Skip to main content
Log in

Drug Monitoring in Nonconventional Biological Fluids and Matrices

  • Review Article
  • Target Concentration Intervention
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Determination of the concentration of drugs and metabolites in biological fluids or matrices other than blood or urine (most commonly used in laboratory testing) may be of interest in certain areas of drug concentration monitoring.

Saliva is the only fluid which can be used successfully as a substitute for blood in therapeutic drug monitoring, while an individual’s past history of medication, compliance and drug abuse, can be obtained from drug analysis of the hair or nails. Drug concentrations in the bile and faeces can account for excretion of drugs and metabolites other than by the renal route. Furthermore, it is important that certain matrices (tears, nails, cerebrospinal fluid, bronchial secretions, peritoneal fluid and interstitial fluid) are analysed, as these may reveal the presence of a drug at the site of action; others (fetal blood, amniotic fluid and breast milk) are useful for determining fetal and perinatal exposure to drugs. Finally, drug monitoring in fluids such as cervical mucus and seminal fluid can be associated with morpho-physiological modifications and genotoxic effects.

Drug concentration measurement in nonconventional matrices and fluids, although sometimes expensive and difficult to carry out, should therefore be considered for inclusion in studies of the pharmacokinetics and pharmacodynamics of new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowland M, Tozer TN. Clinical pharmacokinetics: concepts and applications. 2nd ed. Philadelphia: Lee and Febiger, 1989

    Google Scholar 

  2. Goodman and Gilman’s The pharmacological basis of therapeutics. 8th ed. (two volumes). Gilman AG, Rak TW, Nies AS, et al. editors. New York: McGraw-Hill, Inc., 1992

    Google Scholar 

  3. Clark’s Isolation and identification of drugs. 2nd ed. A.C. London: Moffat Senior Consulting, The Pharmaceutical Press, 1986

  4. Drobitch RK, Svensson CK. Therapeutic drug monitoring in saliva: an update. Clin Pharmacokinet 1992; 23: 365–79

    PubMed  CAS  Google Scholar 

  5. Gorodischer R, Koren G. Salivary excretion of drugs in children: theoretical and practical issues in therapeutic drug monitoring. Dev Pharmacol Ther 1992; 19: 161–77

    PubMed  CAS  Google Scholar 

  6. Chee KY, Lee D, Byron D, et al. A simple collection method for saliva in children: potential for home monitoring of carbamazepine therapy. Br J Clin Pharmacol 1993; 35: 311–3

    PubMed  CAS  Google Scholar 

  7. Tal A, Aviram M, Gorodischer R. Variations in theophylline concentrations detected by 24-hour saliva concentration profiles in ambulatory children with asthma. J Allergy Clin Immunol 1990; 86: 238–43

    PubMed  CAS  Google Scholar 

  8. Wilson JT. Clinical correlates of drugs in saliva. Ann NY Acad Sci 1993; 694: 48–61

    PubMed  CAS  Google Scholar 

  9. Danhof M, Breimer DD. Therapeutic drug monitoring in saliva. Clin Pharmacokinet 1978; 3: 39–57

    PubMed  CAS  Google Scholar 

  10. Knott C, Reynolds F. The place of saliva in antiepileptic drug monitoring. Ther Drug Monit 1984; 6: 35–41

    PubMed  CAS  Google Scholar 

  11. Cook CE, Amerson E, Poole WK, et al. Phenytoin and phenobarbital concentrations in saliva and plasma measured by radioimmunoassay. Clin Pharmacol Ther 1975; 18: 742–7

    PubMed  CAS  Google Scholar 

  12. Blanchard J, Harvey S, Morgan WJ. Serum/saliva correlations for theophilline in asthmatics. J Clin Pharmacol 1991; 31: 565–70

    PubMed  CAS  Google Scholar 

  13. Khanna NN, Bada HS, Somani SM. Use of salivary concentrations in the prediction of serum caffeine and theophylline concentrations in premature infants. J Pediatr 1980; 96: 494–9

    PubMed  CAS  Google Scholar 

  14. Cook CE, Tallent CR, Amerson EW, et al. Caffeine in plasma and saliva by a radioimmunoassay procedure. J Pharmacol Exp Ther 1976; 199: 679–86

