history. Adv Neurol 1991; 56:515–9

    PubMed  CAS  Google Scholar 

  9. Pradas J, Finison L, Andres PL, et al. The natural history of amyotrophic lateral sclerosis and the use of natural history controls in therapeutic trials. Neurology 1993; 43: 751–5

    Article  PubMed  CAS  Google Scholar 

  10. Brooks BR, Sufit RL, DePaul R, et al. Design of clinical therapeutic trials in amyotrophic lateral sclerosis. Adv Neurol 1991; 56: 521–46

    PubMed  CAS  Google Scholar 

  11. Subcommittee on Motor Neuron Diseases WRGoND. Airlie House guidelines: therapeutic trials in amyotrophic lateral sclerosis. J Neurol Sci 1995; 129: 1–10

    Article  Google Scholar 

  12. Charcot JM. Sclérose des cordons latéraux de la moelle épinière chez femme hystérique atteinte de contracture permanente des quatre membres. Bull Soc Med Hop Paris 1865; 2: 24–42

    Google Scholar 

  13. Charcot JM, Joffroy A. Deux cas d’atrophie musculaire progressive avec lesions de la substance grise et des faisceaux antériolatéraux de la moelle épinière. Arch Physiol Norm Pathol 1869; 2: 354–67; 629-49; 744-60

    Google Scholar 

  14. Greene LA, Shooter EM. The nerve growth factor: biochemistry, synthesis, and mechanism of action. Ann Rev Neurosci 1980; 3: 353–402

    Article  PubMed  CAS  Google Scholar 

  15. Lindsay RM, Alderson RF, Friedman B, et al. The neurotrophin family of NGF-related neurotrophic factors. Restorative Neurol Neurosci 1991; 2: 211–20

    CAS  Google Scholar 

  16. Hempstead BL, Martinzanca D, Kaplan DR, et al. High-affinity NGF binding requires coexpression of the Trk protooncogene and the low-affinity NGF receptor. Nature 1991; 350: 678–83

    Article  PubMed  CAS  Google Scholar 

  17. Ip NY, Maisonpierre P, Alderson R, et al. The neurotrophins and CNTF: specificity of action towards PNS and CNS neurons. J Physiol Paris 1991; 85: 123–30

    PubMed  CAS  Google Scholar 

  18. Lin LF, Mismer D, Lile JD, et al. Purification, cloning and expression of ciliary neurotrophic factor (CNTF). Science 1989; 246: 1023–5

    Article  PubMed  CAS  Google Scholar 

  19. Abraham JA, Whang JL, Turnolo A, et al. Human basic fibroblast growth factor: nucleotide sequence and genomic organization. EMBO J 1986; 5: 2523–8

    PubMed  CAS  Google Scholar 

  20. Rubin LL, Philpott KL, Brooks SF. Apoptosis: the cell cycle and cell death. Curr Biol 1993; 3: 391–4

    Article  PubMed  CAS  Google Scholar 

  21. Bowen ID. Apoptosis or programmed cell death. Cell Biol Int Rep 1993; 17: 365–80

    Article  CAS  Google Scholar 

  22. Williams GT, Smith CA. Molecular regulation of apoptosis: genetic controls on cell death. Cell 1993; 74: 777–9

    Article  PubMed  CAS  Google Scholar 

  23. Johnson Jr EM, Deckwerth TL. Molecular mechanisms of developmental neuronal death. Annu Rev Neurosci 1993; 16: 31–46

    Article  PubMed  CAS  Google Scholar 

  24. Hamburger V. History of the discovery of neuronal death in embryos. J Neurobiol 1992; 23: 1116–23

    Article  PubMed  CAS  Google Scholar 

  25. Levi-Montalcini R. The nerve growth factor: its mode of action on sensory and sympathetic nerve cells. Harvey Lect 1966; 60: 217–59

    PubMed  CAS  Google Scholar 

  26. Levi-Montalcini R. The nerve growth factor 35 years later. Science 1987; 237: 1154–62

    Article  PubMed  CAS  Google Scholar 

  27. Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci 1991; 14: 453–501

    Article  PubMed  CAS  Google Scholar 

  28. Lowrie MB, Vrbová G. Dependence of postnatal motoneurones on their targets: review and hypothesis. Trends Neurosci 1992; 15: 80–4

