Skip to main content
Log in

Prevention of Complications in Non-Insulin-Dependent Diabetes Mellitus (NIDDM)

  • Practical Therapeutics
  • Published:
Drugs Aims and scope Submit manuscript

Summary

It is expected that the number of patients with diabetes mellitus will increase in the near future. The high rate of microvascular and macrovascular complications developing in these patients will place an even higher burden on our healthcare systems. Several pathophysiological factors are involved in the development of complications, among which are hyperglycaemia per se, the consequent formation of advanced glycation end-products (AGEs) and the intracellular accumulation of sorbitol. In addition, hypertension and dyslipidaemia also play an important role, especially in the development of coronary heart disease and stroke.

The major therapeutic goals in patients with non-insulin-dependent diabetes mellitus (NIDDM) are to reduce obesity and normalise lipid disturbances and increased blood pressure, in order to improve the well-being of the patient and reduce the risk of the development of late diabetic complications. Often, pharmacological treatment of the hyperglycaemia is necessary, in which case sulphonylureas, metformin, α-glucosidase inhibitors such as acarbose, or insulin may be employed. It is believed that medical interventions, by their effect on improving metabolic control, reduce the incidence and severity of diabetic complications, especially when considering the toxic effects of glucose and the accumulation of AGEs as a consequence of raised tissue glucose levels. This concept is also based on extrapolation of the finding of the Diabetes Control and Complications Trial that intensive glycaemic control in IDDM will prevent the progression of at least the microvascular complications like retinopathy and nephropathy.

There are, however, no long term studies in NIDDM patients to show that treatment with oral antihyperglycaemic agents helps to postpone or prevent complications. It is expected that the UK Prospective Diabetes Study will show whether better metabolic control, either with oral antihyperglycaemics or with insulin, will indeed improve outcome. Several other studies aiming at specific risk factor intervention (hypertension, hyperlipidaemia, lipid oxidation) in NIDDM patients are currently ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeFronzo RA. The triumvirate: beta-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes 1988; 37: 667–87

    PubMed  CAS  Google Scholar 

  2. Groop LC. Sulfonylureas in NIDDM. Diabetes Care 1992; 15: 737–54

    PubMed  CAS  Google Scholar 

  3. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM: a balanced overview. Diabetes Care 1992; 15: 318–68

    PubMed  CAS  Google Scholar 

  4. Bailey CJ. Biguanides and NIDDM. Diabetes Care 1992; 15: 755–72

    PubMed  CAS  Google Scholar 

  5. Kahn CR. Insulin action, diabetogenes and the cause of type II diabetes. Diabetes 1994; 43: 1066–84

    PubMed  CAS  Google Scholar 

  6. Cerami A, Vlassara H, Brownlee M. Role of advanced glycosylation products in complications of diabetes. Diabetes Care 1988; 11 Suppl. 1; 73–9

    PubMed  Google Scholar 

  7. Reddi AS, Camerini-Davalos RA. Diabetic nephropathy. Arch Int Med 1990; 150: 31–43

    CAS  Google Scholar 

  8. Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med 1993; 328: 1676–85

    PubMed  CAS  Google Scholar 

  9. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–86

    Google Scholar 

  10. Martin BC, Warram JH, Krolewski AS, et al. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 1992; 340: 925–9

    PubMed  CAS  Google Scholar 

  11. Wolffenbuttel BHR, Van Haeften TW. Non-insulin-dependent diabetes mellitus: defects in insulin secretion. Eur J Clin Invest 1993; 23: 69–79

    PubMed  CAS  Google Scholar 

  12. Ward WK, Bolgiano DC, McKnight B, et al. Diminished B-cell secretory capacity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1984; 74: 1318–28

    PubMed  CAS  Google Scholar 

  13. Van Haeften TW, Van Maarschalkerweerd WWA, Gerich JE, et al. Decreased insulin secretory capacity and normal pancreatic B-cell glucose sensitivity in non-obese patients with NIDDM. Eur J Clin Invest 1991; 21: 168–74

    PubMed  Google Scholar 

  14. Eriksson J, Franssila-Kallunki A, Ekstrand A, et al. Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med 1989; 321: 337–43

    PubMed  CAS  Google Scholar 

  15. Unger RH, Grundy S. Hyperglycaemia as an inducer as well as a consequence of impaired islet function and insulin resistance: implication for the management of diabetes. Diabetologia 1985; 28: 119–21

    PubMed  CAS  Google Scholar 

  16. Rosetti L, Giaccari A, DeFronzo RA. Glucose toxicity. Diabetes Care 1990; 13: 610–30

    Google Scholar 

  17. Wolffenbuttel BHR, Menheere PPCA, Nijst L, et al. Glucagon-stimulated insulin secretion in patients with type 2 diabetes mellitus: support for the concept of glucose toxicity. Neth J Med 1992; 40: 277–82

    PubMed  CAS  Google Scholar 

  18. Johnson JH, Ogawa A, Chen L, et al. Underexpression of β cell high Km glucose transporters in noninsulin-dependent diabetes. Science 1990; 250: 546–9

    PubMed  CAS  Google Scholar 

  19. Thorens B, Weir GC, Leahy IL, et al. Reduced expression of the liver/beta-cell glucose transporter isoform in glucose-insensitive pancreatic beta cells of diabetic rats. Proc Natl Acad Sci USA 1990; 87: 6492–6

    PubMed  CAS  Google Scholar 

  20. Yki-Järvinen H. Glucose toxicity. Endocr Rev 1992; 13: 415–31

    PubMed  Google Scholar 

  21. Yki-Järvinen H, Young AA, Lamkin C, et al. Kinetics of glucose disposal in whole body and across the forearm in man. J Clin Invest 1987; 79: 1713–9

    PubMed  Google Scholar 

  22. Garvey WT, Huecksteadt TP, Birnbaum MI. Pretranslational suppression of an insulin-responsive glucose transporter in rats with diabetes mellitus. Science 1989; 245: 60–3

    PubMed  CAS  Google Scholar 

  23. Nathan DM, Singer DE, Godine JE, et al. Non-insulin-dependent diabetes in older patients — complications and risk factors. Am J Med 1986; 81: 837–42

    PubMed  CAS  Google Scholar 

  24. Fein FS, Scheuer J. Heart disease in diabetes. In: Rifkin H, Porte Jr D, editors. Ellenberg and Rifkin’s diabetes mellitus: theory and practice. 4th ed. New Hyde Park, NY: Elsevier Science Publishing Co, 1990

    Google Scholar 

  25. Jarrett RJ. Epidemiology and public health aspects of non-insulin-dependent diabetes mellitus. Epidemiol Rev 1989; 11: 151–71

    PubMed  CAS  Google Scholar 

  26. Levin ME, Sicard GA. Peripheral vascular disease in the person with diabetes. In: Rifkin H, Porte Jr D, editors. Ellenberg and Rifkin’s Diabetes mellitus: theory and practice. 4th ed. New Hyde Park, NY: Elsevier Science Publishing Co, 1990

    Google Scholar 

  27. Chase HP, Jackson WE, Hoops SL, et al. Glucose control and the renal and retinal complications of insulin-dependent diabetes. JAMA 1989; 261: 1155–60

    PubMed  CAS  Google Scholar 

  28. Nathan DM, Singer DE, Godine JE, et al. Retinopathy in older type II diabetics: association with glucose control. Diabetes 1986; 35: 797–801

    PubMed  CAS  Google Scholar 

  29. Ballard DJ, Humphrey LL, Melton III LJ, et al. Epidemiology of persistent proteinuria in type II diabetes mellitus: population-based study in Rochester, Minnesota. Diabetes 1988; 37: 405–12