    PubMed  CAS  Google Scholar 

  15. Mahmod S, Smith DS, Landon J. Radioimmunoassay of salivary digoxin by simple adaptation of a kit method for serum digoxin: saliva/serum ratio and correlation. Ther Drug Monit 1987; 9: 91–6

    PubMed  CAS  Google Scholar 

  16. Ueda CT, Beckman PJ, Dzindzio BS. Relationship between saliva and serum quinidine concentrations and suppression of ventricular premature beats. Ther Drug Monit 1984; 6: 43–9

    PubMed  CAS  Google Scholar 

  17. Kangas L, Allonen R, Lammintausta M, et al. Pharmacokinetics of nitrazepam in saliva and serum after a single oral dose. Acta Pharmacol Toxicol 1979; 45: 20–4

    CAS  Google Scholar 

  18. Sankaranarayanan A, Goel A, Pant VLN. Variation in the relationship between serum and saliva lithium levels. Int J Clin Pharmacol Ther Toxicol 1975; 23: 365–6

    Google Scholar 

  19. Siegel IA. The role of saliva in drug monitoring. Ann NY Acad Sci 1993, 694: 86–90

    PubMed  CAS  Google Scholar 

  20. Wilson JT, Brown RD, Bocchini JJ. Efficacy, disposition and pharmacodynamics of aspirin, acetaminophen and choline salicylate in young febrile children. Ther Drug Monit 1982; 4: 147–80

    PubMed  CAS  Google Scholar 

  21. McNeil AD, Jarvis MJ, Stapleton JA, et al. Nicotine intake in young smokers: longitudinal study of saliva cotinine concentrations. Am J Public Health 1989; 79: 172–5

    Google Scholar 

  22. Curvall M, Kazemi Vala E, Enzell CR, et al. Simulation and evaluation of nicotine intake during passive smoking: cotinine measurements in body fluids of nonsmokers given intravenous infusions of nicotine. Clin Pharmacol Ther 1990; 47: 42–9

    PubMed  CAS  Google Scholar 

  23. Cone EJ. Saliva testing for drugs of abuse. Ann NY Acad Sci 1993, 694: 91–127

    PubMed  CAS  Google Scholar 

  24. Wan SH, Matin SB, Azarnoff D. Kinetics, salivary excretion of amphetamine isomers, and effect of urinary pH. Clin Pharmacol Ther 1978; 23: 585–90

    PubMed  CAS  Google Scholar 

  25. Thomson LK, Yousefnejad D, Kumor K, et al. Confirmation of cocaine in human saliva after intravenous use. J Anal Toxicol 1987; 11: 36–8

    Google Scholar 

  26. Kang GI, Abbott FS. Analysis of methadone and metabolites in biological fluids with gas chromatography-mass spectrometry. J Chromatogr 1982; 231: 311–9

    PubMed  CAS  Google Scholar 

  27. Thomson LK, Cone EJ. Determination of delta-9-tetrahydrocannabinol in human blood and saliva by high-performance liquid chromatography with amperometric detection. J Chromatogr 1987; 421: 91–7

    Google Scholar 

  28. Cone EJ. Testing human hair for drugs of abuse. I. Individual dose and time profiles of morphine and codeine in plasma, saliva, urine, and beard compared to drug-induced effects on pupils and behaviour. J Anal Toxicol 1990; 14: 1–7

    PubMed  CAS  Google Scholar 

  29. De Gier JJ, Hart BJ, Wilderink PF, et al. Comparison of plasma and saliva levels of diazepam. J Clin Pharmacol 1980; 10: 151–5

    Google Scholar 

  30. Yuan Hou Z, Pickle LW, Meyer PS, et al. Salivary analysis for determination of dextromethorphan metabolic phenotype. Clin Pharmacol Ther 1991; 49: 410–9

    Google Scholar 

  31. Van Haeringen NJ. Secretion of drugs in tears. Curr Eye Res 1985; 4: 485–8

    PubMed  Google Scholar 

  32. Haeckel R, Hanecke P. The application of saliva, sweat and tear fluid for diagnostic purposes. Ann Biol Clin 1993; 50: 903–10