    Article  PubMed  CAS  Google Scholar 

  29. Ellis H, Horvitz H. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986; 44: 817–29

    Article  PubMed  CAS  Google Scholar 

  30. Yuan J, Horvitz H. The Caenorhabitis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol 1990; 138: 33–41

    Article  PubMed  CAS  Google Scholar 

  31. Kumar S. ICE-like proteases in apoptosis. Trends Biochem Sci 1995; 20: 198–202

    Article  PubMed  CAS  Google Scholar 

  32. Nicholson DW, Ali A, Thornberry NA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995; 376: 37–43

    Article  PubMed  CAS  Google Scholar 

  33. Quan LT, Caputo A, Bleackley RC, et al. Granzyme B is inhibited by the cowpox virus serpin cytokine response modifier A. J Biol Chem 1995; 270: 10377–9

    Article  PubMed  CAS  Google Scholar 

  34. Gagliardini V, Fernandez PA, Lee RK, et al. Prevention of vertebrate neuronal death by the crmA gene. Science 1994; 263: 826–8

    Article  PubMed  CAS  Google Scholar 

  35. Festoff BW. Neuromuscular junction macromolecules in the pathogenesis of amyotrophic leteral sclerosis. Med Hypotheses 1980; 6: 121–31

    Article  PubMed  CAS  Google Scholar 

  36. Festoff BW, Hantaï D, Soria J, et al. Plasminogen activator in mammalian skeletal muscle: characteristics of effect of denervation on urokinase-like and tissue activator. J Cell Biol 1986; 103: 1415–21

    Article  PubMed  CAS  Google Scholar 

  37. Festoff BW, Rao JS, Hantaï D. Plasminogen activators and inhibitors in the neuromuscular system: III. The serpin protease nexin I is synthesized by muscle and localized at neuromuscular synapses. J Cell Physiol 1991; 147: 76–86

    Article  PubMed  CAS  Google Scholar 

  38. Festoff BW. Protease cascade dysregulation and synaptic degeneration in amyotrophic lateral sclerosis. In: Smith RA, editor. Handbook of amyotrophic lateral sclerosis. New York: Marcel Dekker, 1992: 661–85

    Google Scholar 

  39. Sasaki S, Maruyama S. Synapse loss in anterior horn neurons in amyotrophic lateral sclerosis. Acta Neuropathol 1994; 88: 222–7

    Article  PubMed  CAS  Google Scholar 

  40. DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 1990; 27: 457–64

    Article  PubMed  CAS  Google Scholar 

  41. Scheff SW, Sparks DL, Price DA. Quantitative assessment of synaptic density in the entorhinal cortex in Alzheimer’s disease. Ann Neurol 1993; 34: 356–61

    Article  PubMed  CAS  Google Scholar 

  42. Scheff SW, Price DA. Synapse loss in the temporal lobe in Alzheimer’s disease. Ann Neurol 1993; 33: 190–9

    Article  PubMed  CAS  Google Scholar 

  43. Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572–80

    Article  PubMed  CAS  Google Scholar 

  44. Monard D, Suidan HS, Nitsch C. Relevance of the balance between glia-derived nexin and thrombin following lesion in the nervous system. Ann NY Acad Sci 1992; 674: 237–42

    Article  PubMed  CAS  Google Scholar 

  45. Monard D. Tinkering with certain blood components can engender distinct functions in the nervous system. Perspect Dev Neurobiol 1993; 1: 165–8

    PubMed  CAS  Google Scholar 

  46. Seeds NW, Verrall S, Friedman G, et al. Plasminogen activators and Plasminogen activator inhibitors in neural development. Ann NY Acad Sci 1992; 667: 32–40

    Article  PubMed  CAS  Google Scholar 

  47. Bilak M, Askanas V, Engel WK. Strong immunoreactivity of αl-antichymotrypsin co-localizes with β-amyloid protein and ubiquitin in vacuolated muscle fibers of inclusion-body my-ositis. Acta Neuropathol 1993; 85: 378–82

    Article  PubMed  CAS  Google Scholar 

  48. Akaaboune M, Ma J, Festoff BW, et al. The influence of dener-vation on beta-amyloid protein precursor and alpha 1-anti-chymotrypsin in mouse skeletal muscle. Neuromuscul Disord 1993; 3: 477–81

