Skip to main content
Log in

Biochemistry and Pharmacology of the Renin-Angiotensin System

  • Published:
Drugs Aims and scope Submit manuscript

Summary

Knowledge of the structure, function and distribution of the components of the renin-angiotensin-aldosterone system (RAS) and the integrated physiological role of this hormonal system is rapidly increasing, although many questions remain unanswered. The primary structure and localisation of RAS such as renin, prorenin, angiotensinogen, angiotensin-converting enzyme (ACE) and the angiotensins have now been described. Moreover, the genes for the production of renin and ACE have been cloned and their nucleotide sequences determined.

In addition to its well-established role as a circulating endocrine system, the renin-angiotensin system has more recently been ascribed a local autocrine or paracrine function. Physiologically active levels of components such as renin and angiotensin, or their messenger RNAs, have been identified in several extrarenal tissues, notably the central nervous system. The components of such tissue renin-angiotensin systems may be derived from de novo tissue synthesis and/or from the circulation by endocytosis.

Angiotensin has pharmacological actions on a wide range of body tissues, including the kidney, heart, brain, gastrointestinal tract and reproductive organs. In many of these locations, angiotensin receptors have been isolated and characterised. The most firmly established roles of angiotensin are the control of blood pressure and local blood flow, and in salt and water homeostasis; the physiological significance of many of angiotensin’s tissue effects is unknown.

In some areas of clinical interest, such as the pathophysiology of left ventricular hypertrophy, ACE inhibitors are very useful for elucidating the possible influences of the renin-angiotensin system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acker GM, Galen FX, Devaux C, Foote S, Papernik E, et al. Human chorionic cells in primary culture: a model for renin biosynthesis. Journal of Clinical Endocrinology and Metabolism 55: 902–909, 1982

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Gimbrone MA, Alexander RW. Angiotensin II stimulates phosphorylation of the myosin light chain in cultured vascular smooth muscle cells. Journal of Biological Chemistry 256: 4693–4696, 1981

    PubMed  CAS  Google Scholar 

  • Anderson WP, Korner PI, Johnston CI, Angus JA, Casley DJ. Intrarenal action of angiotensin II in restoring renal artery pressure after acute renal artery stenosis. Clinical and Experimental Pharmacology and Physiology 5: 529–533, 1978

    Article  PubMed  CAS  Google Scholar 

  • Baker KM, Khosla MC. Cardiac and vascular actions of decapeptide angiotensin analogs. Journal of Pharmacology and Experimental Therapeutics 239: 790–796, 1986

    PubMed  CAS  Google Scholar 

  • Barajas L. Anatomy of the juxtaglomerular apparatus. American Journal of Physiology 237: F333–F343, 1979

    PubMed  CAS  Google Scholar 

  • Bernstein KE, Martins BM, Bernstein EA, Linton J, Striker L, et al. The isolation of angiotensin converting enzyme cDNA. Journal of Biological Chemistry 263: 11021–11024, 1988

    PubMed  CAS  Google Scholar 

  • Blantz RC, Konen KS, Tucker BJ. Angiotensin II effects on the glomerular microcirculation and ultrafiltration coefficient of the rat. Journal of Clinical Investigation 57: 419–434, 1976

    Article  PubMed  CAS  Google Scholar 

  • Campbell DJ. Circulating and tissue angiotensin systems. Journal of Clinical Investigation 79: 1–6, 1987a

    Article  PubMed  CAS  Google Scholar 

  • Campbell DJ. Tissue renin-angiotensin system: sites of angiotensin formation. Journal of Cardiovascular Pharmacology 10(7): S1–S8, 1987b

    Article  PubMed  CAS  Google Scholar 

  • Campbell DJ, Habener JF. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. Journal of Clinical Investigation 78: 31–39, 1986

    Article  PubMed  CAS  Google Scholar 

  • Campbell DJ, Bouhnik J, Menard J, Corvol P. Identity of angiotensinogen precursors of rat brain and liver. Nature 308: 206–208, 1984

    Article  PubMed  CAS  Google Scholar 

  • Campbell-Boswell M, Robertson AL. Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Experimental and Molecular Pathology 35: 265–276, 1981

    Article  PubMed  CAS  Google Scholar 

  • Capponi AM, Aguilera G, Fakunding JL, Catt KJ. Angiotensin II: receptors and mechanisms of actions. In Soffer RL (Ed.) Biochemical regulation of blood pressure, pp. 205–262, John Wiley & Sons, New York, 1981