    Google Scholar 

  33. Piredda S, Monaco F. Ethosuximide in tears, saliva and cerebrospinal fluid. Ther Drug Monit 1981; 3: 321–3

    PubMed  CAS  Google Scholar 

  34. Katz SA, Chatt A, editors. Hair analysis: applications in the biomedical and environmental sciences. New York: VCH Publishers Inc., 1988

    Google Scholar 

  35. Uematsu T. Therapeutic drug monitoring in hair samples. Clin Pharmacokinet 1993; 25: 83–7

    PubMed  CAS  Google Scholar 

  36. Matsuno H, Uematsu T, Nakashima M. The measurement of haloperidol and reduced haloperidol in hair as an index of dosage history. Br J Clin Pharmacol 1990; 29: 187–94

    PubMed  CAS  Google Scholar 

  37. Miyazawa N, Uematsu T. Analysis of ofloxacin in hair as a measure of hair growth and a time marker for hair analysis. Ther Drug Monit 1992; 14: 525–8

    PubMed  CAS  Google Scholar 

  38. Uematsu T, Kondo K, Yano S, et al. Measurement of temafloxacin in human scalp hair as an index of drug exposure. J Pharm Sci 1994; 83: 42–5

    PubMed  CAS  Google Scholar 

  39. Welch MJ, Sniegoski LT, Allgood CC, et al. Hair analysis for drugs of abuse: evaluation of analytical methods, environmental issues, and development of reference materials. J Anal Toxicol 1993; 17: 389–98

    PubMed  CAS  Google Scholar 

  40. Henderson GL, Harkey MR, Jones RT. Analysis of hair for cocaine. In: Cone EJ, Welch MJ, Grigson Babeki MB, editors. Hair testing for drugs of abuse: international research on standards and technology. National Institute on Drug Abuse, NIH Publication No. 95-3727, 1995; 91–120

    Google Scholar 

  41. Moeller MR, Fey P, Sachs H. Hair analysis for opiates in forensic cases. In: Cone EJ, Welch MJ, Grigson Babeki MB, editors. Hair testing for drugs of abuse: international research on standards and technology. National Institute on Drug Abuse, NIH Publication No. 95-3727, 1995; 312–32

    Google Scholar 

  42. Suzuki S, Inoue T. Analysis of methamphetamine in hair, nail, sweat, and saliva by mass fragmentography. J Anal Toxicol 1989; 13: 176–8

    PubMed  CAS  Google Scholar 

  43. Kintz P, Mangin P. Opiate concentrations in human head, axillary, and pubic hair. J Forensic Sci 1993; 38: 657–62

    PubMed  CAS  Google Scholar 

  44. Haley NJ, Axelrad CM, Tilton KA. Validation of self-reported smoking behaviour: biochemical analyses of cotinine and thiocyanate. Am J Public Health 1983; 73: 1204–7

    PubMed  CAS  Google Scholar 

  45. Haley NJ, Hoffmann D. Analysis for nicotine and cotinine in hair to determine cigarette smoker status. Clin Chem 1985; 31: 1598–600

    PubMed  CAS  Google Scholar 

  46. Pichini S, Pacifici R, Altieri I, et al. Analysis of nicotine and cotinine in human hair by high-performance liquid chromatography and comparative determination by radioimmunoassay. In: Cone EJ, Welch MJ, Grigson Babeki MB, editors. Hair testing for drugs of abuse: international research on standards and technology. National Institute on Drug Abuse, NIH Publication No. 95-3727, 1995; 212–24

    Google Scholar 

  47. Balabanova S, Wolf HU. Bestimmungen von Cocain, Morphin, Phenobarbital and Methadon in Kopf, Achsel- und Schamhaar. Lab Med 1989; 13: 46–7

    CAS  Google Scholar 

  48. Klein J, Forman R, Eliopoulos C, et al. A method for simultaneous measurement of cocaine and nicotine in neonatal hair. Ther Drug Monit 1994; 16: 67–70

    PubMed  CAS  Google Scholar 

  49. Ishiyama I, Nagai T, Nagai T, et al. The significance of drug analysis of sweat in respect to rapid screening for drug abuse. Z Rechtsmed 1979; 82: 251–6

