Skip to main content
Log in

Influence of Diet and Nutritional Status on Drug Metabolism

  • Review Article
  • Drug Interactions
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Genetic and environmental factors contribute to a wide inter- and intraindividual variability in drug metabolism. Among the environmental factors that may influence drug metabolism, the diet and nutritional status of the individuals are important determinants. As altered drug-metabolising enzyme activities can influence the intensity and duration of drug action, such factors should be considered in pharmacotherapy. For this reason the effects of dietary energy, protein deficiency, nutritional ingredients, special diet forms and nutrition regimens and malnutritional states must be differentiated.

In various pharmacokinetic studies different model drugs metabolised either by oxidative phase I pathways [e.g. phenazone (antipyrine), aminopyrine, phenacetin, theophylline, propranolol, nifedipine] or phase II conjugation reactions [e.g. paracetamol (acetaminophen), oxazepam] were used and from the calculated pharmacokinetic data some information on the involved and affected drug-metabolising enzymes [e.g. cytochrome P450 (CYP) subspecies, glucuronosyltransferases] can be generated. It is well known that smoking, charcoal broiled food or cruciferous vegetables induce the metabolism of many xenobiotics, whereas grapefruit juice increases the oral bioavailability of the high clearance drugs nifedipine, nitrendipine or felodipine by inhibiting their presystemic (intestinal) elimination. Energy deficiency, and especially a low intake of protein, will cause a decrease of about 20 to 40% in phenazone and theophylline clearance and elimination of those drugs can be accelerated by a protein-rich diet. In the same way, protein deficiency induced by either vegetarian food or undernourishment will have the opposite pharmacokinetic consequences. On the basis of some more examples from the literature it is emphasised that the variable influence of the above factors should be taken into account in study participant selection and study design when the pharmacokinetic s of a drug must be determined in healthy individuals and/or patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krishna DR, Klotz U. Extrahepatic metabolism of drugs in humans. Clin Pharmacokinet 1994; 26: 144–60

    PubMed  CAS  Google Scholar 

  2. Nelson DR, Kamataki T, Waxman DJ, et al. The P450 super-family: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 1993; 12: 1–51

    PubMed  CAS  Google Scholar 

  3. Brøsen K. Recent developments in hepatic drug oxidation: implications for clinical pharmacokinetics. Clin Pharmacokinet 1990; 18: 220–39

    PubMed  Google Scholar 

  4. Pelkonen O, Breimer DD. Role of environmental factors in the pharmacokinetics of drugs: considerations with respect to animal models, P-450 enzymes and probe drugs. In: Welling PG, Balant LP, editors. Handbook of experimental pharmacology. Vol. 110. Berlin/Heidelberg: Springer, 1994: 269–332

    Google Scholar 

  5. Spatzenegger M, Jaeger W. Clinical importance of hepatic cytochrome P450 in drug metabolism. Drug Metab Rev 1995; 27: 397–417

    PubMed  CAS  Google Scholar 

  6. Shimada F, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23

    PubMed  CAS  Google Scholar 

  7. Brockmöller J, Roots I. Assessment of liver metabolic function: clinical implications. Clin Pharmacokinet 1994; 27: 216–48

    PubMed  Google Scholar 

  8. Kroemer HK, Klotz U. Glucuronidation of drugs: a re-evaluation of the pharmacological significance of the conjugates and modulating factors. Clin Pharmacokinet 1992; 23: 293–310

    Google Scholar 

  9. Klotz U. Pathophysiological and disease-induced changes in distribution volume: pharmacokinetic implications. Clin Pharmacokinet 1976; 1: 204–18

    PubMed  CAS  Google Scholar 

  10. Vesell ES. The antipyrine test in clinical pharmacology: conceptions and misconceptions. Clin Pharmacol Ther 1979; 26: 275–86

    PubMed  CAS  Google Scholar 

  11. Vesell ES. The model drug approach in clinical pharmacology. Clin Pharmacol Ther 1991; 50: 239–48

    PubMed  CAS  Google Scholar 

  12. Eichelbaum M, Ochs HR, Robertz GM, et al. Pharmacokinetics and metabolism of antipyrine (phenazone) after intravenous and oral administration. Arzneimittel Forschung 1982; 32: 575–8

    PubMed  CAS  Google Scholar 

  13. Engel G, Hofmann U, Heidemann H, et al. Antipyrine as a probe for human oxidative drug metabolism: part I. Identification of the cytochrome P450 enzymes catalyzing 4-hydroxy-, 3-hydromethyl- and norantipyrine formation. Clin Pharmacol Ther 1996; 59 (5): in press

  14. Alvares AP. Interactions between environmental chemicals and drug biotransformation in man. Clin Pharmacokinet 1978; 3: 462–77