    Google Scholar 

  • Catt KJ, Mendelsohn FAO, Millan MA, Aguilera G. The role of angiotensin II receptors in vascular regulation. Journal of Cardiovascular Pharmacology 6: S575–S586, 1984

    Article  PubMed  Google Scholar 

  • Celio MR, Inagami T. Angiotensin II immunoreactivity coexists with renin in the juxtaglomerular granular cells of the kidney. Proceedings of the National Academy of Science USA 78: 3897–3900, 1981

    Article  CAS  Google Scholar 

  • Coghlan JP, Fei DTN, Scoggins BA, Tregear CW. Angiotensin production and metabolism in sheep. Clinical and Experimental Pharmacology and Physiology 7 (Suppl.): 21–29, 1982

    CAS  Google Scholar 

  • Coghlan JP, Penschow JD, Hudson PJ, Niall HD. Hybridization histochemistry: use of recombinant DNA for tissue localizations of specific mRNA populations. Clinical and Experimental Hypertension 6(A): 63–78, 1984

    Article  CAS  Google Scholar 

  • Denton D. The Hunger for Salt. Springer-Verlag, Berlin, 1982

    Google Scholar 

  • Deschepper CF, Mellon SH, Cumin F, Baxter JD, Ganong WF. Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat. Proceedings of the National Academy of Science USA 83: 7552–7556, 1986

    Article  CAS  Google Scholar 

  • Do Y-S, Shinagawa T, Tarn H, Inagami T, Hseuh W. Characterization of pure human renal renin: evidence for a subunit structure. Journal Biological Chemistry 262: 1037–1043, 1987

    CAS  Google Scholar 

  • Doi Y, Atarashi K, Franco-Saenz R, Mulrow P. Adrenal renin: a possible regulator of aldosterone production. Clinical and Experimental Hypertension A5(7 & 8): 1119–1126, 1983

    Article  CAS  Google Scholar 

  • Dzau VJ. Cardiac renin-angiotensin system: molecular and functional aspects. American Journal of Medicine 84(3A): 22–27, 1988a

    Article  PubMed  CAS  Google Scholar 

  • Dzau VJ. Circulating versus local renin-angiotensin system in cardiovascular homeostasis. Circulation 77(1): 1–4, 1988b

    Article  Google Scholar 

  • Dzau VJ, Inglefinger JR, Pratt RE, Ellison KE. Identification of renin and angiotensinogen messenger RNA sequences in mouse and rat brains. Hypertension 8: 544–558, 1986

    Article  PubMed  CAS  Google Scholar 

  • Dzau VJ, Ellison KE, Brody T, Ingelfinger J, Pratt RE. A comparative study of the distributions of renin and angiotensin messenger ribonucleic acids in rat and mouse tissues. Endocrinology 120: 2334–2338, 1987

    Article  PubMed  CAS  Google Scholar 

  • Elliott ME, Alexander RC, Goodfriend TL. Aspects of angiotensin action in the adrenal. Key roles for calcium and phosphatidyl inositol. Hypertension 4(II): II52–II58, 1982

    Google Scholar 

  • Erdos EG, Skidgel RA. The angiotensin I converting enzyme. Laboratory Investigation 56: 345–348, 1987

    PubMed  CAS  Google Scholar 

  • Field LJ, McGowan RA, Dickinson DP, Gross KW. Tissue and gene specificity of mouse renin expression. Hypertension 6: 597–603, 1984

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimmons JT. The physiology of thirst and sodium appetite. Cambridge University Press, Cambridge, 1979

    Google Scholar 

  • Forslund T, Fyhrquist F, Gronhagen-Riska C, Tikkanen I. Induction of angiotensin-converting enzyme with the ACE inhibitory compound MK421 in rat lung. European Journal of Pharmacology 80: 121–125, 1982

    Article  PubMed  CAS  Google Scholar 

  • Foster R, Rasmussen H. Angiotensin-mediated calcium efflux from adrenal glomerulosa cells. American Journal Physiology 245: E281–E287, 1983

    CAS  Google Scholar 

  • Ganong WF. The brain renin-angiotensin system. Annual Review of Physiology 46: 17–31, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ganong WF, Davis JO, Sambhi MP. Symposium on control of renin secretion. Journal of Hypertension 2 (Suppl. 1): 1–152, 1984

    Article  Google Scholar 

  • Ganten D, Schelling P, Flugel RM, Ganten U. Effect of angiotensin and an angiotensin antagonist on iso-renin and cell growth in 3TB mouse cells. International Research Communication Medical Sciences 3: 327–336, 1975