    PubMed  CAS  Google Scholar 

  50. Schafer-Korting M. Pharmacokinetic optimisation of oral antifungal therapy. Clin Pharmacokinet 1993; 25: 329–41

    PubMed  CAS  Google Scholar 

  51. Bonati M, Kanto J, Tognoni G. Clinical pharmacokinetics of cerebrospinal fluid. Clin Pharmacokinet 1982; 7: 312–5

    PubMed  CAS  Google Scholar 

  52. Luer MS, Hatton J. Vancomycin administration into the cerebrospinal fluid. Ann Pharmacother 1993; 27: 912–21

    PubMed  CAS  Google Scholar 

  53. Lankelma J, Lippens RJJ, Drenthe-Schonk A, et al. Change in tranfer rate of methotrexate from spinal fluid to plasma during intrathecal therapy in children and adults. Clin Pharmacokinet 1980; 5: 465–75

    PubMed  CAS  Google Scholar 

  54. Pichini S, Altieri I, Bacosi A, et al. High-performance liquid-chromatographic-mass spectrometric assay of busulfan in serum and cerebrospinal fluid. J Chromatogr 1992; 581: 143–6

    PubMed  CAS  Google Scholar 

  55. Blom GF, Guelen PJM. The distribution of antiepileptic drugs between serum, saliva and cerebrospinal fluid. In: Gardner-Thorpe GW, editor. Antiepileptic drug monitoring. London: Pitman Medical, 1977, 287–97

    Google Scholar 

  56. Houghton GW, Richens A, Toseland PA, et al. Brain concentrations of phenytoin, phenobarbitone, and primidone in epileptic patients. Eur J Clin Pharmacol 1975; 9: 73–8

    PubMed  CAS  Google Scholar 

  57. Morselli PL, Baruzzi A, Gerna M, et al. Carbamazepine and carbamazepine-10,11 -epoxide concentrations in human brain. Br J Clin Pharmacol 1977; 4: 535–40

    PubMed  CAS  Google Scholar 

  58. Scheinin H, Virtanen R. Effects of yohimbine and idazolan on monoamine metabolites in rat cerebrospinal fluid. Life Sci 1986; 39: 1439–46

    PubMed  CAS  Google Scholar 

  59. Scheinin H, Scheinin M. Repetitive measurement of monoamine metabolite levels in cerebrospinal fluid of conscious rats effects of reserpine and haloperidol. Eur J Pharmacol 1985; 113: 345–52

    PubMed  CAS  Google Scholar 

  60. Risby ED, Hsiao JK, Sunderland T, et al. The effects of antidepressants on the cerebrospinal fluid homovanillic acid-5 hydroxyindoleacetic acid ratio. Clin Pharmacol Ther 1987; 42: 547–54

    PubMed  CAS  Google Scholar 

  61. Maxwell D. The role of antibiotics given by inhalation in chronic chest disease. J Antimicrob Chemother 1983; 11: 203–6

    PubMed  CAS  Google Scholar 

  62. Wong GA, Peirce TH, Goldstein E, et al. Penetration of antimicrobial agents into bronchial secretions. Am J Med 1975; 59: 219–23

    PubMed  CAS  Google Scholar 

  63. Klastersky J, Geuning C, Mouawad E, et al. Endotracheal gentamicin in bronchial infections in patients with tracheostomy. Chest 1972; 61: 117–20

    PubMed  CAS  Google Scholar 

  64. Dull WL, Alexander MR, Kasik JE. Bronchial secretion levels of amikacin. Antimicrob Agent Chemother 1979; 16: 767–71

    CAS  Google Scholar 

  65. Stillwell PC, Kearns GL, Jacobs RF. Endotracheal tobramycin in gram-negative pneumonitis. Drug Intell Clin Pharm 1988; 22: 577–81

    PubMed  CAS  Google Scholar 

  66. Somani P, Shapiro RS, Stockard H, et al. Unidirectional absorption of gentamicin from the peritoneum during continuous ambulatory peritoneal dialysis. Clin Pharmacol Ther 1982; 32: 113–21