    Article  PubMed  CAS  Google Scholar 

  49. Akaaboune M, Ma J, Festoff BW, et al. Neurotrophic regulation of mouse muscle β-amyloid protein precursor and (α1-anti-chymotrypsin as revealed by axotomy. J Neurobiol 1994; 25: 503–14

    Article  PubMed  CAS  Google Scholar 

  50. Oltersdorf T, Fritz LC, Schenk DB, et al. The secreted form of the Alzheimer’s amyloid precursor protein with the Kunitz domain is protease nexin-II. Nature 1989; 341: 144–7

    Article  PubMed  CAS  Google Scholar 

  51. McMahan UJ. The agrin hypothesis. Cold Spring Harb Symp Quant Biol 1990; 55: 407–18

    Article  PubMed  CAS  Google Scholar 

  52. Festoff BW Crigger NJ. Therapeutic trials in amyotrophic lateral sclerosis: a review. In: Mulder DM, editor. Amyotrophic lateral sclerosis: diagnosis and treatment. Boston: Houghton Mifflin, 1980: 337–66

    Google Scholar 

  53. Siddique T, Figlewicz D, Pericak-Vance MA, et al. Assignment of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence for genetic heterogeneity. N Engl J Med 1991; 324: 1381–4

    Article  PubMed  CAS  Google Scholar 

  54. Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn Superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59–62

    Article  PubMed  CAS  Google Scholar 

  55. Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu, Zn Superoxide dismutase mutation. Science 1994; 264: 1772–5

    Article  PubMed  CAS  Google Scholar 

  56. Lilienfeld DE, Perl DP. Projected neurodegenerative disease mortality in the United States, 1990-2040. Neuroepidemiology 1993; 12: 219–28

    Article  PubMed  CAS  Google Scholar 

  57. Barinaga M. Neurotrophic factors enter the clinic. Science 1994; 264: 772–4

    Article  PubMed  CAS  Google Scholar 

  58. McKhann GM. Clinical trials in a changing era. Ann Neurol 1994; 36: 683–7

    Article  PubMed  CAS  Google Scholar 

  59. Rowland LP. Amyotrophic lateral sclerosis: theories and therapies. Ann Neurol 1994; 35: 129–30

    Article  PubMed  CAS  Google Scholar 

  60. Bensimon G, Lacomblez L, Meininger V, et al. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 1994; 330: 585–91

    Article  PubMed  CAS  Google Scholar 

  61. Lai EC, Felice K, Festoff BW, et al. Efficacy of recombinant human insulin-like growth factor I in the treatment of amyotrophic lateral sclerosis: a double-blind, placebo-controlled study. New Engl J Med. In press

  62. Winkler J, Thal LJ. Clinical and potential of growth factors in neurological disorders. CNS Drugs 1994; 2: 465–78

    Article  Google Scholar 

  63. Thoenen H. The changing scene of neurotrophic factors. Trends Neurosci 1991; 14: 165–70

    Article  PubMed  CAS  Google Scholar 

  64. Hefti F, Hartikka J, Knusel B. Function of neurotrophic factors in the adult and aging bain and their possible use n the treatment of neurodegenerative diseases. Neurobiol Aging 1989; 10: 515–33

    Article  PubMed  CAS  Google Scholar 

  65. Lewis ME, Neff NT, Contreras PC, et al. Insulin-like growth factor-I: potential for treatment of motor neuronal disorders. Exp Neurol 1993; 124: 73–88

    Article  PubMed  CAS  Google Scholar 

  66. Hagg T, Varon S. Ciliary neurotrophic factor prevents degeneration of adult rat substantia nigra dopaminergic neurons in vivo. Proc Natl Acad Sci USA 1993; 90: 6315–9

    Article  PubMed  CAS  Google Scholar 

  67. Patterson PH, Nawa H. Neuronal differentiation factors/ cytokines and synaptic plasticity. Cell 1993; 72: 123–37

    Article  PubMed  Google Scholar 

  68. Arakawa Y, Sendtner M, Thoenen H. Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneu-rons in culture: comparison with other neurotrophic factors and cytokines. J Neurosci 1990; 10: 3507–15