    PubMed  CAS  Google Scholar 

  30. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 1984; 310: 356–60

    PubMed  CAS  Google Scholar 

  31. Krolewski AS, Warram JH, Christlieb AR, et al. The changing natural history of nephropathy in type I diabetes. Am J Med 1985; 78: 785–94

    PubMed  CAS  Google Scholar 

  32. Borch-Johnsen K, Andersen PK, Deckert T. The effect of proteinuria on relative mortality in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1985; 28: 590–6

    PubMed  CAS  Google Scholar 

  33. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabete Metab 1977; 3: 97–107

    PubMed  CAS  Google Scholar 

  34. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Part 2. Diabete Metab 1977; 3: 173–82

    PubMed  CAS  Google Scholar 

  35. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Part 3. Diabete Metab 1977; 3: 245–56

    PubMed  CAS  Google Scholar 

  36. Low PA, Tuck RR, Takenchi M. Nerve microenvironment in diabetic neuropathy. In: Dyck PJ, Thomas PK, Abury AK, editors. Diabetic neuropathy. Philadelphia: WB Saunders, 1987: 266–78

    Google Scholar 

  37. Dyck PJ, Hansen S, Karnes J, et al. Capillary number and percentage closed in human sural nerve. Proc Natl Acad Sci USA 1985; 82: 2513–7

    PubMed  CAS  Google Scholar 

  38. Raff MC, Ashbury AK. Ischemic mononeuropathy and mono-neuropathy multiplex in diabetes mellitus. N Engl J Med 1968; 279: 17–21

    PubMed  CAS  Google Scholar 

  39. Low PA, Tuck RR, Dyck PJ, et al. Prevention of some electrophysiologic and biochemical abnormalities with oxygen supplementation in experimental diabetic neuropathy. Proc Natl Acad Sci USA 1984; 81: 6894–8

    PubMed  CAS  Google Scholar 

  40. Vinik AI, Holland MT, LeBeau JM, et al. Diabetic neuropathies. Diabetes Care 1992; 15: 1927–75

    Google Scholar 

  41. Klein R, Klein BEK, Moss SE, et al. Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. JAMA 1988; 260: 2864–71

    PubMed  CAS  Google Scholar 

  42. Kuusisto J, Mykkanen L, Pyorala K, et al. NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 1994; 43: 960–7

    PubMed  CAS  Google Scholar 

  43. Vlassara H. Recent progress on the biologic and clinical significance of advanced glycosylation end products. J Lab Clin Med 1994; 124: 19–30

    PubMed  CAS  Google Scholar 

  44. Brownlee M. Glycation products and the pathogenesis of diabetic complications. Diabetes Care 1992; 15: 1835–43

    PubMed  CAS  Google Scholar 

  45. Duell PB, Oram JF, Bierman EL. Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes 1991; 40: 377–84

    PubMed  CAS  Google Scholar 

  46. Vlassara H, Brownlee M, Monogue KR, et al. Cachectin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science 1988; 240: 1546–8

    PubMed  CAS  Google Scholar 

  47. Hasegawa G, Nakano K, Sawada M, et al. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int 1991; 40: 1007–12

    PubMed  CAS  Google Scholar 

  48. Mullarkey CJ, Edelstein D, Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 1990; 173: 932–9

    PubMed  CAS  Google Scholar 

  49. Charonis AS, Reger LA, Dege JE, et al. Laminin alterations after in vitro nonenzymatic glycosylation. Diabetes 1990; 39: 807–14

    PubMed  CAS  Google Scholar 

  50. Charonis AS, Tsilibary EC. Structural and functional changes of laminin and type IV collagen after nonenzymatic glycation. Diabetes 1992; 41 Suppl. 2: 49–51

    PubMed  CAS  Google Scholar 

  51. Deckert T, Kofoed-Enevoldsen A, Norgaard K, et al. Micro-albuminuria: implications for micro- and macrovascular disease. Diabetes Care 1992; 15: 1181–91

    PubMed  CAS  Google Scholar 

  52. Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 1991; 87: 432–8

    PubMed  CAS  Google Scholar 

  53. Vlassara H, Fuh H, Makita Z, et al. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci USA 1992; 89: 12043–7

    PubMed  CAS  Google Scholar 

  54. Frank RN. The aldose reductase controversy. Diabetes 1994; 43: 169–72

    PubMed  CAS  Google Scholar 

  55. Orosz SE, Townsend SF, Tornheim PA, et al. Localization of aldose reductase and sorbitol dehydrogenase in the nervous system of normal and diabetic rats. Acta Diabetol Lat 1981; 18: 373–81

    PubMed  CAS  Google Scholar 

  56. Kennedy A, Frank RN, Varma SD. Aldose reductase in retinal and cerebral micro vessels and cultured vascular cells. Invest Ophthalmol Vis Sci 1983; 24: 1250–4

    PubMed  CAS  Google Scholar 

  57. Corder CN, Braughler JM, Culp PA. Quantitative histochemistry of the sorbitol pathway in glomeruli and small arteries of human diabetic kidney. Folia Histochem Cytochem 1979; 17: 137–46

    CAS  Google Scholar 

  58. Cheng HM, Gonzalez RG. The effect of high glucose and oxidative stress on lens metabolism, aldose reductase, and senile cataractogenesis. Metabolism 1986; 35 Suppl. 1: 10–4

    PubMed  CAS  Google Scholar 

  59. Berridge MJ. Intracellular signalling through inositol trisphosphate and diacylglycerol. Biol Chem Hoppe Seyler 1986; 367: 447–56

    PubMed  CAS  Google Scholar 

  60. Williamson JR, Chang K, Frangos M, et al. Hyperglycemic ‘pseudohypoxia’ and diabetic complications. Diabetes 1993; 42: 801–13

    PubMed  CAS  Google Scholar 

  61. Morrish NJ, Stevens LK, Head J, et al. A prospective study of mortality among middle-aged diabetic patients (the London cohort of the WHO Multinational Study of Vascular Disease in Diabetics) II: associated risk factors. Diabetologia 1990; 33: 542–8

    PubMed  CAS  Google Scholar 

  62. Fuller JH, Shipley MJ, Rose G, et al. Mortality from coronary heart disease and stroke in relation to degree of glycaemia: the Whitehall study. BMJ 1983; 287: 867–70

    PubMed  CAS  Google Scholar 

  63. Klein R, Klein BEK, Moss SE, et al. The Wisconsin Epidemiologie study of diabetic retinopathy: III. Prevalence and risk of diabetic retinopathy, when age at diagnosis 30 or more years. Arch Ophthalmol 1984; 102: 527–32

    PubMed  CAS  Google Scholar 

  64. Janka HU, Dirschedl P. Systolic blood pressure as a predictor for cardiovascular disease in diabetes: a 5-year longitudinal study. Hypertension 1985; 7 Suppl. II: 90–4

    Google Scholar 

  65. Wolffenbuttel BHR, Van Kimmenade R, Sels JPJE, et al. Prevalence of diabetic complications related to albuminuria in patients with non-insulin-dependent diabetes mellitus (NIDDM) treated in a hospital outpatient clinic. Nutr Metab Cardiovasc Dis 1992; 2: 63–8

    Google Scholar 

  66. Allawi J, Jarrett RJ. Microalbuminuria and cardiovascular risk factors in type 2 diabetes mellitus. Diabetic Med 1989; 7: 115–8

    Google Scholar 

  67. Marshall SM, Alberti KGMM. Comparison of the prevalence and associated features of abnormal albumin excretion in insulin-dependent and non-insulin-dependent diabetes. Q J Med 1989; 70: 61–71

