Skip to main content
Log in

Pharmacokinetic-Pharmacodynamic Relationships of Acarbose

  • Review Article
  • Pharmacokinetic-Pharmacodynamic Relationships
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Acarbose represents a new pharmacological approach to achieving the metabolic benefits of a slower carbohydrate absorption in diabetes, by acting as a potent, competitive inhibitor of intestinal α-glucosidases. Acarbose molecules attach to the carbohydrate binding sites of α-glucosidases, with an affinity constant that is much higher than that of the normal substrate. Because of the reversible nature of the inhibitor-enzyme interaction, the conversion of oligosaccharides to monosaccharides is only delayed rather than completely blocked. Acarbose has the structural features of a tetrasaccharide and does not cross the enterocytes after ingestion. Thus, its pharmacokinetic properties are well suited to the pharmacological action directed exclusively towards the intestinal glucosidases.

The most important clinical consequence of the delayed carbohydrate digestion caused by acarbose is the attenuation of postprandial increases in blood glucose levels. Other effects have also been described: a decreased β-pancreatic response to meals, and influences on gut hormone secretion and plasma lipid levels. Gastrointestinal discomfort is frequently reported as an adverse effect of acarbose administration, but incidence usually decreases with time. The suitability of acarbose for improving glucose homeostasis as an adjunct to dietary control or to administration of sulphonylureas or insulin has been extensively studied in patients both with type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus. Acarbose can be used as first-line therapy in patients with type 2 diabetes which is poorly controlled by diet alone. Moreover, the lack of body weight gain or hypoglycaemic effects reported during acarbose treatment may be advantageous for obese or elderly patients. Finally, the reduction in fluctuations of glucose levels throughout the day may help to control type 1 diabetes in patients with ‘brittle diabetes’.

Long term prospective studies are still needed to confirm these indications and the usefulness of acarbose in conditions other than diabetes, notably reactive hypoglycaemia and dumping syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Creutzfeldt W, Fölsch UR, editors. Delaying absorption as a therapeutic principle in metabolic diseases. Stuttgart: Georg Thieme Verlag, 1983

    Google Scholar 

  2. Puls W, Keup U. Influence of an α-amylase inhibitor (BAY D 7791) on blood glucose, serum insulin and NEFA in starch loading tests in rats, dogs and men. Diabetologia 1973; 9: 97–101

    Article  PubMed  CAS  Google Scholar 

  3. Truscheit E, Hillebrand I, Junge B, et al. Microbial α-glucosidase inhibitors: chemistry, biochemistry and therapeutic potential. Prog Clin Biochem Med 1988; 7: 17–99

    Article  Google Scholar 

  4. Puls W, Keup U, Krause HP, et al. Glucosidase inhibition: a new approach to the treatment of diabetes, obesity and hyperlipoproteinaemia. Naturwissenschaften 1977; 64: 536–7

    Article  PubMed  CAS  Google Scholar 

  5. Bischoff H, Puls W, Krause HP, et al. Pharmacological properties of the novel glucosidase inhibitors BAY M 1099 (miglitol) and BAY O 1248. Diabetes Res Clin Pract 1985; Suppl 1: S53

  6. Ikeda H, Odaka H, Matsuo T. Effect of a disaccharidase inhibitor, AO-128, on a high sucrose-diet-induced hyperglycemia in female Wistar fatty rats. Jpn Pharmacol Ther 1991; 19: 4451–6

    CAS  Google Scholar 

  7. Gray GM. Carbohydrate absorption and malabsorption. In: Johanson LR, Christensen J, Grossman MI, et al., editors. Physiology of the gastrointestinal tract. Vol. 2. New York: Raven, 1981: 1063–72

    Google Scholar 

  8. Fölsch UR, Lembcke B. Inhibition of intestinal alpha-glucosidase in the treatment of diabetes mellitus. Internist 1991; 32: 699–707

    PubMed  Google Scholar 

  9. Newcomer AD, McGill DB. Distribution of disaccharidase activity in the small bowel of normal and lactase-deficient subjects. Gastroenterology 1966; 51: 481–8

    PubMed  CAS  Google Scholar 

  10. Toeller M. Modulation of intestinal glucose absorption: postponement of glucose absorption by α-glucosidase inhibitors. In: Mogensen CE, Standl E, editors. Pharmacology of diabetes. Present practice and future perspectives. New York: W. De Gruyter, 1991; 93–112

    Google Scholar 

  11. Pütter J, Keup U, Krause HP, et al. Pharmacokinetics of acarbose. In: Creutzfeldt W, editor. Proceedings of the First International Symposium on Acarbose; 1981 Oct 8–10: Montreux. Amsterdam: Excerpta Medica, 1982; 38–48

    Google Scholar 

  12. Pütter J. Studies on the pharmacokinetics of acarbose in humans. In: Broodbeck U, editor. Enzyme inhibitors. Weinheim: Verlag Chemie, 1980; 139–51

    Google Scholar 

  13. Ahr HJ, Krause P, Siefert HM, et al. Pharmacokinetics of acarbose. Part II: Distribution to and elimination from tissues and organs following single or repeated administration of 14C acarbose to rats and dogs. Arzneim Forsch 1989; 39(II): 1261–7