    CAS  Google Scholar 

  • Geisterfer AAT, Peach MJ, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circulation Research 62: 749–756, 1988

    Article  PubMed  CAS  Google Scholar 

  • Gomez RA, Lynch KR, Chevalier RL, Everett AD, Johns DW, et al. Renin and angiotensinogen gene expression and intrarenal renin distribution during ACE inhibition. American Journal of Physiology 254: F900–F906, 1988

    PubMed  CAS  Google Scholar 

  • Goodfriend TL. Angiotensin receptors and specific functions of angiotensin I, II and III. In Genest J, et al. (Eds) Hypertension, physiopathology and treatment, pp. 271–279, McGraw-Hill, New York, 1983

    Google Scholar 

  • Haber E. Defining the physiologic and pathophysiologic roles of renin: the role of specific inhibitors. American Journal of Kidney Diseases 5: A14–A22, 1985

    PubMed  CAS  Google Scholar 

  • Hall J, Guyton A, Jackson T, Coleman T, Lohmeier T, et al. Control of glomerular filtration rate by the renin-angiotensin system. American Journal Physiology 233: F366–F372, 1977

    CAS  Google Scholar 

  • Harris PJ, Young JA. Dose-dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney. Pflügers Archiv. European Journal of Physiology 367: 295–297, 1977

    Article  PubMed  CAS  Google Scholar 

  • Hirose S, Kim S-J, Miyazaki H, Park Y-S, Murakami K. In vitro biosynthesis of human renin and identification of plasma inactive renin as an activation intermediate. Journal of Biological Chemistry 260: 16400–16405, 1985

    PubMed  CAS  Google Scholar 

  • Hodsman GP, Sumithran E, Harrison RW, Johnston CI. Cardiac hypertrophy and salt status in chronic myocardial infarction in the rat: effects of enalapril vs salt restriction. Journal of Cardiovascular Pharmacology 12: 467–472, 1988

    Article  PubMed  CAS  Google Scholar 

  • Imai T, Miyazaki H, Hirose S, Hori H, Hayashi T, et al. Cloning and sequence analysis of cDNA for human renin precursor. Proceedings of the National Academy of Science USA 80: 7405–7409, 1983

    Article  CAS  Google Scholar 

  • Jackson B, Cubela R, Johnston CI. Angiotensin converting enzyme: characterization by 125IMK351A binding studies of plasma and tissue ACE during variation of salt status in the rat. Journal of Hypertension 4: 759–765, 1986

    Article  PubMed  CAS  Google Scholar 

  • Jackson TR, Blair LAC, Marshall J, Goedert M, Hanley MR. The mas oncogene encodes an angiotensin receptor. Nature 335: 437–440, 1988

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Wilhelm MJ, Lang RE, Unger T, Lindpaintner K, et al. Endogenous tissue renin-angiotensin systems. American Journal of Medicine 84(3A): 28–33, 1988

    Article  PubMed  CAS  Google Scholar 

  • Johnston CI, Millar JA, McGrath BP, Mathews PG. Long term effects of captopril (SQ 14225) in blood pressure and human levels in essential hypertension. Lancet 2: 439–495, 1979

    Google Scholar 

  • Johnston CI, Jackson BJ, Cubela R, Larmour I, Arnolda L. Evaluation of angiotensin converting enzyme in the pharmacokinetics and pharmacodynamics of ACE inhibitors. Journal of Cardiovascular Pharmacology 8 (Suppl. 1): S9–S14, 1986

    Article  PubMed  CAS  Google Scholar 

  • Johnston CI, Kohzuki M. Angiotensin converting enzyme: localization, regulation and inhibition. In Sever P, MacGregar G (Eds) Current advances in ACE inhibitors, Churchill Livingston, London, 1989

    Google Scholar 

  • Laragh JH. Extrarenal tissue prorenin systems do exist: are intrinsic vascular and cardiac tissue renins fact or fancy? American Journal of Hypertension 2: 262–265, 1989

    PubMed  CAS  Google Scholar 

  • Leckie BJ. Inactive renin: an attempt at a perspective. Clinical Science 60: 129–130, 1981

    Google Scholar 

  • Lever AF. Renin: endocrine, paracrine, or part-paracrine control of blood pressure? American Journal of Hypertension 2: 276–285, 1989

    PubMed  CAS  Google Scholar 

  • Lindpainter K, Jin M, Wilhelm MJ, Suzuki F, Linz W, et al. Intracardiac generation of angiotensin and its physiologic role. Circulation 77(1): 1–18, 1988

