Skip to main content
Log in

Importance of the Renin-Angiotensin-Aldosterone System (RAS) in the Physiology and Pathology of Hypertension

An Overview

  • Introduction
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Current leading theories of the mechanisms of essential hypertension include the participation of the renin-angiotensin-aldosterone system (RAS). Recent advances provide means for a critical reassessment of this system in the physiology and pathology of hypertension. The expression of the proteins of the RAS in organs other than the kidneys suggests that angiotensin II also acts as a modulator of cell function. This paper discusses the role of tissue angiotensin peptides in the regulation of blood pressure and suggests new ideas with regard to the importance of the brain RAS in the development of essential hypertension.

Resumen

Las teorías actuales de mayor relevancia sobre los mecanismos de la hipertensión esencial toman en cuenta la participación del sistema de renina-angiotensina-aldosterona (RAS). Los avances más recientes nos proporcionan medios para efectuar una nueva valoraciôn crítica de dicho sistema en la fisiología y patología de la hipertensión. La manifestación de las proteínas del RAS en órganos que no sean los riñones sugiere que la angiotensina II también actúa como moduladora de la función celular. Esta ponencia aborda el papel que desempeñan los peptidos de angiotensina del tejido en la regulación de la presión sanguinea y sugiere nuevas ideas en lo que concierne a las importancia del RAS en el desarrollo de la hipertensión esencíal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreatta SH, Averill DB, Santos RAS, Ferrario CM. The ventrolateral medulla: a new site of the action of the renin-angio-tensin system. Hypertension 11 (Suppl. I): I163–I1660, 1988

    PubMed  CAS  Google Scholar 

  • Brosnihan KB, Diz DI, Schiavone MT, Averill DB, Ferrario CM. Approaches to establishing angiotensin II as a neurotransmitter. In Buckley JP, et al. (Eds) Brain peptides and catecholamines in cardiovascular regulation, pp. 313–328, Raven Press, New York, 1987

    Google Scholar 

  • Brunner HR, Gavras H, Turini GA, Waeber B, Chappuis P, et al. Long term treatment of hypertension in man by an orally active angiotensin-converting enzyme inhibitor. Clinical Science and Molecular Medicine 55: 2934–2959, 1978

    Google Scholar 

  • Brunner HR, Waeber B, Nussberger J. What we would like to know about the antihypertensive mechanisms of angiotensin converting enzyme inhibition. Journal of Hypertension 6: Sl–S5, 1988

    Google Scholar 

  • Chai SY, Mendelsohn FAO, Paxinos G. Angiotensin converting enzyme in rat brain visualized by quantitative in vitro autoradiography. Neuroscience 20: 615–627, 1987

    Article  PubMed  CAS  Google Scholar 

  • Cheng WTS, Swords BH, Kirk KA, Berecek KH. Baroreflex function in lifetime-captopril-treated spontaneously hypertensive rats. Hypertension 13: 63–69, 1989

    Article  PubMed  CAS  Google Scholar 

  • CONSENSUS. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). New England Journal of Medicine 316: 1429–1435, 1987

    Google Scholar 

  • Dene H, Wang S, Sue-May, Rapp JP. Restriction fragment length polymorphisms for the renin gene in Dahl rats. Journal of Hypertension 7: 121–126, 1989

    Article  PubMed  CAS  Google Scholar 

  • Deschepper CF, Bouhnik J, Ganong WF. Co-localization of angiotensinogen and glial fibrillary acidic protein in astrocytes in rat brain. Brain Research 374: 195–198, 1986

    Article  PubMed  CAS  Google Scholar 

  • Dezsö B, Jacobsen J, Poulsen K. Evidence for the presence of angiotensins in normal, unstimulated alveolar macrophages and monocytes. Journal of Hypertension 7: 5–11, 1989

    Article  PubMed  Google Scholar 

  • Diz DI, Barnes KL, Ferrario CM. Functional characteristics of neuropeptides in the dorsal medulla oblongata and vagus nerve. Federation Proceedings 46: 30–35, 1987

    PubMed  CAS  Google Scholar 

  • Dzau VJ, Gibbons GH. Autocrine-paracrine mechanisms of vascular myocytes in hypertension. American Journal of Cardiology 60: 991–1031, 1987

    Google Scholar 

  • Ebert TJ. Captopril potentiates chronotropic baroreflex responses to carotid stimuli in humans. Hypertension 7: 602–606, 1985