    PubMed  CAS  Google Scholar 

  15. Alvares AP, Pantuck EJ, Anderson KE, et al. Regulation of drug metabolism in man by environmental factors. Drug Metab Rev 1979; 9: 185–205

    PubMed  CAS  Google Scholar 

  16. Krishnaswamy K. Drug metabolism and pharmacokinetics in malnutrition. TIPS 1983 Jul: 295–9

  17. Vesell ES. Complex effects of diet on drug disposition. Clin Pharmacol Ther 1984; 36: 285–96

    PubMed  CAS  Google Scholar 

  18. Bidlack WR, Smith CH. The effect of nutritional factors on hepatic drug and toxicant metabolism. J Am Diet Assoc 1984; 84: 892–98

    PubMed  CAS  Google Scholar 

  19. Buchanan N. Effect of protein-energy malnutrition on drug metabolism in man. World Rev Nutr Diet 1984; 43: 129–39

    PubMed  CAS  Google Scholar 

  20. Roncucci R, Verry M, Jeanniot JP. Interactions between nutrition, food and drugs in man. World Rev Nutr Diet 1984; 43: 140–52

    PubMed  CAS  Google Scholar 

  21. Welling P. Nutrient effects on drug metabolism and action in the elderly. Drug Nutr Interact 1985; 4: 173–207

    PubMed  CAS  Google Scholar 

  22. Walter-Sack I. The influence of nutrition on the systemic availability of drugs: part II. Drug metabolism and renal excretion. Klin Wochenschr 1987; 65: 1062–72

    PubMed  CAS  Google Scholar 

  23. Anderson KE. Influences of diet and nutrition on clinical pharmacokinetics. Clin Pharmacokinet 1988; 14: 325–46

    PubMed  CAS  Google Scholar 

  24. Roberts J, Turner N. Age and diet effects on drug action. Pharmacol Ther 1988; 37: 111–49

    PubMed  CAS  Google Scholar 

  25. Pfeifer S. Pharmakokinetische Interaktionen zwischen Nahrungs-und Arzneimitteln. Pharm Zeitschr 1995; 2: 125–31

    Google Scholar 

  26. Anderson KE, Kappas A. Dietary regulation of cytochrome P450. Annu Rev Nutr 1991; 11: 141–67

    PubMed  CAS  Google Scholar 

  27. Nestle M. Nutrition in clinical practice. Greenbrae (CA): Jones Medical Publications, 1985

    Google Scholar 

  28. Zöllner N. Feststellung des Ernährungszustandes. In: Kühn HA, Zöllner N, editors. Allgemeine und klinische Ernährungslehre. Bd II, Teil I. Stuttgart: Georg Thieme Verlag, 1978: 1–7

    Google Scholar 

  29. Branch RA, Shand DG. Propranolol disposition in chronic liver disease: a physiological approach. In: Gibaldi M, Prescott L, editors. Handbook of clinical pharmacokinetics. Sydney: ADIS Health Science Press, 1983

    Google Scholar 

  30. Liedholm H, Melander A. Concomitant food intake can increase the bioavailability of propranolol by transient inhibition of its presystemic primary conjugation. Clin Pharmacol Ther 1986; 40: 29–36

    PubMed  CAS  Google Scholar 

  31. McLean AJ, Isbister C, Bobik A, et al. Reduction of first pass hepatic clearance of propranolol by food. Clin Pharmacol Ther 1981; 30: 31–4

    PubMed  CAS  Google Scholar 

  32. Melander A, Danielson K, Scherstén B, et al. Enhancement of the bioavailability of propranolol and metoprolol by food. Clin Pharmacol Ther 1977; 22: 108–12

    PubMed  CAS  Google Scholar 

  33. Olanoff LS, Walle T, Cowart TD, et al. Foods effects on propranolol systemic and oral clearance: support for a blood flow hypothesis. Clin Pharmacol Ther 1986; 40: 408–14

    PubMed  CAS  Google Scholar 

  34. Walle T, Fagan TC, Walle K, et al. Food-induced increase in propranolol bioavailability — relationship to protein and effects on metabolites. Clin Pharmacol Ther 1981; 30: 790–5

    PubMed  CAS  Google Scholar 

  35. Feely J, Nadeau J, Wood AJJ. Effects of feeding on the systemic clearance of indocyanine green and propranolol blood concentrations and plasma binding. Br J Clin Pharmacol 1983; 15: 383–5

    PubMed  CAS  Google Scholar 

  36. Melander A, McLean A. Influence of food intake on presystemic clearance of drugs. Clin Pharmacokinet 1983; 8: 286–96

    PubMed  CAS  Google Scholar 

  37. Schneck DW, Vary JE. Mechanism by which hydralazine increases propranolol bioavailability. Clin Pharmacol Ther 1984; 35: 447–53