    Article  Google Scholar 

  • Loudon M, Bing H, Thurston H, Swales JD. Arterial wall uptake of renal renin and blood pressure control. Hypertension 5: 629–634, 1983

    Article  PubMed  CAS  Google Scholar 

  • Lynch KR, Simnad VI, Ben-Ari ET, Maniatis T, Garrison JC. Localization of preangiotensinogen messenger RNA sequences in the rat brain. Hypertension 8: 540–543, 1986

    Article  PubMed  CAS  Google Scholar 

  • Menard J, Bouhnik J, Clauser E, Richoux JP, Corvol P. Biochemistry and regulation of angiotensinogen. Clinical and Experimental Hypertension A5(7 & 8): 1005–1019, 1983

    Article  CAS  Google Scholar 

  • Mendelsohn FAO. The renin-angiotensin system. In Doyle AE (Ed.) Pharmacological and therapeutic aspects of hypertension, vol. 1, p. 1. CRC. Press, Florida, 1980

    Google Scholar 

  • Mendelsohn FAO. Angiotensin II: evidence for its role as an extra-renal hormone. Kidney International 22(12): S78, 1982

    Google Scholar 

  • Mendelsohn FAO. Localization and properties of angiotensin receptors. Journal of Hypertension 3: 307–316, 1985

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn FAO, Lloyd CJ, Kachel C, Funder JW. Induction by glucocorticoids of angiotensin converting enzyme production from bovine endothelial cells in culture and rat lung in vivo. Journal of Clinical Investigation 70: 684–692, 1982

    Article  PubMed  CAS  Google Scholar 

  • Morris BJ. Human renin protein and gene structures: present and future targets for renin blockade in treatment of hypertension. Journal of Hypertension 7(2): S9–S14, 1989

    PubMed  CAS  Google Scholar 

  • Morris BJ, Johnston CI. Renin substrate in granules from rat kidney cortex. Biochemical Journal 154: 625, 1976

    PubMed  CAS  Google Scholar 

  • Okanura I, Clemens DL, Inagami T. Renin-angiotensin and angiotensin converting enzyme in neuroblastoma cells: evidence for intracellular formtion of angiotensin. Proceedings of the National Academy of Sciences USA 78: 6940, 1981

    Article  Google Scholar 

  • Okhubo H, Kageyama R, Ujihara M, Hirose T, Inayama S, et al. Cloning and sequence analysis of cDNA for rat angiotensinogen. Proceedings of the National Academy of Science USA 80: 2196–2200, 1983

    Article  Google Scholar 

  • Oliver JA, Sciacca RR. Local generation of angiotensin II as a mechanism of regulation of peripheral vascular tone in the rat. Journal of Clinical Investigation 74(4): 1247–1251, 1984

    Article  PubMed  CAS  Google Scholar 

  • Panthier J-J, Foote S, Chambraud B, Strosberg AD, Corvol P, et al. Complete amino acid sequence and maturation of the mouse submaxillary gland renin precursor. Nature 298: 90–92, 1982

    Article  PubMed  CAS  Google Scholar 

  • Peach MJ. Renin-angiotensin system: biochemistry and mechanisms of action. Physiological Reviews 57: 313–370, 1977

    PubMed  CAS  Google Scholar 

  • Peach MJ, Bumpus FM, Khairallah PA. Release of adrenal catecholamines by angiotensin I. Journal of Pharmacology and Experimental Therapeutics 176: 366–376, 1971

    PubMed  CAS  Google Scholar 

  • Pfeffer JM, Pfeffer MA, Braunwald E. Influence of chronic captopril therapy in the infarcted left ventricle in the rat. Circulation Research 57: 84–94, 1985

    Article  PubMed  CAS  Google Scholar 

  • Phillips MI. Functions of angiotensin in the central nervous system. Annual Review of Physiology 49: 413–435, 1987

    Article  PubMed  CAS  Google Scholar 

  • Poisner AM, Wood GW, Poisner R, Inagami T. Localization of renin in trophoblas in human chorionic laeve at term pregnancy. Endocrinology 109: 1150–1155, 1981

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen S, Nielson MD, Giese J. Captopril combined with thiazide lowers renin substrate concentration: implications for methodology in renin assays. Clinical Science 60: 591–593, 1981

    PubMed  CAS  Google Scholar 

  • Regoli D, Park WK, Rioux F. Pharmacology of angiotensin. Pharmacological Reviews 26: 69, 1974

    PubMed  CAS  Google Scholar 

  • Reid I. Renin-angiotensin system and body function. Archives of Internal Medicine 145: 1475–1479, 1985