    PubMed  CAS  Google Scholar 

  69. Magai E, Burnham P, Varon S. Effects of ciliary neurotrophic factor on rat spinal cord neurons in vitro: survival and expression of choline acetyltransferase and low-affinity nerve growth factor receptors. Dev Brain Res 1991; 63: 141–50

    Article  Google Scholar 

  70. Sendtner M, Kreutzberg GW, Thoenen H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 1990; 345: 440–1

    Article  PubMed  CAS  Google Scholar 

  71. Group ACTSAPI-IS, Brooks BR, Sanjak M, et al. Recombinant human ciliary neurotrophic factor (rhCNTF) in amyotrophic lateral sclerosis (ALS) patients: phase I–I safety, tolerability and pharmacokinetic studies. Neurology 1993; 43: A416

    Google Scholar 

  72. Brooks BR, Group ACTSAPI-IS. Recombinant human ciliary neurotrophic factor (rhCNTF) in amyotrophic lateral sclerosis (ALS) patients: dose selection strategy in Phase I–II safety, tolerability and pharmacokinetic studies. XVth World Congress of Neurology. Vancouver, September 1993

    Google Scholar 

  73. Jeyarajah DR, Thistlethwaite Jr JR. General aspects of cytok-ine-release syndrome: timing and incidence of symptoms. Transplant Proc 1993; 25 Suppl. 1: 16–20

    PubMed  CAS  Google Scholar 

  74. Murakami M, Hibi M, Kakagawa N, et al. IL-6-induced homodimerization of gp 130 and associated activation of a tyrosine kinase. Science 1993; 260: 1808–10

    Article  PubMed  CAS  Google Scholar 

  75. Campbell IL, Abraham CR, Masliah E, et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci USA 1993; 90: 10061–5

    Article  PubMed  CAS  Google Scholar 

  76. Zapf J, Froesch ER. Insulin-like growth factor/somatomedins: structure, secretion, biological actions and physiological role. Horm Res 1986;24: 121–30

    Article  PubMed  CAS  Google Scholar 

  77. Smith RA, Melmed S, Sherman B, et al. Recombinant growth hormone treatment of amyotrophic lateral sclerosis. Muscle Nerve 1993; 16: 624–33

    Article  PubMed  CAS  Google Scholar 

  78. Neff NT, Prevette D, Houenou LJ, et al. Insulin-like growth factors: putative muscle-derived trophic agents that promote motoneuron survival. J Neurobiol 1993; 24: 1578–88

    Article  PubMed  CAS  Google Scholar 

  79. Krieger C, Lai R, Mitsumoto H, et al. The wobbler mouse: quantitative autoradiography of glutamatergic ligand binding sites in spinal cord. Neurodegeneration 1993; 2: 9–17

    Google Scholar 

  80. Hantaï D, Akaaboune M, Lagord C, et al. Beneficial effects of insulin-like growth factor I on wobbler mouse motoneuron disease. J Neurolog Sci 1995; 129 Suppl. 122–6

    Article  Google Scholar 

  81. Festoff BW, Yang SX, Vaught J, et al. The insulin-like growth factor signaling system and ALS neurotrophic factor treatment strategies. J Neurol Sci 1995; 129: 122–9

    Article  PubMed  Google Scholar 

  82. Shimasaki S, Ling N. Identification and molecular characterization of insulin-like growth factor binding protein (IGF-1, -2, -3, -4, -5, and -6). Prog Growth Factor Res 1991; 3: 243–66

    Article  PubMed  CAS  Google Scholar 

  83. Crosby SR, Tsigos C, Anderton CD, et al. Elevated plasma insulin-like growth factor binding protein-1 levels in type 1 (insulin-dependent) diabetic patients with peripheral neuropathy. Diabetologia 1992; 35: 868–72

    Article  PubMed  CAS  Google Scholar 

  84. Ma J, Yang SX, Ho GJ, et al. Insulin-like growth factor binding protein-1 at mouse neuromuscular synapses. Synapse 1994; 17: 225–9

    Article  PubMed  CAS  Google Scholar 

  85. Ma J, Yang SX, Ho GJ, et al. Insulin-like growth factor binding protein-1 is pre-synaptic at mouse neuromuscular synapses and is transported in nerve. Neurochem Res 1994; 19: 1363–8