    CAS  Google Scholar 

  14. Ahr HJ, Boberg M, Krause HP, et al. Pharmacokinetics of acarbose. Part I: Absorption, concentration in plasma, metabolism and excretion after single administration of 14C acarbose to rats, dogs and man. Arzneim Forsch 1989; 39(II): 1254–60

    CAS  Google Scholar 

  15. Schmidt DD, Frommer W, Junge B, et al. α-Glucosidase inhibitors. New complex oligosaccharides of microbial origin. Naturwissenschaften 1977; 64: 535–6

    Article  PubMed  CAS  Google Scholar 

  16. Taylor RH, Barker HM, Bowey EA, et al. Regulation of the absorption of dietary carbohydrate in man by two new glycosidase inhibitors. Gut 1986; 27: 1471–8

    Article  PubMed  CAS  Google Scholar 

  17. Caspary WF, Graf SD. Inhibition of human intestinal α-glucosidehydrolases by a new complex oligosaccharide. Res Exp Med (Berl) 1979; 175: 1–6

    Article  CAS  Google Scholar 

  18. Müller FO, Hillebrand I. Acarbose (BAY g 5421) kinetics in healthy volunteers. Acta Pharmacol Toxicol 1986; 59 (5 Suppl.): 303

    Google Scholar 

  19. Heiker FR, Boeshagen H, Junge B, et al. Studies designed to localise the essential structural unit of glycoside-hydrolase inhibitors of the acarbose type. In: Creutzfeldt W, editor. Proceedings of the First International Symposium on Acarbose; 1981 Oct 8–10: Montreux. Amsterdam: Excerpta Medica, 1982: 137–41

    Google Scholar 

  20. Junge E, Boeshagen H, Stoltefuss J, et al. Derivatives of acarbose and their inhibitory effects on α-glucosidases. In: Brodbeck U, editor. Enzyme inhibitors. Weinheim: Verlag Chemie, 1980, 123–37

    Google Scholar 

  21. Schmidt DD, Frommer W, Junge B, et al. α-Glucosidase inhibitors of microbial origin. In: Creutzfeldt W, editor. Proceedings of the First International Symposium on Acarbose, 1981 Oct 8–10: Montreux. Amsterdam: Excerpta Medica, 1982,5–15

    Google Scholar 

  22. Taylor RH, Jenkins DJA, Barker HM, et al. Effect of acarbose on the 24-hour blood glucose profile and pattern of carbohydrate absorption. Diabetes Care 1982; 5: 92–6

    Article  PubMed  CAS  Google Scholar 

  23. Lembcke B. Therapieprinzip Resorptionsverzögerung. Wirkprinzip α-Glukosidase-Inhibition. Berlin: Springer-Verlag, 1991

    Google Scholar 

  24. Müller L, Puls W. Pharmakologie der a-Glukosidase-Inhibitoren. In: Caspary WF, editor. Struktur and Funktion des Dünndarms. Amsterdam: Excerpta Medica, 1987: 288–308

    Google Scholar 

  25. Puls W, Keup U, Krause HP, et al. Pharmacology of α-glucosidase inhibitor. In: Creutzfeldt W, editor. Front Hormone Res 1980; 7: 235–47

  26. Suehiro I, Otsuki M, Yamasaki T, et al. Effect of α-glucosidase inhibitor on human pancreatic and salivary amylase. Clin Chim Acta 1981; 117: 145–52

    Article  PubMed  CAS  Google Scholar 

  27. Puls W, Bischoff H. The pharmacological rationale of diabetes mellitus therapy with acarbose. In: Creutzfeldt W, editor. Acarbose for the treatment of diabetes mellitus. Proceedings of the 2nd International Symposium on Acarbose. Berlin: Springer-Verlag, 1988; 29–38

    Chapter  Google Scholar 

  28. Caspary WF. Inhibitors influencing carbohydrate absorption. In: Creutzfeldt W, Lefèbvre PJ, editors. Diabetes mellitus: pathophysiology and Therapy. Berlin: Springer-Verlag, 1989: 172–91

    Chapter  Google Scholar 

  29. Toeller M. Dietary treatment and α-glucosidase inhibitors in NIDDM. Diabetes Nutr Metab 1990; 3 (1 Suppl.): 43–9

    Google Scholar 

  30. Toeller M. Inhibiteurs de 1’α-glucosidase. J Hôtel-Dieu Annu Diabetol 1991; 203–12

  31. Müller L. Chemistry, biochemistry and therapeutic potential of microbial α-glucosidase inhibitors. In: Demain AL, Somkuti GA, Hunters-Cevera JC, et al. editors. Novel microbial products for medicine and agriculture. Amsterdam: Elsevier, 1989: 109–16

    Google Scholar 

  32. Hillebrand I, Boehme K, Frank G, et al. The effects of the α-glucosidase inhibitor BAY G 5421 (acarbose) on meal-stimulated elevations of circulating glucose, insulin and triglyceride levels in man. Res Exp Med 1979; 175: 81–6