    Article  PubMed  CAS  Google Scholar 

  • Rougeon F, Chambraud B, Foote S, Panthier J-J, Nageotte R, et al. Molecular cloning of a mouse submaxillary gland renin cDNA fragment. Proceedings of the National Academy of Science USA 78: 6367–6371, 1981

    Article  CAS  Google Scholar 

  • Roy SN, Kusari J, Soffer RL, Lai CY, Sen GC. Isolation of cDNA clones of rabbit angiotensin converting enzyme: identification of two distinct mRNAS for the pulmonary and testicular isozymes. Biochemical and Biophysical Research Communications 155: 678–684, 1988

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi K, Chai SY, Jackson B, Johnston CI, Mendelsohn FAO. Inhibition of tissue angiotensin converting enzyme. Quantitation of autoradiography. Hypertension 11: 230–238, 1988

    CAS  Google Scholar 

  • Sealey JE, Rubattu S. Prorenin and renin as separate mediators of tissue and circulating systems. American Journal of Hypertension 2: 358–366, 1989

    PubMed  CAS  Google Scholar 

  • Sealey JE, Atlas SA, Laragh JH. Plasma prorenin: physiological and biochemical characteristics. Clinical Science 63: 133s–145s, 1982

    Google Scholar 

  • Semple PF, Boyd AS, Dawes PM, Morton JJ. Angiotensin II and its heptapeptide (2–8), hexapeptide (3–8), and pentapeptide (4–8) metabolites in arterial and venous blood of man. Circulation Research 39: 671–678, 1976

    Article  PubMed  CAS  Google Scholar 

  • Skidgel RA, Englebrecht S, Johnston AR, Erdös EG. Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 5: 769–776, 1984

    Article  PubMed  CAS  Google Scholar 

  • Skidgel RA, Erdös EG. Novel activity of human angiotensin I converting enzyme: release of the NH2- and COOH-terminal tripeptides from the luteinizing hormone-release hormone. Proceedings of the National Academy of Science USA 82: 1025–1029, 1985

    Article  CAS  Google Scholar 

  • Soffer RL. Angiotensin-converting enzyme and the regulation of vasoactive peptides. Annual Review of Biochemistry 45: 73, 1976

    Article  PubMed  CAS  Google Scholar 

  • Soffer RL, El-Dorry HA. Angiotensin-converting enzyme: immunologic, structural and development aspects. Federation. Proceedings 42: 2735, 1983

    PubMed  CAS  Google Scholar 

  • Soubrier F, Panthier JJ, Corvol P, Rougeon F. Molecular cloning and nucleotide sequence of a human renin cDNA. Nucleic Acid Research 11: 7181–7190, 1983

    Article  CAS  Google Scholar 

  • Soubrier F, Alhenc-Gelas F, Hubert C, Allelgrini J, John M, et al. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proceedings of the National Academy of Sciences USA 84: 9386–9390, 1988

    Article  Google Scholar 

  • Swales JD. Renin-angiotensin system in hypertension. Pharmacology and Therapeutics 7: 172–184, 1979

    Article  Google Scholar 

  • Swales JD, Abramovici A, Beck F, Bing RF, Loudon M, et al. Arterial wall renin. Journal of Hypertension 1(1): 17–22, 1983

    Article  PubMed  CAS  Google Scholar 

  • Taugner R, Hackenthal E, Rix E, Nobiling R, Poulsen K. Immunocytochemistry of the renin-angiotensin system: renin, angiotensinogen, angiotensin I, angiotensin II, and converting enzyme in the kidneys of mice, rats, and tree shrews. Kidney International 22: S33–S43, 1982

    Google Scholar 

  • Tewksbury DA. Angiotensinogen. Federation Proceedings 42: 2724–2728, 1983

    PubMed  CAS  Google Scholar 

  • Unger T, Badoer E, Ganten D, Lang RE, Retig R. Brain angiotensin: pathways and pharmacology. Circulation 77(1): 1–40, 1988

    Article  Google Scholar 

  • Yang HYT, Erdos EG, Levin Y. A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochimica et Biophysica Acta 214: 374–376, 1970

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman BG. Adrenergic facilitation by angiotensin: does it serve a physiological function? Clinical Science 60: 343, 1981

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, C.I. Biochemistry and Pharmacology of the Renin-Angiotensin System. Drugs 39 (Suppl 1), 21–31 (1990). https://doi.org/10.2165/00003495-199000391-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199000391-00005

Keywords

Navigation