    PubMed  CAS  Google Scholar 

  67. Schenplein RJ, Blank IH. Permeability of the skin. Physiol Rev 1971; 51: 702–47

    Google Scholar 

  68. Evans N, Guy RH, Hadgraft J, et al. Transdermal drug delivery to neonates. Int J Pharm 1985; 24: 259–65

    CAS  Google Scholar 

  69. Harpin VA, Rutter N. Barrier properties of the newborn infant’s skin. J Pediatr 1983; 102: 419–25

    PubMed  CAS  Google Scholar 

  70. Murphy MG, Peck CC, Conner DP, et al. Transcutaneous theophylline collection in preterm infants. Clin Pharmacol Ther 1990; 47: 427–34

    PubMed  CAS  Google Scholar 

  71. Barret DA, Rutter N, Kurihara-Bergstrom T, et al. Buprenorphine permeation through premature neonatal skin. Pharm Sci Commun 1994; 4: 125–30

    Google Scholar 

  72. Herfst MJ, Edelbroek PM, De Wolff FA. Determination of 8-methoxypsoralen in suction blister fluid and serum by liquid chromatography. Clin Chem 1980; 26: 1825–8

    PubMed  CAS  Google Scholar 

  73. Solberg CO, Haistensen A, Digranes A, et al. Penetration of antibiotics into human leukocytes and dermal suction blisters. Rev Infect Dis 1983; 5: Suppl 3, 468–73

    Google Scholar 

  74. Korting HC. Plasma and skin blister fluid levels of cefotiam and cefmenoxime after single intramuscular application of 1 g in gonorrhea. Chemother 1984; 30: 277–82

    CAS  Google Scholar 

  75. Mazzei T, Tonelli F, Novelli A, et al. Penetration of cefotenan into suction blister fluid and tissue homogenates in patients undergoing abdominal surgery. Antimicrob Agents Chemother 1994; 38: 2221–3

    PubMed  CAS  Google Scholar 

  76. Schreiner A, Helium KB, Digranes A, et al. Transfer of pennicillin G and ampicillin into human skin blisters induced by suction. Scand J Infect Dis 1978; Suppl. 14: 233–7

    Google Scholar 

  77. Herfst MJ, De Wolff FA. Intraindividual and interindividual variability in 8-methoxypsoralen kinetics and effect in psoriatic patients. Clin Pharmacol Ther 1983; 34: 117–24

    PubMed  CAS  Google Scholar 

  78. De Wolff FA, Thomas TV. Clinical pharmacokinetics of methoxsalen and other psoralens. Clin Pharmacokinet 1986; 11: 62–75

    PubMed  Google Scholar 

  79. Schafer-Korting M. Pharmacokinetics of griseofulvin in blood and skin suction blister fluid of rats. Drug Metab Dispos 1987; 15: 374–6

    PubMed  CAS  Google Scholar 

  80. Laugier JP, Surber C, Bun H, et al. Determination of acitretin in the skin, in the suction blister and in plasma of human volunteers after multiple oral dosing. J Pharm Sci 1994; 83: 623–8

    PubMed  CAS  Google Scholar 

  81. Rollins DE, Klaassen CD. Biliary excretion of drugs in man. Clin Pharmacokinet 1979; 4: 368–79

    PubMed  CAS  Google Scholar 

  82. Carruthers G, Dujovne CA. Digoxin therapy during T-tube drainage in man. JAMA 1978; 240: 2756–7

    PubMed  CAS  Google Scholar 

  83. Brogard JM, Haegele P, Dorner M, et al. Biliary excretion of a new semisynthetic cephalosporin, cephacetrile. Antimicrob Agents Chemother 1973, 3: 19–23

    PubMed  CAS  Google Scholar 

  84. Russele JQ, Klaassen CD. Biliary excretion of cardiac glycosides. J Pharmacol Exp Ther 1973; 186: 455–62

    Google Scholar 

  85. Ayliffe GAJ, Davis A. Ampicillin levels in human bile. Br J Pharmacol 1965; 24: 189–93

    CAS  Google Scholar 

  86. Alestig K. Studies on the intestinal excretion of doxycycline. Scand J Infect Dis 1974; 6: 265–71

    PubMed  CAS  Google Scholar 

  87. Caldwell JH, Cline CT. Biliary excretion of digoxin in man. Clin Pharmacol Ther 1976; 19: 410–5

    PubMed  CAS  Google Scholar 

  88. Douglass HO, Mittleman A. Metabolic studies of 5-fluoroura-cil. II. Influence of route of administration on the dinamics of distribution in man. Cancer 1974; 34: 1878–81