    Article  PubMed  CAS  Google Scholar 

  • Editorial. Epidemiology of renin. Lancet 1: 743, 1983

    Google Scholar 

  • Ertl G, Alexander RW, Kloner RA. Interactions between coronary occlusion and the renin-angiotensin system in the dog. Molecular Brain Research 2: 149–158, 1987

    Article  Google Scholar 

  • Ferrario CM. Neurogenic actions of angiotensin II. Hypertension 5: V73–V79, 1983

    PubMed  CAS  Google Scholar 

  • Ferrario CM, Barnes KL, Diz DI, Block CH, Averill DB. Role of area postrema pressor mechanisms in the regulation of arterial pressure. Canadian Journal of Physiology and Pharmacology 65: 1591–1597, 1987

    Article  PubMed  CAS  Google Scholar 

  • Ferrario CM, Barnes KL, Diz DI, Zelenski S, Averill DB. Role of the central nervous system and neurogenic factors in hypertension. In Chobanian A, Rosenthal L (Eds) Arterial hypertension, Springer-Verlag, 1989

  • Ferrario CM, Santos RAS, Brosnihan KB, Block CH, Schiavone MT, et al. A hypothesis regarding the function of angiotensin peptides in the brain. Clinical and Experimental Hypertension A10 (Suppl. 1): 107–121, 1988

    Article  CAS  Google Scholar 

  • Ferrario CM, Ueno Y, Diz DI, Barnes KL. The renin-angiotensin system. Physiological actions on the central nervous system. In Zanchetti A, et al. (Eds) Handbook of hypertension, pp. 431–454, Elsevier/North Holland Biomedical Press, BV Amsterdam, The Netherlands, 1986

  • Frohlich ED. Angiotensin converting enzyme inhibitors. Present and future. Hypertension 13 (Suppl. I): I125–I130, 1989

    Article  PubMed  CAS  Google Scholar 

  • Harding JW, Felix D. Angiotensin-sensitive neurons in the rat paraventricular nucleus: relative potencies of angiotensin II and angiotensin III. Brain Research 410: 130–134, 1987

    Article  PubMed  CAS  Google Scholar 

  • Heel RC, Brogden RN, Speight TM, Avery GS. Captopril: a preliminary review of its pharmacological properties and therapeutic efficacy. Drugs 20: 409–458, 1980

    Article  PubMed  CAS  Google Scholar 

  • Helfand WH. A market analyst’s perspective on hypertension and its treatment. In Doyle AE, et al. (Eds) Hypertension and the angiotensin system: therapeutic approaches, pp. 17–29, Raven Press, New York, 1984

    Google Scholar 

  • Ibsen H, Egan B, Julius S. Baroreflex sensitivity during converting enzyme inhibition with enalapril (MK-421) in normal man. Journal of Hypertension 1 (Suppl. 2): 222–224, 1983

    CAS  Google Scholar 

  • Inagami T. Structure and function of renin. Journal of Hypertension 7 (Suppl. 2): S3–S8, 1989

    PubMed  CAS  Google Scholar 

  • Johnston CI, Mendelsohn FAO, Cubela RB, Jackson B, Kohzuki M, et al. Inhibition of angiotensin converting enzyme (ACE) in plasma and tissues: studies ex vivo after administration of ACE inhibitors. Journal of Hypertension 6 (Suppl. 3): S17–S22, 1988

    PubMed  CAS  Google Scholar 

  • Laragh JH. Conceptual diagnostic and therapeutic dimensions of renin-system profiling of hypertensive disorders and of congestive heart failure. Four new research frontiers. In Doyle AE, et al. (Eds) Hypertension and the angiotensin system: therapeutic approaches, pp. 47–72, Raven Press, New York, 1984

    Google Scholar 

  • Lind RW, Swanson LW, Bruhn TO, Ganten D. The distribution of angiotensin II-immunoreactive cells and fibers in the paraventriculo-hypophysial system of the rat. Brain Research 338: 81–89, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lind RW, Swanson LW, Ganten D. Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology 40: 2–24, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lindpainter K, Wilhelm MJ, Jin M, Unger T, Lang RE, et al. Tissue renin-angiotensin systems: focus on the heart. Journal of Hypertension5 (Suppl. 2): S33–S38, 1987