    Article  PubMed  CAS  Google Scholar 

  86. Appel V, Stewart SS, Smith G, et al. A rating scale for amyotrophic lateral sclerosis: description and preliminary experience. Ann Neurol 1987; 22: 328–33

    Article  PubMed  CAS  Google Scholar 

  87. Adem A, Ekblom J, Gillberg PG, et al. Insulin-like growth factor-1 receptors in human spinal cord: changes in amyotrophic lateral sclerosis. J Neural Transm Gen Sect 1994; 97: 73–84

    Article  PubMed  CAS  Google Scholar 

  88. Strimberg I, Bjîklund L, Johansson M, et al. Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp Neurol 1993; 124: 401–12

    Article  Google Scholar 

  89. Henderson CE, Phillips HS, Pollock RA, et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle [see comments]. Science 1994; 266: 1062–4 Issn: 0036-8075

    Article  PubMed  CAS  Google Scholar 

  90. Lin HY, Lodish HF. Receptors for the TGF-β superfamily: Multiple Polypeptides and serine/threonine kinases. Trends Cell Biol 1993; 3: 14–9

    Article  PubMed  CAS  Google Scholar 

  91. Li L, Wu W, Lin L-FH, et al. Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor Proc Natl Acad Sci USA 1995; 92:9771–5

    Article  PubMed  CAS  Google Scholar 

  92. Choi DW. Amyotrophic lateral sclerosis and glutamate — too much of a good thing? N Engl J Med 1992; 326: 1493–5

    Article  PubMed  CAS  Google Scholar 

  93. Beal MF. Mechanisms of excitotoxicity in neurologic diseases. FASEB J 1992; 6: 3338–44

    PubMed  CAS  Google Scholar 

  94. Plaitakis A, Caroscio JT. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol 1987; 22: 575–9

    Article  PubMed  CAS  Google Scholar 

  95. Plaitakis A. Glutamate dysfunction and selective motor neuron degeneration in amyotrophic lateral sclerosis: a hypothesis. Ann Neurol 1990; 28: 3–8

    Article  PubMed  CAS  Google Scholar 

  96. Plaitakis A, Smith J, Mandeli J, et al. A pilot trial of branched chain amino acid treatment in amyotrophic lateral sclerosis. Lancet 1988; 1: 1015–8

    Article  PubMed  CAS  Google Scholar 

  97. Group TIAS. Branched-chain amino acids and amyotrophic lateral sclerosis: a treatment failure? Neurology 1993; 43: 2466–70

    Article  Google Scholar 

  98. Plaitakis A. Branched-chain amino acids in ALS [letter]. Neurology 1994; 44: 1982

    Article  PubMed  CAS  Google Scholar 

  99. Eisen A, Krieger C. Pathogenic mechanisms in sporadic amyotrophic lateral sclerosis. Can J Neurol Sci 1993; 20: 286–96

    PubMed  CAS  Google Scholar 

  100. Eisen A, Stewart H, Schulzer M, et al. Anti-glutamate therapy in amyotrophic lateral sclerosis: a trial using lamotrigine. Can J Neurol Sci 1993; 20: 297–301

    PubMed  CAS  Google Scholar 

  101. Askmark H, Aquilonius S-M, Gillberg P-G, et al. A pilot trial of dextromethorphan in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 1993; 56: 197–200

    Article  PubMed  CAS  Google Scholar 

  102. Festoff BW, editor. Serine proteases and serpins in the nervous system: roles in development and in malignant and degenerative disease. New York: Plenum Press, 1990

  103. Houenou LJ, Turner PL, Li L, et al. A serine protease inhibitor, protease nexin I, rescues motoneurons from naturally occurring and axotomy-induced cell death. Proc Natl Acad Sci USA 1995; 92: 895–9

    Article  PubMed  CAS  Google Scholar 

  104. Smith-Swintosky VL, Zimmer S, Fenton JW, II, et al. Protease nexin-1 and thrombin modulate Ca2+ homeostasis and sensitivity to glucose deprivation-induced injury. J Neurosci 1995; 15: 5840–50