    PubMed  CAS  Google Scholar 

  68. Gall MA, Rossing P, Skott P, et al. Prevalence of micro- and macroalbuminuria, arterial hypertension, retinopathy and large vessel disease in European type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1991; 34: 655–61

    PubMed  CAS  Google Scholar 

  69. Jarrett RJ, Viberti GC, Argyropoulos A, et al. Microalbuminuria predicts mortality in non-insulin-dependent diabetes. Diabetic Med 1984; 1: 17–9

    PubMed  CAS  Google Scholar 

  70. Betteridge DJ. Lipids, diabetes and vascular disease: the time to act. Diabetic Med 1989; 6: 195–218

    PubMed  CAS  Google Scholar 

  71. Assmann G, Schulte H. Diabetes mellitus and hypertension in the elderly: concomitant hyperlipidemia and coronary heart disease risk. Am J Cardiol 1989; 63: 33H–37H

    PubMed  CAS  Google Scholar 

  72. Rosengren A, Welin L, Tsipogianni A, et al. Impact of cardiovascular risk factors on coronary heart disease and mortality among middle aged diabetic men: a general population study. BMJ 1989; 299: 1127–31

    PubMed  CAS  Google Scholar 

  73. Reaven GM, Greenfield MS. Diabetic hypertriglyceridemia —evidence for three clinical syndromes. Diabetes 1981; 30 Suppl. 2: 66–75

    PubMed  CAS  Google Scholar 

  74. Laakso M, Sarlund H, Mykkanen L. Insulin resistance is associated with lipid and lipoprotein abnormalities in subjects with varying degrees of glucose tolerance. Arteriosclerosis 1990; 10: 223–31

    PubMed  CAS  Google Scholar 

  75. Taskinen MR. Lipoprotein lipase in diabetes. Diabetes Metabol Rev 1987; 3: 551–70

    CAS  Google Scholar 

  76. James RW, Pometta D. The distribution profiles of very low density and low density lipoproteins in poorly-controlled male, type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1991; 34: 246–52

    PubMed  CAS  Google Scholar 

  77. Iwai M, Yoshino G, Matsushita M, et al. Abnormal lipoprotein composition in normolipidemic diabetic patients. Diabetes Care 1990; 13: 792–6

    PubMed  CAS  Google Scholar 

  78. Simpson HS, Williamson CM, Olivecrona T, et al. Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis 1990; 85: 193–202

    PubMed  CAS  Google Scholar 

  79. Bergman M, Gidez LI, Eder HA. High-density lipoprotein subclasses in diabetes. Am J Med 1986; 81: 488–92

    PubMed  CAS  Google Scholar 

  80. Fielding CJ, Reaven GM, Liu G, Fielding PE. Increased free cholesterol in plasma low and very low density lipoproteins in non-insulin-dependent diabetes mellitus: its role in the inhibition of cholesteryl ester transfer. Proc Natl Acad Sci USA 1984; 81: 2512–6

    PubMed  CAS  Google Scholar 

  81. Bagdade JD, Buchanan WE, Kuusi T, et al. Persistent abnormalities in lipoprotein composition in noninsulin dependent diabetes after intensive insulin therapy. Arteriosclerosis 1990; 10: 232–9

    PubMed  CAS  Google Scholar 

  82. Krauss RM, Burke DJ. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res 1982; 23: 97–104

    PubMed  CAS  Google Scholar 

  83. Austin MA, Breslow JL, Hennekens CH, et al. Low density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988; 260: 1917–21

    PubMed  CAS  Google Scholar 

  84. Tilly-Kiesi M, Syvanne M, Kuusi T, et al. Abnormalities of low density lipoproteins in normolipidemic type II diabetic and nondiabetic patients with coronary artery disease. J Lipid Res 1992; 33: 333–42

    PubMed  CAS  Google Scholar 

  85. Reaven GM, Chen IYD, Jeppesen J, et al. Insulin resistance and hyperinsulinemia in individuals with small, dense, low density lipoprotein particles. J Clin Invest 1993; 92: 141–6

    PubMed  CAS  Google Scholar 

  86. Betteridge DJ. Diabetic dyslipidemia. Am J Med 1994; 96 Suppl. 6a: 25S–31S

    PubMed  CAS  Google Scholar 

  87. Rosengren A, Wilhelmsen L, Eriksson E, et al. Lipoprotein(a) and coronary heart disease: a prospective case-control study in a general population sample of middle aged men. BMJ 1990; 301: 1248–51

    PubMed  CAS  Google Scholar 

  88. Armstrong VW, Cremer P, Eberle E, et al. The association between serum Lp(a) concentrations and angiographically assessed coronary atherosclerosis — dependence on serum LDL levels. Atherosclerosis 1986; 62: 249–57

    PubMed  CAS  Google Scholar 

  89. Rath M, Niendorf A, Reblin T, et al. Detection and quantification of lipoprotein(a) in the arterial wall of 107 coronary bypass patients. Arteriosclerosis 1989; 9: 579–92

    PubMed  CAS  Google Scholar 

  90. Haffner SM, Tuttle KR, Rainwater DL. Lack of change of lipoprotein(a) concentration with improved glycemic control in subjects with type II diabetes. Metabolism 1992; 41: 116–20

    PubMed  CAS  Google Scholar 

  91. Heesen BJ, Wolffenbuttel BHR, Leurs PB, et al. Lipoprotein(a) levels in relation to diabetic complications in patients with non-insulin dependent diabetes. Eur J Clin Invest 1993; 23: 580–4

    PubMed  CAS  Google Scholar 

  92. Haffner SM, Morales PA, Stern MP, et al. Lp(a) concentrations in NIDDM. Diabetes 1992; 41: 1267–72

    PubMed  CAS  Google Scholar 

  93. Jenkins AJ, Steele JS, Janus ED, et al. Plasma apolipoprotein(a) is increased in type 2 (non-insulin-dependent) diabetic patients with microalbuminuria. Diabetologia 1992; 35: 1055–9

    PubMed  CAS  Google Scholar 

  94. Lyons TJ. Oxidized low density lipoproteins: a role in the pathogenesis of atherosclerosis in diabetes? Diabetic Med 1991; 8: 411–9

    PubMed  CAS  Google Scholar 

  95. Witztum JL. Role of oxidised low density lipoprotein in atherogenesis. Br Heart J 1993; 69 Suppl.: S12–S18

    PubMed  CAS  Google Scholar 

  96. Esterbauer H, Gebicki J, Puhl H, Jurgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 1992; 13: 341–90

    PubMed  CAS  Google Scholar 

  97. Lopes-Virella MF, Virella G. Immune mechanisms of atherosclerosis in diabetes mellitus. Diabetes 1992; 41 Suppl. 2: 86–90

    PubMed  Google Scholar 

  98. Gallou G, Ruelland A, Legras B, et al. Plasma malondialdehyde in type 1 and type 2 diabetic patients. Clin Chim Acta 1993; 214: 227–34

    PubMed  CAS  Google Scholar 

  99. Velazquez E, Winocour PH, Kesteven P, et al. Relation of lipid peroxides to macrovascular disease in type 2 diabetes. Diabetic Med 1991; 8: 752–8

    PubMed  CAS  Google Scholar 

  100. Altomare E, Vendemiale G, Chicco D, et al. Increased lipid peroxidation in type 2 poorly controlled diabetic patients. Diabete Metab 1992; 18: 264–71

    PubMed  CAS  Google Scholar 

  101. Mooradian AD. Increased serum conjugated dienes in elderly diabetic patients. J Am Geriatr Soc 1991; 39: 571–4

    PubMed  CAS  Google Scholar 

  102. Jennings PE, Jones AF, Florkowski CM, et al. Increased diene conjugates in diabetic subjects with microangiopathy. Diabetic Med 1987; 4: 452–6