    PubMed  Google Scholar 

  89. Kaye CM. The biliary excretion of acebutolol in man. J Pharm Pharmacol 1976; 28: 449–50

    PubMed  CAS  Google Scholar 

  90. Terhaag B, Richter K, Diettrich H. Concentration behavior of carbamazepine in bile and plasma of man. Int J Clin Pharmacol 1978; 16: 607–9

    CAS  Google Scholar 

  91. Nielsen ML, Justesen T. Excretion of metronidazole in human bile. Scand J Gastroenterol 1977; 12: 1003–8

    PubMed  CAS  Google Scholar 

  92. Jackson DV, Castle MC, Bender RA. Biliary excretion of vincristine. Clin Pharmacol Ther 1978: 24; 101–7

    PubMed  Google Scholar 

  93. Christians U, Braun F, Kosian N, et al. High performance liquid chromatography/mass spectrometry of FK 506 and its metabolites in blood, bile, and urine of liver grafted patients. Transplant Proc 1991; 23: 2741–4

    PubMed  CAS  Google Scholar 

  94. Chan GL, Weinstein SS, Lefor WW, et al. Relative performance of specific and non-specific fluorescence polarization immunoassay for cyclosporine in transplant patients. Ther Drug Monit 1992; 14: 42–7

    PubMed  CAS  Google Scholar 

  95. Bernareggi A. The pharmacokinetic profile of nimesulide in healthy volunteers. Drugs 1993; 46Suppl. 1: 64–72

    PubMed  CAS  Google Scholar 

  96. Van Gijn R, Kuijs S, Rosing H, et al. Determination of intoplicine, a new antitumour drug, in human faeces by normal-phase high-performance liquid chromatography with fluorescence detection. J Pharm Biomed Anal 1993; 11: 1345–8

    PubMed  Google Scholar 

  97. Jensen J, Cornett C, Olsen CE, et al. identification of oxidation products of 5-aminosalicylic acid in faeces and the study of their formation in vitro. Biochem Pharmacol 1993; 45: 1201–9

    PubMed  CAS  Google Scholar 

  98. Heikkila A, Renkonen OV, Erkkola R. Pharmacokinetics and transplacental passage of imipenem during pregnancy. Antimicrob Agents Chemother 1992; 36: 2652–5

    PubMed  CAS  Google Scholar 

  99. Pacifici GM, Nottoli R. Placental tranfer of drugs administered to the mother. Clin Pharmacokinet 1995; 28: 235–69

    PubMed  CAS  Google Scholar 

  100. Sperling RS, Roboz J, Dische R, et al. Zidovudine pharmacokinetics during pregnancy. Am J Perinat 1992; 9: 247–9

    CAS  Google Scholar 

  101. Jordheim O, Hagen AG. Study of ampicillin levels in maternal serum, umbilical cord serum and amniotic fluid following administration of pivampicillin. Acta Obstet Gynecol Scand 1980; 59: 315–7

    PubMed  CAS  Google Scholar 

  102. Kafetzis DA, Brater DC, Fanourgakis JE. Materno-foetal transfer of azlocillin. J Antimicrob Chemoth 1983; 12: 157–62

    CAS  Google Scholar 

  103. Brown CEL, Christmas JT, Bawdon RE. Placental transfer of cefazolin and piperacillin in pregnancies remote from term complicated by Rh-isoimmunization. Am J Obstet Gynecol 1990; 163: 938–43

    PubMed  CAS  Google Scholar 

  104. Bourget P, Fernandez H, Delouis C et al. Transplacental passage of vancomycin during the second trimester of pregnancy. Obstet Gynecol 1991; 78: 908–11