    PubMed  CAS  Google Scholar 

  105. Vaughan PJ, Pike CJ, Cotman CW, et al. Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J Neurosci 1995; 15: 5389–401

    PubMed  CAS  Google Scholar 

  106. Baker JB, Knauer DJ, Cunningham DD. Protease nexins: secreted protease inhibitors that regulate protease actions at and near the cell surface. In: Conn PM, editor. The receptors. New York: Academic Press, 1986: 153–72

    Google Scholar 

  107. McGrogan M, Kennedy J, Li M, et al. Molecular cloning and expression of two forms of human protease nexin 1. Biotechnology 1988; 6: 172–7

    Article  CAS  Google Scholar 

  108. Liu Y, Fields RD, Fitzgerald S, et al. Proteolytic activity, synapse elimination, and the Hebb synapse. J Neurobiol 1994; 25: 325–35

    Article  PubMed  CAS  Google Scholar 

  109. Liu Y, Fields RD, Festoff BW, et al. Proteolytic action of thrombin is required for electrical activity-dependent synapse reduction. Proc Natl Acad Sci USA 1994; 91: 10300–4

    Article  PubMed  CAS  Google Scholar 

  110. Festoff BW, Brenneman DE. Inhibition of activity-dependent neuronal death: vasoactive intestinal Polypeptide stimulates secretion of the neurotrophic serpin, protease nexin I, from astrocytes. J Neurobiol. In press

  111. Carter RE, Cerosaletti KM, Burkin DJ, et al. The gene for the serpin thrombin inhibitor (P17), protease nexin I, is located on human chromosome 2q33-q35 and on syntenic regions in the mouse and sheep genomes. Genomics 1995; 27: 196–9

    Article  PubMed  CAS  Google Scholar 

  112. Hentati A, Bejaoui K, Pericak-Vance MA, et al. Linkage of recessive familial amyotrophic lateral sclerosis to chromosome 2q33-q35. Nature Genetics 1994; 7: 425–8

    Article  PubMed  CAS  Google Scholar 

  113. Bunnemann B, Fuxe K, Ganten D. The brain renin-angiotensin system — localization and general significance. J Cardiovasc Pharmacol 1992; 19: S51–S62

    Article  PubMed  CAS  Google Scholar 

  114. Bleuel A, De Gasparo M, Whitebread S, et al. Regulation of protease nexin-1 expression in cultured Schwann cells is mediated by angiotensin II receptors. J Neurosci 1995; 15: 750–61

    PubMed  CAS  Google Scholar 

  115. Aquilonius SM, Jossan SS, Ekblom JG, et al. Increased binding of 3H-L-deprenyl in spinal cords from patients with amyotrophic lateral sclerosis as demonstrated by autoradiography. J Neural Transm Gen Sect 1992; 89: 111–22

    Article  PubMed  CAS  Google Scholar 

  116. Appel SH, Smith RG, Engelhardt JI, et al. Evidence for auto-immunity in amyotrophic lateral sclerosis. J Neurol Sci 1994; 124 Suppl.: 14–9

    Article  PubMed  Google Scholar 

  117. Alexianu ME, Ho BK, Mohamed AH, et al. The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol 1994; 36: 846–58

    Article  PubMed  CAS  Google Scholar 

  118. Alexianu ME, Mohamed AH, Smith RG, et al. Apoptotic cell death of a hybrid motoneuron cell line induced by immunoglobulins from patients with amyotrophic lateral sclerosis. J Neurochem 1994; 63: 2365–8

    Article  PubMed  CAS  Google Scholar 

  119. Drachman DB, Chaudhry V, Cornblath D, et al. Trial of immu-nosuppression in amyotrophic lateral sclerosis using total lymphoid irradiation [see comments]. Ann Neurol 1994; 35: 142–50

    Article  PubMed  CAS  Google Scholar 

  120. Vessada R, Sagot Y, Kato AC. Quantitative comparison of the effects of neurotrophic factors on axotomized motoneurons in vivo. Eur J Neurosci 1995; 7: 108–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03259130.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Festoff, B.W. Amyotrophic Lateral Sclerosis. Drugs 51, 28–44 (1996). https://doi.org/10.2165/00003495-199651010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199651010-00004

Keywords

Navigation