    PubMed  CAS  Google Scholar 

  103. Babiy AV, Gebicki JM, Sullivan DR, et al. Increased oxidizability of plasma lipoproteins in diabetic patients can be decreased by probucol therapy and is not due to glycation. Biochem Pharmacol 1992; 43: 995–1000

    PubMed  CAS  Google Scholar 

  104. De Graaf J, Hendriks JCM, Demacker PNM, et al. Identification of multiple dense LDL subfractions with enhanced susceptibility to in vitro oxidation among hypertriglyceridemic subjects — normalization after clofibrate treatment. Arterioscler Thromb 1993; 13: 712–9

    PubMed  Google Scholar 

  105. Steinbrecher UP, Witztum JL. Glucosylation of low-density lipoproteins to an extent comparable to that seen in diabetes slows their catabolism. Diabetes 1984; 33: 130–4

    PubMed  CAS  Google Scholar 

  106. Lyons TJ. Lipoprotein glycation and its metabolic consequences. Diabetes 1992; 41 Suppl. 2: 67–73

    PubMed  CAS  Google Scholar 

  107. Calvo C, Verdugo C. Association in vivo of glycated apolipoprotein A-1 with high density lipoproteins. Eur J Clin Chem Clin Biochem 1992; 30: 3–5

    PubMed  CAS  Google Scholar 

  108. Bucala R, Makita Z, Koschinsky T, et al. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci USA 1993; 90: 6434–8

    PubMed  CAS  Google Scholar 

  109. Bucala R, Makita Z, Koschinsky T, et al. Advanced glycosylation of the apoprotein and lipid components of LDL reflects the number and severity of diabetic complications [abstract]. Diabetes 1993; 42 Suppl. 1: 119A

    Google Scholar 

  110. Stout RW. Insulin and atheroma — 20-yr perspective. Diabetes Care 1990; 31: 631–54

    Google Scholar 

  111. Jarrett RJ. Is insulin atherogenic? Diabetologia 1988; 31: 71–5

    PubMed  CAS  Google Scholar 

  112. Stolar MW. Atherosclerosis in diabetes: the role of hyperinsulinemia. Metabolism 1988; 37 Suppl. 1:1–9

    PubMed  CAS  Google Scholar 

  113. Robertson DA, Hale PJ, Nattrass M. Macrovascular disease and hyperinsulinemia. In: Nattrass M, Hale PJ, editors. Ballière’s clinical endocrinology and metabolism, non-insulin-dependent diabetes. London: Baillière Tindall, 1988

    Google Scholar 

  114. Alberti KGMM, Gries FA. Management of non-insulin-dependent diabetes mellitus in Europe: a consensus view. Diabetic Med 1988; 5: 275–81

    PubMed  CAS  Google Scholar 

  115. Schneider SH, Ruderman NB. Exercise and NIDDM. Technical Review. Diabetes Care 1990; 13: 785–9

    Google Scholar 

  116. Wales JK. Treatment of type 2 (non-insulin-dependent) diabetic patients with diet alone. Diabetologia 1982; 23: 240–5

    PubMed  CAS  Google Scholar 

  117. Henry RR, Wallace P, Olefsky JM. Effects of weight loss on mechanisms of hyperglycemia in obese non-insulin-dependent diabetes mellitus. Diabetes 1986; 35: 990–8

    PubMed  CAS  Google Scholar 

  118. Hughes TA, Gwynne JT, Switzer BR, et al. Effects of caloric restriction and weight loss on glycemic control, insulin release and resistance, and atherosclerotic risk in obese patients with type II diabetes mellitus. Am J Med 1984; 77: 7–17

    PubMed  CAS  Google Scholar 

  119. Uusitupa MU, Laakso M, Sarlund H, et al. Effects of a very-low-calorie diet on metabolic control and cardiovascular risk factors in the treatment of obese non-insulin-dependent diabetics. Am J Clin Nutr 1990; 51: 768–73

    PubMed  CAS  Google Scholar 

  120. Loubatières A, Mariani MM, Chapal J. Insulino-sécrétion étudiée sur le pancréas isolé et perfusé du rat: I. Synergie entre glucose et sulfonamides hypoglycémiants. Diabetologia 1969; 6: 457–66

    Google Scholar 

  121. Gerich JE. Drug therapy — oral hypoglycemic agents. N Engl J Med 1989; 321: 1231–45

    PubMed  CAS  Google Scholar 

  122. Henquin JC. Tolbutamide stimulation and inhibition of insulin release: studies of the underlying ionic mechanisms in isolated rat islets. Diabetologia 1980; 18: 151–60

    PubMed  CAS  Google Scholar 

  123. Sturgess NC, Ashford MLJ, Cook D, et al. The sulfonylurea receptor may be an ATP sensitive potassium channel. Lancet 1985; 2: 474–5

    PubMed  CAS  Google Scholar 

  124. Cerasi E, Efendic S, Thornqvist C, et al. Effect of two sulphonylureas on the dose kinetics of glucose-induced insulin release in normal and diabetic subjects. Acta Endocrinologica 1979; 91: 282–93

    PubMed  CAS  Google Scholar 

  125. Lopez-Alarcon L, Melian E, Munoz-Alonso MJ, et al. Sulfonylureas activate glycogen phosphorylase and increase cytosolic free-Ca2+ levels in isolated rat hepatocytes. Metabolism 1993; 42: 624–30

    PubMed  CAS  Google Scholar 

  126. Maloff BL, Lockwood DH. In vitro effects of sulfonylurea on insulin action in adipocytes: potentiation of insulin-stimulated hexose transport. J Clin Invest 1981; 68: 85–90

    PubMed  CAS  Google Scholar 

  127. Johnson AB, Argyraki M, Thow JC, et al. The effect of sulphonylurea therapy on skeletal muscle glycogen synthase activity and insulin secretion in newly presented type 2 (non-insulin-dependent) diabetic patients. Diabetic Med 1991; 8: 243–53

    PubMed  CAS  Google Scholar 

  128. Ratzmann KP, Schulz B, Heinke P, et al. Tolbutamide does not alter insulin requirement in type 1 (insulin-dependent) diabetes. Diabetologia 1984; 27: 8–12

    PubMed  CAS  Google Scholar 

  129. Metz SA, Halter JB, Robertson RP. Paradoxical inhibition of insulin secretion by glucose in human diabetes mellitus. J Clin Endocrinol Metabol 1979; 48: 827–35

    CAS  Google Scholar 

  130. Hosker JP, Burnett MA, Davies EG, et al. Sulphonylurea therapy doubles B-cell response to glucose in type 2 diabetic patients. Diabetologia 1985; 28: 809–14

    PubMed  CAS  Google Scholar 

  131. Hosker JP, Rudenski AS, Burnett MA, et al. Metabolism 1989; 38: 767–72

    PubMed  CAS  Google Scholar 

  132. Ravanam A, Jeffery J, Nehlawi M, et al. Improvement of glucose-primed intravenous glucose tolerance and correction of acute insulin decrement by glipizide in type II diabetes. Metabolism 1991; 40: 1173–7

    PubMed  CAS  Google Scholar 

  133. Streeten DHP, Gerstein M, Woolfold D, et al. Measurement of glucose disposal rates in normal and diabetic human subjects after repeated intravenous injections of glucose. J Clin Endocrinol Metabol 1964; 24: 761–73

    CAS  Google Scholar 

  134. Peterson CM, Sims RV, Jones RL, et al. Bioavailability of glipizide and its effect on blood glucose and insulin levels in patients with non-insulin-dependent diabetes. Diabetes Care 1982; 5: 497–500