    PubMed  CAS  Google Scholar 

  105. Omtzigt JG, Nau H, Los FJ, et al. The disposition of valproate and its metabolites in the late first trimester and early second trimester of pregnancy in maternal serum, urine, and amniotic fluid: effect of dose, co-medication, and the presence of spina bifida. Eur J Clin Pharmacol 1992; 43: 381–8

    PubMed  CAS  Google Scholar 

  106. Redman CWG, Beilin LJ, Bonner J. Treatment of hypertension in pregnancy with methyldopa blood pressure control: side effects. Br J Obstet Gynaecol 1977; 84: 419–26

    PubMed  CAS  Google Scholar 

  107. Luck W, Nau H. Exposure of the fetus, neonate, and nursed infant to nicotine and cotinine from maternal smoking. N Engl J Med 1984; 311: 672

    PubMed  CAS  Google Scholar 

  108. Atkinson HC, Begg EJ, Darlow BA. Drugs in human milk. Clin Pharmacokinet 1988; 14: 217–40

    PubMed  CAS  Google Scholar 

  109. Kanako S, Sato T, Suzuki K. The levels of anticonvulsants in breast milk. Br J Clin Pharmacol 1979; 7: 624–6

    Google Scholar 

  110. Levy M, Granit L, Laufer N. Excretion of drugs in human milk. N Engl J Med 1975; 297: 789

    Google Scholar 

  111. Ostensen M. Piroxicam in human breast milk. Eur J Clin Pharmacol 1983; 25: 829–30

    PubMed  CAS  Google Scholar 

  112. Pons G, Rey E, Matheson I. Excretion of psychoactive drugs into breast milk. Clin Pharmacokinet 1994; 27: 270–89

    PubMed  CAS  Google Scholar 

  113. Pond SM, Kreek MJ, Tong TG, et al. Altered methadone pharmacokinetics in methadone-mantained pregnant women. J Pharmacol Exp Ther 1985; 233: 1–6

    PubMed  CAS  Google Scholar 

  114. Misri S, Sivertz K. Tricyclic drugs in pregnancy and lactation: a preliminary report. Int J Psychiatr Med 1991; 21: 157–71

    CAS  Google Scholar 

  115. Luck W, Nau H. Nicotine and cotinine concentrations in serum and milk of nursing smokers. Br J Clin Pharmacol 1984; 18: 9–15

    PubMed  CAS  Google Scholar 

  116. Macht DI. On the absorption of drugs and poisons through the vagina. J Pharmacol Exp Ther 1918: X: 509–22

    Google Scholar 

  117. De Aloysio D, Miliffi L, Iannicelli T, et al. Intramuscular inter feron-beta treatment of cervical intraepithelial neoplasia II associated with human papillomavirus infection. Acta Obstet Gynecol Scand 1994; 73: 420–4

    PubMed  Google Scholar 

  118. Bernstein EP. Therapeutic considerations for preinduction cervical ripening with intracervical prostaglandin E2 gel. J Reprod Med 1993; 38Suppl. 1: 73–7

    PubMed  CAS  Google Scholar 

  119. Green RL, Green MA. Postcoital urticaria in a penicillin-sensitive patient. JAMA 1985; 254: 531

    PubMed  CAS  Google Scholar 

  120. Hales BF, Smith S, Robaire B. Cyclophosphamide in the seminal fluid of treated males: transmission to females by mating and effect on pregnancy outcome. Toxicol Appl Pharm 86; 84: 423–30

  121. Sasson IM, Haley NJ, Hoffmann D, et al. Cigarette smoking and neoplasia of the uterine cervix: smoke constituents in cervical mucus. N Engl J Med 1985; 312: 315–6

    PubMed  CAS  Google Scholar 

  122. Gagnon C, editor. Controls of sperm motility: biological and clinical aspects. Boca Raton (FL): CRC Press, 1990

    Google Scholar 

  123. Winnigham DG, Nemoy NJ, Stamey TA. Diffusion of antibiotics from plasma into prostatic fluid. Nature 1968; 219: 139–43

    Google Scholar 

  124. Friedler G. Effects of limited maternal exposure to xenobiotic agents on the development of progeny. Neurobehav Toxicol Teratol 1985; 7: 739–43