    PubMed  CAS  Google Scholar 

  38. Svensson CK, Edwards DJ, Muriello PM, et al. Effect of food on hepatic blood flow: implications in the ‘food effect’ phenomenon. Clin Pharmacol Ther 1983; 316–23

  39. Svensson CK, Muriello PM, Barde SH, et al. Effect of carbohydrates on estimated hepatic blood flow. Clin Pharmacol Ther 1984; 35: 660–5

    PubMed  CAS  Google Scholar 

  40. Svensson CK, Cumella JC, Tronolone M, et al. Effects of hydralazine, nitroglycerin, and food on estimated hepatic blood flow. Clin Pharmacol Ther 1985; 37: 464–8

    PubMed  CAS  Google Scholar 

  41. Daneshmend TK, Jackson L, Roberts CJC. Physiological and pharmacological variability in estimated hepatic blood flow in man. Br J Clin Pharmacol 1981; 11: 491–6

    PubMed  CAS  Google Scholar 

  42. Griensven van JMT, Burggraaf KJ, Gerloff J, et al. Effects of changing liver blood flow by exercise and food on kinetics and dynamics of saruplase. Clin Pharmacol Ther 1995; 57: 381–9

    PubMed  Google Scholar 

  43. Sabbá C, Ferraioli G, Genecin P, et al. Evaluation of postprandial hyperemia in superior mesenteric artery and portal vein in healthy and cirrhotic humans: an operator-blind echo-doppler study. Hepatology 1991; 13: 714–8

    PubMed  Google Scholar 

  44. Sabbá C, Ferraioli G, Buonamico P, et al. A randomized study of propranolol on postprandial portal hyperemia in cirrhotic patients. Gastroenterology 1992; 102: 1009–16

    PubMed  Google Scholar 

  45. Byrne AJ, McNeil JJ, Harrison PM, et al. Stable oral availability of sustained release propranolol when co-administered with hydralazine or food: evidence implicating substrate delivery rates as a determinant of presystemic drug interactions. Br J Clin Pharmacol 1984; 17: 45S–50S

    PubMed  Google Scholar 

  46. Daneshmend TK, Roberts CJC. The Influence of food on the oral and the intravenous pharmacokinetics of a high clearance drug: a study with labetalol. Br J Clin Pharmacol 1982; 14: 73–8

    PubMed  CAS  Google Scholar 

  47. Elvin AT, Cole AFD, Pieper JA, et al. Effect of food on lidocaine kinetics: mechanism of food-related alteration in high intrinsic clearance drug elimination. Clin Pharmacol Ther 1981; 30: 455–60

    PubMed  CAS  Google Scholar 

  48. Ke J, Tarn YK, Koo WWK, et al. Lack of acute effect on lidocaine pharmacokinetics from parenteral nutrition. Ther Drug Monit 1990; 12: 157–62

    PubMed  CAS  Google Scholar 

  49. Eichelbaum M, Somogyi A. Inter- and intra-subject variation in the first-pass elimination of highly cleared drugs during chronic dosing. Eur J Clin Pharmacol 1984; 26: 47–53

    PubMed  CAS  Google Scholar 

  50. Woodcock BG, Kraemer N, Rietbrock N. Effect of a high protein meal on the bioavailability of verapamil. Br J Clin Pharmacol 1986; 21: 337–8

    PubMed  CAS  Google Scholar 

  51. Conway EL, Phillips PA, Drummer OH, et al. Influence of food on the bioavailability of a sustained-release verapamil preparation. J Pharm Sci 1990; 79: 228–31

    PubMed  CAS  Google Scholar 

  52. Overdiek HWPM, Merkus FWHM. Influence of food on the bioavailability of spironolactone. Clin Pharmacol Ther 1986; 40: 531–6

    PubMed  CAS  Google Scholar 

  53. Melander A, Danielson K, Hanson A, et al. Enhancement of hydralazine bioavailability by food. Clin Pharmacol Ther 1977; 22: 104–7

    PubMed  CAS  Google Scholar 

  54. Melander A. Influence of food on the bioavailability of drugs. Clin Pharmacokinet 1978; 3: 337–51

    PubMed  CAS  Google Scholar 

  55. Liedholm H, Wahlin-Boll E, Hanson A, et al. Influence of food on the bioavailability of ‘real ‘and ‘apparent’ hydralazine from conventional and slow-release preparations. Drug Nutr Interact 1982; 1: 293–302