    PubMed  CAS  Google Scholar 

  135. Greenfield MS, Doberne L, Rosenthal M, et al. Effect of sulfonylurea treatment on in vivo insulin secretion and action in patients with non- insulin-dependent diabetes mellitus. Diabetes 1982; 31: 307–12

    PubMed  CAS  Google Scholar 

  136. Mandarino LJ, Gerich JE. Prolonged sulfonylurea administration decreases insulin resistance and increases insulin secretion in non-insulin-dependent diabetes mellitus: evidence for improved insulin action at a postreceptor site in hepatic as well as extrahepatic tissues. Diabetes Care 1984; 7 Suppl. 1: 89–99

    PubMed  Google Scholar 

  137. Couturier E. Gliclazide on long-term therapy increases insulin response to glucose of type II diabetics. Diab Res Clin Pract 1986; 1: 343–7

    CAS  Google Scholar 

  138. Sinay IR, Arias P, Schnitman MA, et al. Diet only or sulfonylureas in mild type II diabetes (NIDDM)? Pathophysiologic and therapeutic implications. Acta Diabetol Lat 1988; 25: 289–97

    PubMed  CAS  Google Scholar 

  139. Harrower ADB. Comparison of diabetic control in type 2 (non-insulin-dependent) diabetic patients treated with different sulphonylureas. Curr Med Res Opin 1985; 9: 676–80

    PubMed  CAS  Google Scholar 

  140. Kilo C, Dudley J, Kalb E. Evaluation of safety and efficacy of gliclazide in non-insulin-dependent diabetic patients. Diabetes Res Clin Pract 1991; 14 Suppl.: 79S–82S

    Google Scholar 

  141. Groop L, Harno K. Diurnal pattern of plasma insulin and blood glucose during glibenclamide and glipizide therapy in elderly diabetics. Acta Endocrinologica 1980; Suppl. 239: 44–52

    CAS  Google Scholar 

  142. Bodansky HJ, Medback S, Cudworth AG, et al. Long term improvement in insulin response with gliclazide treatment. Diabete Metab 1982; 8: 319–22

    PubMed  CAS  Google Scholar 

  143. Guilausseau P-J. An evaluation of long-term glycemic control in non-insulin-dependent diabetes mellitus: the relevance of glycated hemoglobin. Am J Med 1991; 90 Suppl. 6A: 46–9S

    Google Scholar 

  144. Best JD, Judzewitsch RG, Pfeifer MA, et al. The effect of chronic sulfonylurea therapy on hepatic glucose production in non-insulin-dependent diabetes. Diabetes 1982; 31: 333–8

    PubMed  CAS  Google Scholar 

  145. Kolterman OG, Gray RS, Shapiro JA, et al. The acute and chronic effects of sulfonylurea therapy in type II diabetic subjects. Diabetes 1984; 33: 346–54

    PubMed  CAS  Google Scholar 

  146. Patel TB. Effects of tolbutamide on gluconeogenesis and glycolysis in isolated perfused rat liver. Am J Physiol 1986; 250: E82–6

    PubMed  CAS  Google Scholar 

  147. Fineberg SE, Schneider SH. Glipizide versus tolbutamide, an open trial: effects on insulin secretory patterns and glucose concentrations. Diabetologia 1980; 18: 49–54

    PubMed  CAS  Google Scholar 

  148. Davidson JK. Glipizide versus tolbutamide: safety and efficacy. In: Glipizide: a worldwide review. Princeton (NJ): Excerpta Medica, 1984: 179–185

    Google Scholar 

  149. Jerums G, Murray RML, Seeman E, et al. Lack of effect of gliclazide on early diabetic nephropathy and retinopathy: a two year controlled study. Diabetes Res Clin Pract 1987; 3: 71–80

    PubMed  CAS  Google Scholar 

  150. Larkins RG, Jerums G, Taft JL, et al. Lack of effect of gliclazide on platelet aggregation in insulin-treated and non-insulin-treated diabetes: a two-year controlled study. Diabetes Res Clin Practice 1988; 4: 81–87

    CAS  Google Scholar 

  151. Melander A, Bitzen P-O, Faber O, et al. Sulphonylurea anti-diabetic drugs: an update of their clinical pharmacology and rational therapeutic use. Drugs 1989; 37: 58–72

    PubMed  CAS  Google Scholar 

  152. Birkeland KI, Mowinckel P, Furuseth K, et al. Long-term randomized placebo-controlled double-blind therapeutic comparison of glipizide and glyburide. Diabetes Care 1994; 17: 45–9

    PubMed  CAS  Google Scholar 

  153. Blohmé G, Waldenström J. Glibenclamide and glipizide in maturity onset diabetes. Acta Med Scand 1979; 206: 263–7

    PubMed  Google Scholar 

  154. Huupponen RK, Viikari JS, Saarimaa H. Correlation of serum lipids with diabetes control in sulfonylurea-treated diabetic patients. Diabetes Care 1984; 7: 575–8

    PubMed  CAS  Google Scholar 

  155. Howard BV, Xiaoren P, Harper I, et al. Effect of sulfonylurea therapy on plasma lipids and high-density lipoprotein composition in non-insulin-dependent diabetes mellitus. Am J Med 1985; 79: 78–85

    PubMed  CAS  Google Scholar 

  156. Rains SGH, Wilson GA, Richmond W, et al. The effect of glibenclamide and metformin on serum lipoproteins in type 2 diabetes. Diabetic Med 1988; 5: 653–8

    PubMed  CAS  Google Scholar 

  157. Elkeles RS. The effects of oral hypoglycaemic drugs on serum lipids and lipoproteins in non-insulin-dependent diabetes (NIDDM). Diabete Metab 1991; 17 (1 Pt 2): 197–200

    PubMed  CAS  Google Scholar 

  158. Sartor G, Schersten B, Carlstrom S, et al. Ten-year follow-up of subjects with impaired glucose tolerance: prevention of diabetes by tolbutamide and diet regulation. Diabetes 1980; 29: 41–9

    PubMed  CAS  Google Scholar 

  159. Persson G. Cardiovascular complications in diabetics and subjects with reduced glucose tolerance. Acta Med Scand 1977; Suppl. 605: 1–48

    Google Scholar 

  160. Camerini-Davalos RA, Velasco C, Glasser M, et al. Drug-induced reversal of early diabetic microangiopathy. N Engl J Med 1983; 309: 1551–6

    PubMed  CAS  Google Scholar 

  161. Jones RH, Parsons V, Watkins PJ. The effect of gliclazide on platelet adhesion and urinary protein excretion in diabetic nephropathy. In: Keen H, Caldwell ADS, Murphy M, et al., editors. Gliclazide and the treatment of diabetes. Royal Society of Medicine International Congress and Symposium series No 20. London: Royal Society of Medicine, 1980: 231–8

    Google Scholar 

  162. Lagrue G, Riveline B. Effects of longterm administration of gliclazide on proteinuria and renal function in patients with diabetic nephropathy. In: Keen H, Caldwell ADS, Murphy M, et al., editors. Gliclazide and the treatment of diabetes. Royal Society of Medicine International Congress and Symposium series No 20. London: Royal Society of Medicine, 1980: 219–24

    Google Scholar 

  163. Lagarde M, Dechavanne M, Thouverez JP, et al. Effects of gliclazide, a new antidiabetic agent, on the platelet release reaction, role of adenylate cyclase. Thromb Res 1976; 6: 345–55

    Google Scholar 

  164. Ponari O, Givardi E, Megha S, et al. Antiplatelet effects of long term treatment with gliclazide in diabetic patients. Thromb Res 1980; 16: 191–203

    Google Scholar 

  165. Marquié G. Preventive effect of gliclazide on experimental atherosclerosis in rabbits. Diabetologia 1978; 14: 269–75