    PubMed  CAS  Google Scholar 

  125. Malborg AS. Antimicrobial drugs in human seminal plasma. J Antimicrob Chem 1978; 4: 483–5

    Google Scholar 

  126. Pichini S, Zuccaro P, Pacifici R. Drugs in semen. Clin Pharmacokinet 1994; 26: 356–73

    PubMed  CAS  Google Scholar 

  127. Milingos S, Creatsas G, Kallipolitis G, et al. An appraisal of cephalexin and clindamycin concentration in seminal plasma. Acta Eur Fert 1981; 12: 319–21

    CAS  Google Scholar 

  128. Armstrong JR, Cook FE, Robinson JR. Concentration of antibiotic and chemotherapeutic agents in the ejaculum. J Urol 1968; 100: 72–6

    PubMed  CAS  Google Scholar 

  129. Naber KG, Kinzig M, Adam D, et al. Concentrations of Cefpodoxime in plasma, ejaculate and in prostatic fluid and adenoma tissue. Infection 1991; 19: 30–5

    PubMed  CAS  Google Scholar 

  130. Bologna M, Vaggi L, Flammini D, et al. Norfloxacin concentrations in seminal plasma measured by HPLC. Drugs Exp Clin Res 1985; 11: 801–4

    PubMed  CAS  Google Scholar 

  131. Naber KG, Sorgel F, Kees F, et al. Brief report: pharmacokinetics of ciprofloxacin in young (healthy volunteers) and elderly patients, and concentrations in prostatic fluid, seminal plasma, and prostatic adenoma tissue following intravenous administration. Am J Med 1989; 87Suppl. 5A: 57–9

    Google Scholar 

  132. Kjaergaard N, Ambrosius Christensen L, Lauritsen JG, et al. Effects of mesalazine substitution on salicylazosulfapyridine-induced seminal abnormalities in men with ulcerative colitis. Scand J Gastroenterol 1989; 24: 891–6

    PubMed  CAS  Google Scholar 

  133. Kershaw RA, Mays DC, Bianchine JR, et al. Disposition of aspirin and its metabolites in the semen of man. J Clin Pharmacol 1987; 27: 304–9

    PubMed  CAS  Google Scholar 

  134. Rimerman RA, Taylor SM, Lynn RK, et al. The excretion of carbamazepine in the semen of the rabbit and man: comparison of the concentration in semen and plasma. Pharmacologist 1979; 21: 264

    Google Scholar 

  135. Swanson BN, Leger RM, Gordon WP, et al. Excretion of Phenytoin into semen of rabbits and man: comparison with plasma levels. Drug Metab Dispos 1978; 6: 70–4

    PubMed  CAS  Google Scholar 

  136. Swanson BN, Harland RC, Dickinson RG, et al. Excretion of valproic acid into semen of rabbits and man. Epilepsia 1978; 19: 541–6

    PubMed  CAS  Google Scholar 

  137. Porat-Soldin O, Soldin SJ. Preliminary studies on the in vitro and in vivo effect of salicylate on sperm motility. Ther Drug Monit 1992; 14: 366–70

    PubMed  CAS  Google Scholar 

  138. Mahajan P, Grech ED, Pearson RM, et al. Propranolol concentrations in blood serum, seminal plasma and saliva in man after a single oral dose. Br J Clin Pharmacol 1984; 18: 849–52

    PubMed  CAS  Google Scholar 

  139. Beach CA, Bianchine JR, Gerber N. The excretion of caffeine in the semen of men: pharmacokinetics and comparison of the concentrations in blood and semen. J Clin Pharmacol 1984; 24: 120–6

    PubMed  CAS  Google Scholar 

  140. Pacifici R, Altieri I, Gandini L, et al. Nicotine, cotinine and trans-3-hydroxycotinine levels in seminal plasma of smokers: effects on sperm parameters. Ther Drug Monit 1993; 15: 358–63

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pichini, S., Altieri, I., Zuccaro, P. et al. Drug Monitoring in Nonconventional Biological Fluids and Matrices. Clin. Pharmacokinet. 30, 211–228 (1996). https://doi.org/10.2165/00003088-199630030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199630030-00003

Keywords

Navigation