    PubMed  CAS  Google Scholar 

  56. Shepherd AMM, Irvine NA, Ludden TM. Effect of food on hydralazine levels and response in hypertension. Clin Pharmacol Ther 1984; 36: 14–8

    PubMed  CAS  Google Scholar 

  57. Melander A, Liedholm H, McLean A. Concomitant food intake does enhance the bioavailability and the effect of hydralazine. Clin Pharmacol Ther 1985; 38: 475

    PubMed  CAS  Google Scholar 

  58. Walter-Sack I. The influence of nutrition on the systemic availability of drugs: part I. Drug absorption. Klin Wochenschr 1987; 65: 927–35

    PubMed  CAS  Google Scholar 

  59. Walter-Sack I. The significance of nutrition for the biopharmaceutical characteristics of oral extended release preparations and enteric coated dosage forms. In: Gundert-Remy U, Möller H, editors. Oral controlled release products. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH, 1990: 117–37

    Google Scholar 

  60. Walter-Sack I. What is ‘fasting’ drug administration? On the role of gastric motility in drug absorption. Eur J Clin Pharmacol 1992; 11–3

  61. Ferry JJ, Horvath AM, Sedman AJ, et al. Influence of food on the pharmacokinetics of quinapril and its active diacid metabolite, CI-029. J Clin Pharmacol 1987; 27: 397–9

    PubMed  CAS  Google Scholar 

  62. Lecocq B, Funck-Brentano C, Lecocq V, et al. Influence of food on the pharmacokinetics of perindopril and the time course of angiotensin-converting enzyme inhibition in serum. Clin Pharmacol Ther 1990, 47: 397–402

    PubMed  CAS  Google Scholar 

  63. Challenor VF, Waller DG, Gruchy BS, et al. Food and nifedipine kinetics. Br J Clin Pharmacol 1987; 23: 248–9

    PubMed  CAS  Google Scholar 

  64. Melander A, Lalka D, McLean A. Influence of food intake on presystemic metabolism of drugs. Pharmacol Ther 1988, 38: 253–67

    PubMed  CAS  Google Scholar 

  65. Fagan TC, Walle T, Oexmann MJ, et al. Increased clearance of propranolol and theophylline by high-protein compared with high-carbohydrate diet. Clin Pharmacol Ther 1987; 41: 402–6

    PubMed  CAS  Google Scholar 

  66. Gupta SK, Benet LZ. High-fat meals increase the clearance of cyclosporine. Pharm Res 1990, 7: 46–8

    PubMed  CAS  Google Scholar 

  67. Bianchine JR, Shaw GM. Clinical pharmacokinetics of levodopa in Parkinson’s disease. Clin Pharmacokinet 1976; 1: 313–38

    PubMed  CAS  Google Scholar 

  68. Cedarbaum JM. Clinical pharmacokinetics of anti-parkinsonian drug. Clin Pharmacokinet 1987; 13: 141–78

    PubMed  CAS  Google Scholar 

  69. Krishnaswamy K, Kalamegham R, Naidu NA. Dietary influences on the kinetics of antipyrine and aminopyrine in human subjects. Br J Clin Pharmacol 1984; 17: 139–46

    PubMed  CAS  Google Scholar 

  70. Alvarez AP, Anderson KE, Conney AH, et al. Interactions between nutritional factors and drug biotransformation in man. Proc Natl Acad Sci USA 1976; 73: 2501–4

    Google Scholar 

  71. Anderson KE, Conney AH, Kappas A. Nutrition and oxidative drug metabolism in man: relative influence of dietary lipids, carbohydrate and protein. Clin Pharmacol Ther 1979; 26: 493–501

    PubMed  CAS  Google Scholar 

  72. Kappas A, Anderson KE, Conney AH, et al. Influence of dietary protein and carbohydrate on antipyrine and theophylline metabolism in man. Clin Pharmacol Ther 1976; 20: 643–53

    PubMed  CAS  Google Scholar 

  73. Wissel PS, Denke M, Inturrisi CE. A comparison of the effects of a macrobiotic diet and a Western diet on drug metabolism and plasma lipids in man. Eur J Clin Pharmacol 1987; 33: 403–7

    PubMed  CAS  Google Scholar 

  74. Hamberg O, Ovesen L, Dorfeldt A, et al. The effect of dietary energy and protein deficiency on drug metabolism. Eur J Clin Pharmacol 1990; 38: 567–70

    PubMed  CAS  Google Scholar 

  75. Burgess P, Hall RI, Bateman DN, et al. Antipyrine clearance during total parenteral nutrition in man. Br J Clin Pharmacol 1985; 20: 253P–4P

    Google Scholar 

  76. Burgess P, Hall RI, Bateman DN, et al. The effect of total parenteral nutrition on hepatic drug oxidation. JPEN 1987; 11: 540–3