    Google Scholar 

  • Mancia G, Giannattasio C. Grassi G, Morganti A, Zanchetti A. Reflex control of circulation and angiotensin converting enzyme inhibition in man. Journal of Hypertension 6 (Suppl. 3): S45–S49, 1988

    PubMed  CAS  Google Scholar 

  • Mancia G, Parati G, Pomidossi G, Grassi G, Bertinieri G, et al. Modification of arterial baroreflexes by captoprii in essential hypertension. American Journal of Cardiology 49: 1415–1419, 1982

    Article  PubMed  CAS  Google Scholar 

  • Mann JFE, Phillips MI, Dietz R, Haebara H, Ganten D. Effects of central and peripheral angiotensin blockade in hypertensive rats. American Journal of Physiology 234: H629–H637, 1978

    PubMed  CAS  Google Scholar 

  • Mendelsohn FAO, Chai SY, Dunbar M. In vitro autoradiographic localization of angiotensin-converting enzyme in rat brain using 125I-labelled MK351A. Journal of Hypertension 2 (Suppl. 3): 41–44, 1984

    CAS  Google Scholar 

  • Miyazaki H, Fukamizu A, Hiruse S, Hayashi T, Hori H, et al. Structure of the human renin gene. Proceedings from the National Academy of Sciences (USA) 81: 5999–6003, 1984

    Article  CAS  Google Scholar 

  • Ohkubo H, Kageyama R, Ujihara M, Hirose T, Inayama S, et al. Cloning and sequence analysis of cDNA for rat angiotensinogen. Proceedings of the National Academy of Sciences 80: 2196–2200, 1983

    Article  CAS  Google Scholar 

  • Page IH. Hypertension mechanisms, Grune & Stratton Inc., Orlando, 1987

    Google Scholar 

  • Peart WS, The place of renin in the mechanism of hypertension in chronic renal disease. Clinical Nephrology 4: 138, 1975

    PubMed  CAS  Google Scholar 

  • Re RN. Studies of the cellular biology of the myocardium: cellular mechanisms of growth in cardiovascular tissue. American Journal of Cardiology 60: 1041–1091, 1987

    Article  Google Scholar 

  • Saito K, Gutkind JS, Saavedra JM. Angiotensin II binding sites in the conduction system of rat hearts. American Journal of Physiology 253: H1618–H1622, 1987

    PubMed  CAS  Google Scholar 

  • Samani NJ, Brammar WJ, Swales JD. A major structural abnormality in the renin gene of the spontaneously hypertensive rat. Journal of Hypertension 7: 249–254, 1989

    PubMed  CAS  Google Scholar 

  • Santos RAS, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CL, et al. Converting enzyme activity and angiotensin metabolism in the dog brain stem. Hypertension 11 (Suppl. I): 1153–1157, 1988

    Google Scholar 

  • Schiavone MT, Santos RAS, Brosnihan KB, Khosla MC, Ferrario CM. Release of vasopressin from the rat hypothalamo-neurophypophysial system by Ang-(l–7) heptapeptide. Proceedings of the National Academy of Science 85: 4095–4098, 1988

    Article  CAS  Google Scholar 

  • Smeby RR, Husain A. Angiotensin I and II forming enzymes in the central nervous system. In Buckley JP, et al. (Eds) Brain peptides and catecholamines in cardiovascular regulation in normal and disease states, Raven Press, New York, 1987

    Google Scholar 

  • Suzuki H, Ferrario CM, Speth RC, Brosnihan KB, Smeby RR, et al. Alterations in plasma and cerebrospinal fluid norepinephrine and angiotensin II during the development of renal hypertension in conscious dogs. Hypertension 5: 1139–1148, 1983

    Google Scholar 

  • Suzuki H, Saruta T, Ferrario CM. Changes in central and peripheral renin-angiotensin system after furosemide injection. Endocrinologia Japonica 33(4): 497–503, 1986

    Article  PubMed  CAS  Google Scholar 

  • Todd PA, Heel RC. Enalapril: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in hypertension and congestive heart failure. Drugs 31: 198–248, 1986

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrario, C.M. Importance of the Renin-Angiotensin-Aldosterone System (RAS) in the Physiology and Pathology of Hypertension. Drugs 39 (Suppl 2), 1–8 (1990). https://doi.org/10.2165/00003495-199000392-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199000392-00002

Keywords

Navigation