    PubMed  Google Scholar 

  166. Akanuma Y, Kosaka K, Kanazawa Y, et al. Diabetic retinopathy in non-insulin-dependent diabetes mellitus patients: the role of gliclazide. Am J Med 1991; 90 Suppl. 6A: 74S–76S

    PubMed  CAS  Google Scholar 

  167. Regnault AF. Prognosis of non-proliferative diabetic retinopathy during treatment with gliclazide. Royal Society of Medicine International Congress and Symposium series 20. London: Academic Press and Royal Society of Medicine, 1980: 249–59

    Google Scholar 

  168. Minami N, Matsuba I, Saito S, et al. The effect of long-term treatment with gliclazide on diabetic retinopathy. Jikeikai Med J 1981; 28: 127–31

    Google Scholar 

  169. Cabrai BV, Fernando R, Villegas-Cinco A, et al. Gliclazide in treatment of early diabetic retinal microvascular changes. Therapie 1985; 40: 231–3

    Google Scholar 

  170. Akanuma Y, Kosaka K, Kanazawa Y, et al. Long-term comparison of oral hypoglycemic agents in diabetic retinopathy. Diabetes Res Clin Pract 1988; 5: 81–90

    PubMed  CAS  Google Scholar 

  171. Palmer KJ, Brogden RN. Gliclazide: an update of its pharmacological properties and therapeutic efficacy in non-insulin-dependent diabetes mellitus. Drugs 1993; 46: 92–125

    PubMed  CAS  Google Scholar 

  172. Robertson DA, Home PD. Problems and pitfalls of sulphonylurea therapy in older patients. Drugs & Aging 1993; 3: 510–24

    CAS  Google Scholar 

  173. Bijlstra PJ, Smits P, Lutterman JA, et al. Glibenclamide inhibits the vasodilator effect of diazoxide in man. Diabetologia 1994; 37 Suppl. 1: A162

    Google Scholar 

  174. Panten U. Extrapankreatische Wirkungen der Sulfonylharnstoffe, insbesondere bei Ischamie. Diabetes Stoffwechsel 1994; 3 Suppl.: 106

    Google Scholar 

  175. Meissner HP. Molekularer Wirkungsmechanismus der Sulfonyl-harnstoffe — therapeutische konsequenzen? Diabetes Stoffwechsel 1994; 3 Suppl.: 106

    Google Scholar 

  176. Smits P, Thien T. Cardiovascular effects of sulphonylurea derivatives: implications for the treatment of NIDDM? Diabetologia 1995; 38: 116–21

    PubMed  CAS  Google Scholar 

  177. Williams RH, Palmer JP. Farewell to phenformin for treating diabetes mellitus. Ann Int Med 1975; 83: 567–8

    PubMed  CAS  Google Scholar 

  178. Nattrass M, Alberti KGMM. Biguanides. Diabetologia 1978; 14: 71–4

    PubMed  CAS  Google Scholar 

  179. Penicaud L, Hitier Y, Ferre P, et al. Hypoglycaemic effect of metformin in genetically obese (fa/fa) rats results from an increased utilization of blood glucose by intestine. Biochem J 1989; 262: 881–5

    PubMed  CAS  Google Scholar 

  180. Wilcock C, Bailey CJ. Sites of metformin-stimulated glucose metabolism. Biochem Pharmacol 1990; 39: 1831–4

    PubMed  CAS  Google Scholar 

  181. Perriello G, Misericordia P, Volpi E, et al. Acute antihyperglycemic mechanisms of metformin in NIDDM: evidence for suppression of lipid oxidation and hepatic glucose production. Diabetes 1994; 43: 920–8

    PubMed  CAS  Google Scholar 

  182. Matthaei S, Hamann A, Klein HH, et al. Association of metformin’s effect to increase insulin-stimulated glucose transport with potentiation of insulin-induced translocation of glucose transporters from intracellular pool to plasma membrane in rat adipocytes. Diabetes 1991; 40: 850–7

    PubMed  CAS  Google Scholar 

  183. Pedersen O, Nielsen O, Bak J, et al. The effects of metformin on adipocyte insulin action and metabolic control in obese subjects with type II diabetes. Diabetic Med 1989; 6: 249–56

    PubMed  CAS  Google Scholar 

  184. Kozka IJ, Holman GD. Metformin blocks downregulation of cell surface GLUT-4 caused by chronic insulin treatment of rat adipocytes. Diabetes 1993; 42: 1159–65

    PubMed  CAS  Google Scholar 

  185. Rosetti L, DeFronzo RA, Gherzi R, et al. Effect of metformin treatment on insulin action in diabetic rats: in vivo and in vitro correlations. Metabolism 1990; 39: 425–35

    Google Scholar 

  186. Purrello F, Gullo D, Brunetti A, et al. Direct effects of biguanides on glucose utilization in vitro. Metabolism 1987; 36: 774–6

    PubMed  CAS  Google Scholar 

  187. Grant PJ, Stickland MH, Booth NA, et al. Metformin causes a reduction in basal and post-venous occlusion plasminogen activator inhibitor-1 in type 2 diabetic patients. Diabetic Med 1991; 8: 361–5

    PubMed  CAS  Google Scholar 

  188. Rizkalla SW, Elgrably F, Tchobroutsky G, et al. Effects of metformin on erythrocyte insulin binding in normal weight subjects, in obese non diabetic subjects and type I and type II diabetic patients. Diabetes Metab Rev 1986; 12: 219–24

    CAS  Google Scholar 

  189. Prager R, Schernthaner G. Insulin receptor binding to monocytes, insulin secretion and glucose tolerance following metformin treatment. Diabetes 1983; 32: 1083–6

    PubMed  CAS  Google Scholar 

  190. Hother-Nielsen O, Schmitz O, Andersen PH, et al. Metformin improves peripheral but not hepatic insulin action in obese patients with type II diabetes. Acta Endocrinol 1989; 120: 257–65

    PubMed  CAS  Google Scholar 

  191. Nosadini R, Avogaro A, Trevisan R, et al. Effect of metformin on insulin-stimulated glucose turnover and insulin binding to receptors in type II diabetes. Diabetes Care 1987; 10: 62–7

    PubMed  CAS  Google Scholar 

  192. Jackson RA, Hawa MI, Jaspan JB, et al. Mechanism of metformin action in non-insulin-dependent diabetes. Diabetes 1987; 36: 632–40

    PubMed  CAS  Google Scholar 

  193. Wu M-S, Johnston P, Sheu WH-H, et al. Effect of metformin on carbohydrate and lipoprotein metabolism in NIDDM patients. Diabetes Care 1990; 13: 1–8

    PubMed  CAS  Google Scholar 

  194. DeFronzo RA, Barzilai N, Simonson DC. Mechanism of metformin action in obese and lean non-insulin-dependent diabetic subjects. J Clin Endocrinol Metabol 1991; 73: 1294–301

    CAS  Google Scholar 

  195. Marquié G. Metformin action on lipid metabolism in lesions of experimental aortic atherosclerosis of rabbits. Atherosclerosis 1983; 47: 7–17

    PubMed  Google Scholar 

  196. Franke RP, Fuhrmann R, Schnittler HJ, et al. Inhibition of human endothelial cell proliferation by metformin during states of hypoxia. Diabete Metab 1988; 14: 571–4

    Google Scholar 

  197. Pournaras CJ, Strommer KN, Tsacopoulos M, et al. Experimental branch vein occlusion in miniature pigs: effects of metformin on the evolution of the ischemic microangiopathy. Diabete Metab 1988; 14: 580–6

    Google Scholar 

  198. Hermann LS, Kjellstrom T, Schersten B, et al. Therapeutic comparison of metformin and sulfonylurea, alone and in various combinations. Diabetes Care 1994; 17: 1100–9