    CAS  Google Scholar 

  77. Pantuck EJ, Pantuck CB, Weissman C, et al. Stimulation of oxidative drug metabolism by parenteral refeeding of nutritionally depleted patients. Gastroenterology 1985; 89: 241–5

    PubMed  CAS  Google Scholar 

  78. Pantuck EJ, Pantuck CB, Weissman C, et al. Effects of parenteral nutritional regimens on oxidative drug metabolism. Anesthesiology 1984; 60: 534–6

    PubMed  CAS  Google Scholar 

  79. Pantuck EJ, Weissman C, Pantuck CB, et al. Effects of parenteral arnino acid nutritional regimens on oxidative and conjugative drug metabolism. Anesth Analg 1989; 69: 727–31

    PubMed  CAS  Google Scholar 

  80. Tranvouez JL, Lerebours E, Chretien P, et al. Hepatic antipyrine metabolism in malnourished patients: influence of the type of malnutrition and course after nutritional rehabilitation. Am J Clin Nutr 1985; 41: 1257–64

    PubMed  CAS  Google Scholar 

  81. Juan D, Worwag EM, Schoeller DA, et al. Effects of dietary protein on theophylline pharmacokinetics and caffeine and aminopyrine breath tests. Clin Pharmacol Ther 1986; 40: 187–94

    PubMed  CAS  Google Scholar 

  82. Feldman CH, Hutchinson VE, Pippenger CE, et al. Effect of dietary protein and carbohydrate on theophylline metabolism in children. Pediatrics 1980; 66: 956–62

    PubMed  CAS  Google Scholar 

  83. Anderson KE, McCleery RB, Vesell ES, et al. Diet and cimetidine induce comparable changes in theophylline metabolism in normal subjects. Hepatology 1991; 13: 941–6

    PubMed  CAS  Google Scholar 

  84. Sangrador G, Sánchez-Alcaraz A, Ubeda R, et al. Theophylline plasma clearance in critically ill geriatric patients receiving total parenteral nutrition and in control patients. J Clin Pharm Ther 1990; 15: 273–8

    PubMed  CAS  Google Scholar 

  85. Balabaud C, Vinon G, Paccalin J. Influence of dietary protein and carbohydrate on phenytoin metabolism in man. Br J Clin Pharmacol 1979; 8: 369–71

    PubMed  CAS  Google Scholar 

  86. Messahel FM, Solis GL, Aguwa CN. Does total parenteral nutrition lower serum phenytoin levels? Curr Ther Res 1990; 47: 1017–20

    Google Scholar 

  87. Fraser HS, Mucklow JC, Bulpitt CJ, et al. Environmental effects on antipyrine half life in man. Clin Pharmacol Ther 1977; 22: 799–805

    PubMed  CAS  Google Scholar 

  88. Mucklow JC, Caraher MT, Henderson DB, et al. The effect of individual dietary constituents on antipyrine clearance in Asian immigrants. Br J Clin Pharmacol 1979; 7: 416P–7P

    PubMed  CAS  Google Scholar 

  89. Mucklow JC, Rawlins MD, Brodie MJ, et al. Drug oxidation in Asian vegetarians. Lancet 1980; II: 151

    Google Scholar 

  90. Brodie MJ, Boobis AR, Toverud EL, et al. Drug metabolism in white vegetarians. Br J Clin Pharmacol 1980; 9: 523–5

    PubMed  CAS  Google Scholar 

  91. Sommers DK, Staden van DA, Moncrieff J, et al. Antipyrine metabolism in African villagers. Human Toxicol 1985; 4: 379–84

    CAS  Google Scholar 

  92. Mucklow JC, Caraher MT, Idle JR, et al. The influence of changes in dietary fat on the clearance of antipyrine and 4-hydroxylation of debrisoquine. Br J Clin Pharmacol 1980; 9: 283P

  93. Tan KKC, Trull AK, Uttridge JA, et al. Effect of dietary fat on the pharmacokinetics and pharmacodynamics of cyclosporine in kidney transplant recipients. Clin Pharmacol Ther 1995; 57: 425–33

    PubMed  CAS  Google Scholar 

  94. Yiamouyiannis CA, Harris A, Sanders RA, et al. Paracetamol pharmacokinetics are independent of caloric intake and physical activity. Drug Invest 1994; 8: 361–8

    CAS  Google Scholar 

  95. Pantuck EJ, Pantuck CB, Kappas A, et al. Effects of protein and carbohydrate content of diet on drug conjugation. Clin Pharmacol Ther 1991; 50: 254–8

    PubMed  CAS  Google Scholar 

  96. Krishnaswamy K. Effects of malnutrition on drug metabolism and toxicity in humans. In: Hathcock JN, editor. Nutritional toxicology. Vol. 2. Orlando (FL): Academic Press, Inc, 1987: 105–28

    Google Scholar 

  97. Mehta S. Malnutrition and drugs: clinical implications. Dev Pharmacol Ther 1990; 15: 159–65

    PubMed  CAS  Google Scholar 

  98. Buchanan N, Davis M, Danhof M, et al. Antipyrine metabolite formation in children in the acute phase of malnutrition and after recovery. Br J Clin Pharmacol 1980; 10: 363–8

    PubMed  CAS  Google Scholar 

  99. Lares-Asseff I, Cravioto J, Santiago P, et al. Pharmacokinetics of metronidazole in severely malnourished and nutritionally rehabilitated children. Clin Pharmacol Ther 1992; 51: 42–50

    PubMed  CAS  Google Scholar 

  100. Ashton M, Bolme P, Zerihun G, et al. Disposition of salicylic acid in malnourished Ethiopian children after single oral dose. Clin Pharmacokinet 1993; 25: 483–94

    PubMed  CAS  Google Scholar 

  101. Treluyer JM, Sultan E, Alexandre JA, et al. Pharmacocinétique de l’aspirine chez l’enfant africain normonutri et malnutri. Arch Fr Pediatr 1991; 48: 337–41

    PubMed  CAS  Google Scholar 

  102. O’Shea D, Davis SN, Kim RB, et al. Effect of fasting and obesity in humans on the 6-hydroxylation of chlorzoxazone: a putative probe of CYP2E1 activity. Clin Pharmacol Ther 1994; 56: 359–67

    PubMed  Google Scholar 

  103. Garattini S, Ghezzi P, D’Incalci M. Effects of cancer disease on the metabolism of anticancer agents. Pharmac Ther 1988; 37: 57–65

    CAS  Google Scholar 

  104. Relling MV, Crom WR, Pieper JA, et al. Hepatic drug clearance in children with leukemia: changes in clearance of model substrates during remission-induction therapy. Clin Pharmacol Ther 1987; 41: 651–60

    PubMed  CAS  Google Scholar 

  105. Fleming RA, Milano GA, Etienne M-C, et al. No effect of dose, hepatic function, or nutritional status of 5-FU clearance following continuous (5-day), 5-FU infusion. Br J Cancer 1992; 66: 668–72

    PubMed  CAS  Google Scholar 

  106. Conney AH, Pantuck EJ, Kuntzman R, et al. Nutrition and chemical biotransformation in man. Clin Pharmacol Ther 1977; 22: 707–19

    PubMed  CAS  Google Scholar 

  107. Pantuck EJ, Pantuck CB, Garland WA, et al. Stimulatory effect of Brussels sprouts and cabbage on human drug metabolism. Clin Pharmacol Ther 1979; 25: 88–95

    PubMed  CAS  Google Scholar 

  108. Wattenberg LW. Inhibitors of chemical carcinogens. J Environ Pathol Toxicol 1980; 3: 35–52

    PubMed  CAS  Google Scholar 

  109. Wattenberg LW, Loub WD. Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally-occurring indoles. Cancer Res 1978; 1410–3

  110. Hoensch HP, Steinhardt HJ, Weiss G, et al. Effects of semisynthetic diets on xenobiotic metabolizing enzyme activity and morphology of small intestinal mucosa in humans. Gastroenterology 1984; 86: 1519–30

    PubMed  CAS  Google Scholar 

  111. Pantuck EJ, Pantuck CB, Anderson KE, et al. Effect of Brussels sprouts and cabbage on drug conjugation. Clin Pharmacol Ther 1984; 35: 161–9

    PubMed  CAS  Google Scholar 

  112. McDanell RE, Henderson LA, Russell K, et al. The effect of brassica vegetable consumption on caffeine metabolism in humans. Hum Exp Toxicol 1992; 11: 167–72

    PubMed  CAS  Google Scholar 

  113. Kim RB, Wilkinson GR. Watercress inhibits human CYP2E1 activity in vivo as measured by chlorzoxazone 6-hydroxylation. Clin Pharmacol Ther 1996; 59: 170

    Google Scholar 

  114. Bailey DG, Spence JD, Munoz C, et al. Interaction of citrus juices with felodipine and nifedipine. Lancet 1991; 337: 268–9

    PubMed  CAS  Google Scholar 

  115. Bailey DG, Arnold JMO, Munoz C, et al. Grapefruit juice-felodipine interaction: mechanism, predictability, and effect of naringin. Clin Pharmacol Ther 1993; 53: 637–42