    PubMed  CAS  Google Scholar 

  199. Clissold SP, Edwards C. Acarbose: a preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential. Drugs 1988; 35: 214–43

    PubMed  CAS  Google Scholar 

  200. Balfour JA, McTavish D. Acarbose: an update of its pharmacology and therapeutic use in diabetes mellitus. Drugs 1993; 46: 1025–54

    PubMed  CAS  Google Scholar 

  201. Toeller M. Efficacy of α-glucosidae inhibitors in NIDDM subjects. Eur J Clin Invest 1994; 24 Suppl. 3: 31–5

    PubMed  Google Scholar 

  202. Hanefeld M, Fischer S, Schulze J, et al. Therapeutic potentials of acarbose as first line drug in non-insulin dependent diabetes insufficiently treated with diet alone. Diabetes Care 1991; 14: 732–7

    PubMed  CAS  Google Scholar 

  203. Rios MS. Acarbose and insulin therapy in type 1 diabetes mellitus. Eur J Clin Investig 1994; 24 Suppl. 3: 36–9

    Google Scholar 

  204. Decarr LB, Velazquez N, Vasselli JR. Acarbose reduces non-enzymatic glycation of low density lipoprotein (GLDL) and improves lipoprotein composition in sucxrose-fed diabetic rats. Diabetes 1991; 40 Suppl. 1:270

    Google Scholar 

  205. Cohen MP, Klepser H. Alpha-glucosidase inhibition prevents increased collagen fluorescence in experimental diabetes. Gen Pharmacol 1991; 22: 607–10

    PubMed  CAS  Google Scholar 

  206. Cohen AM, Rosenmann E. Acarbose treatment and diabetic nephropathy in the Cohen diabetic rat. Horm Metabol Res 1990; 22: 511–5

    CAS  Google Scholar 

  207. Sima AAF, Chakrabarti S. Long-term suppression of postprandial hyperglycaemia with acarbose retards the development of neuropathies in the BB/W rat. Diabetologia 1992; 35: 325–30

    PubMed  CAS  Google Scholar 

  208. Suter SL, Nolan JJ, Wallace P, et al. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 1992; 15: 193–203

    PubMed  CAS  Google Scholar 

  209. Hofmann CA, Colca JR. New oral thiazolidinedione antidiabetic agents act as insulin sensitizers. Diabetes Care 1992; 15: 1075–8

    PubMed  CAS  Google Scholar 

  210. Genuth S. Management of the adult-onset diabetic with sulfonyl-urea drug failure. In: Karam JH, ed. Endocrinology and Metabolism Clinics of North America: diabetes mellitus —perspectives on therapy. Philadelphia: WB Saunders Co., 1992: 351–70

    Google Scholar 

  211. Wolffenbuttel BHR. Combined use of insulin and oral hypo-glycaemic agents in the treatment of patients with diabetes mellitus. Eur J Intern Med 1989; 1: 89–95

    Google Scholar 

  212. Kudlacek S, Schernthaner G. The effect of insulin treatment on HbA1c, body weight and lipids in type 2 diabetic patients with secondary-failure to sulfonylureas: a five year follow-up study. Horm Metabol Res 1992; 24: 478–83

    CAS  Google Scholar 

  213. Liu QZ, Knowler WC, Nelson RG, et al. Insulin treatment, endogenous insulin concentration, and ECG abnormalities in diabetic Pima Indians: cross-sectional and prospective analyses. Diabetes 1992; 41: 1141–50

    PubMed  CAS  Google Scholar 

  214. Lindstrom T, Olsson AG, von Schenck H, et al. Insulin treatment improves microalbuminuria and other cardiovascular risk factors in patients with type 2 diabetes mellitus. J Intern Med 1994; 235: 253–61

    PubMed  CAS  Google Scholar 

  215. Lindstrom T, Olsson AG, Eriksson P, et al. Long-term improvement of glycemic control by insulin treatment in NIDDM patients with secondary failure. Diabetes Care 1994; 17: 719–21

    PubMed  CAS  Google Scholar 

  216. Klein R, Klein BEK, Moss SE. Epidemiology of proliferative diabetic retinopathy. Diabetes Care 1992; 15: 1875–91

    PubMed  CAS  Google Scholar 

  217. Firth RG, Bell PM, Rizza RA. Effects of tolazamide and exogenous insulin on insulin action in patients with non-insulin-dependent diabetes mellitus. N Engl J Med 1986; 314: 1280–6

    PubMed  CAS  Google Scholar 

  218. Samanta A, Burden AC, Kinghorn A. A comparative study of sulphonylurea and insulin therapy in non-insulin-dependent diabetics who had failed on diet therapy. Diabetes Res 1987; 4: 183–5

    PubMed  CAS  Google Scholar 

  219. Wolffenbuttel BHR, Weber RFA, Verschoor L. A randomized cross-over study of sulfonylurea and insulin treatment in patients with non-insulin-dependent diabetes mellitus failing on diet therapy. Diabetic Med 1989; 6: 520–5

    PubMed  CAS  Google Scholar 

  220. University Group Diabetes Programme. A study of the effect of hypoglycemic agents on vascular complications in patients with adult-onset diabetes: I. Design, methods and baseline results. Diabetes 1970; 19 Suppl. 2: 747–83

    Google Scholar 

  221. University Group Diabetes Programme. A study of the effect of hypoglycemic agents on vascular complications in patients with adult-onset diabetes: II. Mortality results. Diabetes 1970; 19 Suppl. 2: 789–830

    Google Scholar 

  222. University Group Diabetes Programme. A study of the effect of hypoglycemic agents on vascular complications in patients with adult-onset diabetes: VI. Supplementary report on non-fatal events in patients treated with tolbutamide. Diabetes 1976; 25: 1129–53

    Google Scholar 

  223. Feinstein AR. The persistent clinical failures and fallacies of the UGDP study. Clin Pharmacol Ther 1976; 19: 78–93

    PubMed  CAS  Google Scholar 

  224. Kolata GB. Controversy over study of diabetes drugs continues for nearly a decade. Science 1979; 203: 986–90

    PubMed  CAS  Google Scholar 

  225. Kilo C, Miller JP, Williamson JR. The crux of the UGDP: spurious results and biologically inappropriate data analysis. Diabetologia 1980; 18: 179–85

    PubMed  CAS  Google Scholar 

  226. Kilo C, Miller JP, Williamson JR. The Achilles heel of the University Group Diabetes program. JAMA 1980; 243: 450–7

    PubMed  CAS  Google Scholar 

  227. Audit confirms conclusions of UGDP study on oral antidiabetic drugs [editorial]. FDA Drug Bull 1978; 8: 34–5

    Google Scholar 

  228. Bradley RF, Dolger H, Forsham PH, et al. ‘Settling the UGDP controversy’? JAMA 1975; 232: 813–7

    PubMed  CAS  Google Scholar 

  229. UK Prospective Diabetes Study. II. Reduction in HbA1c with basal insulin supplement, sulfonylurea, or biguanide therapy in maturity-onset diabetes. Diabetes 1985; 34: 793–8

    Google Scholar 

  230. UK Prospective Diabetes Study Group. UK Prospective Diabetes Study (UKPDS). VIII. Study design, progress and performance. Diabetologia 1991; 34: 877–90

    Google Scholar 

  231. DCCT Research Group. Diabetes Control and Complications Trial (DCCT): results of feasibility study. Diabetes Care 1987; 10: 1–9