    PubMed  CAS  Google Scholar 

  116. Edgar B, Bailey D, Bergstrand R, et al. Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine — and its potential clinical relevance. Eur J Clin Pharmacol 1992; 42: 313–7

    PubMed  CAS  Google Scholar 

  117. Soons PA, Vogels BAPM, Roosemalen MCM, et al. Grapefruit juice and cimetidine inhibit stereoselective metabolism of nitrendipine in humans. Clin Pharmacol Ther 1991; 50: 394–403

    PubMed  CAS  Google Scholar 

  118. Kupferschmidt HHT, Ha HR, Ziegler WH, et al. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther 1995; 58: 20–8

    PubMed  CAS  Google Scholar 

  119. Hukkinen SK, Varhe A, Olkkola KT, et al. Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice. Clin Pharmacol Ther 1995; 58: 127–31

    PubMed  CAS  Google Scholar 

  120. Merkel U, Sigusch H, Hoffmann A. Grapefruit juice inhibits 7-hydroxylation of coumarin in healthy volunteers. Eur J Clin Pharmacol 1994; 46: 175–7

    PubMed  CAS  Google Scholar 

  121. Fuhr U, Klittich K, Staib AH. Inhibitory effect of grapefruit juice and its bitter principal, naringenin, on CYP1A2 dependent metabolism of caffeine in man. Br J Clin Pharmacol 1993; 35: 431–6

    PubMed  CAS  Google Scholar 

  122. Ducharme MP, Warbasse LH, Edwards DJ. Disposition of intravenous and oral cyclosporine after administration with grapefruit juice. Clin Pharmacol Ther 1995; 57: 485–91

    PubMed  CAS  Google Scholar 

  123. Hollander AAMJ, Rooij van J, Lentjes EGWM, et al. The effect of grapefruit juice on cyclosporine and prednisone metabolism in transplant patients. Clin Pharmacol Ther 1995; 57: 318–24

    PubMed  CAS  Google Scholar 

  124. Bailey DG, Arnold JMO, Spence JD. Grapefruit juice and drugs: how significant is the interaction? Clin Pharmacokinet 1994; 26: 91–8

    PubMed  CAS  Google Scholar 

  125. Hansson I, Sillanpaa M. Pyridoxine and serum concentration of phenytoin and phenobarbitone. Lancet 1976; I: 256

    Google Scholar 

  126. Duvoisin RC, Yahr MD, Cotè LD. Pyridoxine reversal of L-DOPA effects in parkinsonism. Trans Am Neurol Assoc 1969; 94: 81–4

    PubMed  CAS  Google Scholar 

  127. Hsu TH, Bianchine JR, Preziosi TJ, et al. Effect of pyridoxine on levodopa metabolism in normal and parkinsonian patients. Proc Soc Exp Biol NY 1973; 143: 578–81

    CAS  Google Scholar 

  128. Furlanut M, Benetello P, Avogaro A, et al. Effects of folic acid on phenytoin kinetics in healthy subjects. Clin Pharmacol Ther 1978; 24: 295–7

    Google Scholar 

  129. Baylis EM, Crowley JM, Preece JM, et al. Influence of folic acid on blood phenytoin levels. Lancet 1971; I: 62–4

    Google Scholar 

  130. Maxwell JD, Hunter J, Stewart DA, et al. Folate deficiency after anticonvulsant drugs: an effect of hepatic enzyme induction. BMJ 1972; 1: 297–9

    PubMed  CAS  Google Scholar 

  131. Houston JB, Levy G. Modification of drug biotransformation by vitamin C in man. Nature 1975; 255: 78–9

    PubMed  CAS  Google Scholar 

  132. Back DJ, Bates M, Breckenridge AM, et al. Drug metabolism by the gastrointestinal mucosa: clinical aspects. In: Prescott LF, Nimmo WS, editors. Drug absorption. Lancaster: MTP Press Limited, 1981: 80–6

    Google Scholar 

  133. Back DJ, Breckenridge AM, MacIver M, et al. The gut wall metabolism of ethinyloestradiol and its contribution to the pre-systemic metabolism of ethinyloestradiol in humans. Br J Clin Pharmacol 1982; 13: 325–30

    PubMed  CAS  Google Scholar 

  134. Orme ML’E, Back DJ, Breckenridge AM. Clinical pharmacokinetics of oral contraceptive steroids. Clin Pharmacokinet 1983; 8: 95–136

    PubMed  CAS  Google Scholar 

  135. Back DJ, Breckenridge AM, MacIver M, et al. Interaction of ethinyloestradiol with ascorbic acid in man. BMJ 1981; 282: 1516