    Google Scholar 

  232. Colwell JA. DCCT findings — applicability and implications for NIDDM. Diabetes Rev 1994; 2: 277–91

    Google Scholar 

  233. Abraira C, Johnson N, Colwell J, et al. VA Cooperative study on glycemic control and complications in type II diabetes; results of the completed feasibility trial. Diabetes 1994; 43 Suppl. 1: 59A

    Google Scholar 

  234. Pravastatin Multinational Study Group for Cardiac Risk Patients. Effects of pravastatin in patients with serum total cholesterol levels from 5.2 to 7.8 mmol/liter (200 to 300 mg/dl) plus two additional atherosclerotic risk factors. Am J Cardiol 1993; 72: 1031–7

    Google Scholar 

  235. Furberg CD, Byington RP, Crouse JR, et al. Pravastatin, lipids, and major coronary events. Am J Cardiol 1994; 73: 1133–4

    PubMed  CAS  Google Scholar 

  236. MAAS investigators. Effect of simvastatin on coronary atheroma: the Multicentre Anti-Atheroma Study (MAAS). Lancet 1994; 344: 633–8

    Google Scholar 

  237. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9

    Google Scholar 

  238. Steiner G. Diabetes and atherosclerosis: epidemiology and intervention trials. Atherosclerosis 1994; 109: 339

    Google Scholar 

  239. Edelstein D, Brownlee M. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes 1992; 41: 26–9

    PubMed  CAS  Google Scholar 

  240. Hammes H-P, Martin S, Federlin K, et al. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci USA 1991; 88: 11555–8

    PubMed  CAS  Google Scholar 

  241. Soules-Liparota T, Cooper M, Papazoglou D, et al. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozotocin-induced diabetic rats. Diabetes 1991; 40: 1328–35

    Google Scholar 

  242. Ellis EN, Good BH. Prevention of glomerular basement membrane thickening by aminoguanidine in experimental diabetes mellitus. Metabolism 1991; 40: 1016–9

    PubMed  CAS  Google Scholar 

  243. Edelstein D, Brownlee M. Aminoguanidine ameliorates albuminuria in diabetic hypertensive rats. Diabetologia 1992; 35: 96–7

    PubMed  CAS  Google Scholar 

  244. Kihara M, Schmelzer JD, Poduslo JF, et al. Aminoguanidine effects on nerve blood flow, vascular permeability, electrophysiology and oxygen free radicals. Proc Natl Acad Sci USA 1991; 88: 6107–11

    PubMed  CAS  Google Scholar 

  245. Huijberts MSP, Wolffenbuttel BHR, Crijns FRL, et al. Aminoguanidine reduces regional albumin clearance, but not urinary albumin excretion in streptozotocin-diabetic rats. Diabetologia 1994; 37: 10–4

    PubMed  CAS  Google Scholar 

  246. Huijberts MSP, Wolffenbuttel BHR, Struyker Boudier HAJ, et al. Aminoguanidine treatment increases elasticity and decreases fluid filtration of large arteries from diabetic rats. J Clin Invest 1993; 92: 1407–11

    PubMed  CAS  Google Scholar 

  247. Picard S, Parthasarathy S, Fruebis J, et al. Aminoguanidine inhibits oxidative modification of low density lipoprotein protein and the subsequent increase in uptake by macrophage scavenger receptors. Proc Natl Acad Sci USA 1992; 89: 6876–80

    PubMed  CAS  Google Scholar 

  248. O’Brien RC, Panagiotopoulos S, Cooper ME, et al. Anti-atherogenic effect of aminoguanidine, an inhibitor of advanced glycation. Diabetes 1992; 41 Suppl. 1: 16A

    Google Scholar 

  249. Bucala R, Makita Z, Vega G, et al. Modification of LDL by advanced glycosylation endproducts contributes to the dyslipidemia of diabetes and renal insufficiency. Proc Natl Acad Sci USA 1994; 91: 9441–5

    PubMed  CAS  Google Scholar 

  250. Makita Z, Vlassara H, Rayfield E, et al. Hemoglobin-AGE: a circulating marker of advanced glycosylation. Science 1992; 258: 651–3

    PubMed  CAS  Google Scholar 

  251. Williamson JR, Chang K, Rowold E, et al. Diabetes-induced changes in vascular permeability and changes in granulation tissue levels of sorbitol, myoinositol, chiro-inositol, and scylloinositol are prevented by sorbinil. Metabolism 1986; 35: 41–5

    PubMed  CAS  Google Scholar 

  252. Pugliese G, Tilton RG, Speedy A, et al. Modulation of hemodynamic and vascular filtration changes in diabetic rats by dietary myo-inositol. Diabetes 1990; 39: 312–22

    PubMed  CAS  Google Scholar 

  253. Cohen MP, Dasmahapatra A, Shapiro E. Reduced glomerular sodium/potassium adenosine triphosphatase activity in acute streptozocin diabetes and its prevention by sorbinil. Diabetes 1985; 35: 1071–4

    Google Scholar 

  254. Goldfarb S, Ziyadeh FN, Kern EFO, et al. Effects of polyolpathway inhibition and dietary myo-inositol on glomerular hemodynamic function in experimental diabetes in rats. Diabetes 1991; 40: 465–71

    PubMed  CAS  Google Scholar 

  255. Chang WP, Dimitriadis E, Allen T, et al. The effect of aldose reductase inhibitors on glomerular prostagladin production and urinary albumin excretion in experimental diabetes mellitus. Diabetologia 1991; 34: 225–31

    PubMed  CAS  Google Scholar 

  256. Griffin BW, McNatt LG, Chandler ML, et al. Effects of two new aldose reductase inhibitors, AL-1567 and AL-1576, in diabetic rats. Metabolism 1987; 36: 486–90

    PubMed  CAS  Google Scholar 

  257. Stribling D, Mirrlees ZDJ, Harrison HE, et al. Properties of ICI 128,436, a novel aldose reductase inhibitor, and its effects on diabetic complications in the rat. Metabolism 1985; 34: 336–44

    PubMed  CAS  Google Scholar 

  258. Greene DA, Lattimer S. Action of sorbinil in diabetic peripheral nerve. Relationship of polyol (sorbitol) pathway inhibition to a myoinositol-mediated defect in sodium-potassium ATP-ase activity. Diabetes 1984; 33: 712–6

    PubMed  CAS  Google Scholar 

  259. Masson EA, Boulton AJM. Aldose reductase inhibitors in the treatment of diabetic neuropathy: a review of the rationale and clinical evidence. Drugs 1990; 39: 190–202

    PubMed  CAS  Google Scholar 

  260. Engerman RL, Kern TS. Aldose reductase fails to prevent retinopathy in diabetic and galactosemic dogs. Diabetes 1993; 42: 820–5

    PubMed  CAS  Google Scholar 

  261. Sorbinil Retinopathy Trial Research Group. A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Arch Ophthalmol 1990; 108: 1234–44

    Google Scholar 

  262. Pedersen MM, Christiansen JS, Mogensen CE. Reduction of glomerular hyperfiltration in normoalbuminuric IDDM patients by 6 mo of aldose reductase inhibition. Diabetes 1991; 40: 527–31

    PubMed  CAS  Google Scholar 

  263. Nathan DM. Inferences and implications — do results from the Diabetes Control and Complications Trial apply in NIDDM? Diabetes Care 1995; 18: 251–7

    PubMed  CAS  Google Scholar 

  264. Antiplatelet Trialists’ Collaboration. Collaborative overview of randomized trials of antiplatelet therapy: I. Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 1994; 308: 81–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolffenbuttel, B.H.R., van Haeften, T.W. Prevention of Complications in Non-Insulin-Dependent Diabetes Mellitus (NIDDM). Drugs 50, 263–288 (1995). https://doi.org/10.2165/00003495-199550020-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199550020-00006

Keywords

Navigation