    PubMed  CAS  Google Scholar 

  136. Briggs MH. Megadose vitamin C and metabolic effects of the pill. BMJ 1981; 283: 1547

    PubMed  CAS  Google Scholar 

  137. Dunne JW, Davidson L, Vandongen R, et al. The effect of ascorbic acid on the sulfate conjugation of ingested noradrenaline and dopamine. Br J Clin Pharmacol 1984; 17: 356–60

    PubMed  CAS  Google Scholar 

  138. Houston JB. Effect of vitamin C supplement on antipyrine disposition in man. Br J Clin Pharmacol 1977; 4: 236–9

    PubMed  CAS  Google Scholar 

  139. Kempin SJ. Warfarin resistance caused by broccoli. N Engl J Med 1983; 308: 1229–30

    PubMed  CAS  Google Scholar 

  140. Qureshi GD, Reinders TP, Swint JJ, et al. Acquired warfarin resistance and weight-reducing diet. Arch Intern Med 1981; 141: 507–9

    PubMed  CAS  Google Scholar 

  141. Walker FB. Myocardial infarction after diet-induced warfarin resistance. Arch Intern Med 1984; 144: 2089–90

    PubMed  Google Scholar 

  142. Kaminsky LS, Dunbar DA, Wang PP, et al. Human hepatic cytochrome P-450 compositions as probed by in vitro microsomal metabolism of warfarin. Drug Metab Disposit 1984; 12: 470–7

    CAS  Google Scholar 

  143. Reiter S, Löffler W, Gröbner W, et al. Influence of dietary purines on the metabolism of allopurinol in man. World Rev Nutr Diet 1984; 43: 187–91

    PubMed  CAS  Google Scholar 

  144. Dennis MJ, Massey RC, McWeeny DJ, et al. Analysis of polycyclic aromatic hydrocarbons in UK total diets. Food Chem Toxicol 1983; 21: 569–74

    PubMed  CAS  Google Scholar 

  145. Grimmer G, Hildebrandt A. Kohlenwasserstoffe in der Umgebung des Menschen: II. Mitteilung: Der Gehalt polycyclischer Kohlenwasserstoffe in Brotgetreide verschiedener Standorte. Z Krebsforsch 1965; 67: 272–7

    CAS  Google Scholar 

  146. Larsson BK. Polycyclic aromatic hydrocarbons in smoked fish. Z Lebensm Unters Forsch 1982; 174: 101–7

    CAS  Google Scholar 

  147. Santodonato J, Howard P, Dasu D. Health and ecological assessment of polynuclear aromatic hydrocarbons. J Environ Pathol Toxicol 1981; 5: 1–364

    PubMed  CAS  Google Scholar 

  148. Conney AH, Pantuck EJ, Hsiao KC, et al. Enhanced phenacetin metabolism in human subjects fed charcoal-broiled beef. Clin Pharmacol Ther 1976; 20: 633–42

    PubMed  CAS  Google Scholar 

  149. Pantuck EJ, Hsiao KC, Conney AH, et al. Effect of charcoalbroiled beef on phenacetin metabolism in man. Science 1976; 194: 1055–7

    PubMed  CAS  Google Scholar 

  150. Kappas A, Alvarez AP, Anderson KE, et al. Effects of charcoalbroiled beef on antipyrine and theophylline metabolism. Clin Pharmacol Ther 1978; 23: 445–50

    PubMed  CAS  Google Scholar 

  151. Anderson KE, Schneider J, Pantuck EJ, et al. Acetaminophen metabolism in subjects fed charcoal-broiled beef. Clin Pharmacol Ther 1983; 34: 369–74

    PubMed  CAS  Google Scholar 

  152. LaDu B. Effects of GRAS substances on pharmacologic effects of drugs. Clin Pharmacol Ther 1977; 22: 743–7

    CAS  Google Scholar 

  153. Daniel JW. Metabolic aspects of antioxidants and preservatives. Xenobiotica 1986; 16: 1073–8

    PubMed  CAS  Google Scholar 

  154. Verhagen H, Beckers HHG, Comuth WV, et al. Disposition of single oral doses of butylated hydroxytoluene in man and rat. Food Chem Toxicol 1989; 27: 765–72

    PubMed  CAS  Google Scholar 

  155. Verhagen H, Maas LM, Beckers RHG, et al. Effect of subacute oral intake of the food antioxidant butylated hydroxyanisole on clinical parameters and phase-I and -II biotransformation capacity in man. Human Toxicol 1989; 8: 451–9

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter-Sack, I., Klotz, U. Influence of Diet and Nutritional Status on Drug Metabolism. Clin-Pharmacokinet 31, 47–64 (1996). https://doi.org/10.2165/00003088-199631010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199631010-00004

Keywords

Navigation