    Article  CAS  Google Scholar 

  33. Schrezenmeir J, Kasper H, Flasshoff HJ. The effect of acarbose on faecal composition. In: Creutzfeldt W, editor. Proceedings of the First International Symposium on Acarbose; 1981 Oct 8–10: Montreux. Amsterdam: Excerpta Medica, 1982,225–31

    Google Scholar 

  34. Tuomilehto J. Acarbose monotherapy in the treatment of non-insulin-dependent diabetes mellitus: a review. In: Creutzfeldt W, editor. Acarbose for the treatment of diabetes mellitus. New York: Springer, 1988: 104–16

    Chapter  Google Scholar 

  35. Hanefeld M, Fischer S, Schulze J, et al. Therapeutical potentials of acarbose as first-line drug in non-insulin-dependent diabetes insufficiently treated with diet alone. Diabetes Care 1991; 14: 732–7

    Article  PubMed  CAS  Google Scholar 

  36. Willms B. Stellenwert der Acarbose im Rahmen der aktuellen Diätempfehlungen für Diabetiker. Akt Endokr Stoffw 1991; 12: 1–10

    Google Scholar 

  37. Sciberling M, Toeller M, Baunack AR, et al. Beeinfluβt der Kohlenhydrat-anteil der Mahlzeit die Insulin- und Blut-glukose-antwort unter Acarbosegabe? Naunyn-Schmiedebergs Archiv Pharmacol 1989; 339; Abstract 301

  38. Oerter E, Pfeffer H, Keller U, et al. Zum Stoffwechseleffekt won Diabetesdiäten mit unterschiedlichem Gehalt an Hohlenhydraten und Ballaststoffen. Der Einfluβ von Acarbose. Akt Endokr Stoffw 1989; 10: 117

    Google Scholar 

  39. American Diabetes Association. Nutritional recommendations and principles for individuals with diabetes mellitus (1986 Position Statement). Diabetes Care 1987; 10: 126–32

    Google Scholar 

  40. Diabetes and Nutrition Study Group of The European Association for the Study of Diabetes. Nutritional recommendations for individuals with diabetes mellitus (Statement). Diabetes Nutr Metab 1988; 1: 145–9

    Google Scholar 

  41. Reaven GM, Lardinois CK, Greenfield MS, et al. Effect of acarbose on carbohydrate and lipid metabolism in NIDDM patients poorly controlled by sulfonylureas. Diabetes Care 1990; 13 (3 Suppl.): 32–6

    PubMed  Google Scholar 

  42. Scott RS, Knowles RL, Beaven DW. Treatment of poorly controlled non-insulin dependent diabetic patients with acarbose. Aust NZ J Med 1984; 14: 649–54

    Article  CAS  Google Scholar 

  43. Hotta N, Kakuta H, Sano T, et al. Long-term effect of acarbose on glycaemic control in non-insulin-dependent diabetes mellitus: a placebo-controlled double-blind study. Diabetic Med 1993; 10: 134–8

    Article  PubMed  CAS  Google Scholar 

  44. Göke B, Herrmann C, Göke R, et al. Intestinal effects of α-glucosidase inhibitors: absorption of nutrients and enterohormonal changes. Eur J Clin Invest 1994; 24 (3 Suppl.): 25–30

    Article  PubMed  Google Scholar 

  45. Ebert R, Creutzfeldt W, Brown JC, et al. Response of gastric inhibitory polypeptide (GIP) to test meal in chronic pancreatitis — relationship to endocrine and exocrine insufficiency. Diabetologia 1976; 12: 609–12

    Article  PubMed  CAS  Google Scholar 

  46. Ebert R, Creutzfeldt W. Decreased GIP secretion through impairment of absorption. Front Horm Res 1980; 7: 192–201

    CAS  Google Scholar 

  47. Fölsch UR, Lembcke B, Höpfner M, et al. The enteroinsular axis during treatment with glucosidase inhibitors. Front Horm Res 1987; 16: 197–205

    Google Scholar 

  48. Fukase N, Takahashi H, Igarashi M, et al. Differences in glucagon-like peptide 1 and GIP responses following sucrose ingestion. Diab Res Clin Pract 1992; 15: 187–95

    Article  CAS  Google Scholar 

  49. Jenkins DJA, Taylor RH, Nineham R et al. Combined use of guar and acarbose in reduction of postprandial glycaemia. Lancet 1979; II: 924–7

    Article  Google Scholar 

  50. Ross S. Hunt J, Josse R et al. Acarbose significantly improves glucose control in non-insulin-dependent diabetes mellitus subjects (NIDDM): results of the multi-centre Canadian trial [abstract]. Diabetes 1992; 41 (1 Suppl.): 193A

    Google Scholar 

  51. Toeller M. α-Glucosidase inhibitors in diabetes: efficacy in NIDDM subjects. Eur J Clin Invest 1994; 24 (3 Suppl.): 31–5

    Article  PubMed  Google Scholar 

  52. Innerfield RJ, Coniff RF. A multi-center, double-blind, placebocontrolled study of long-term efficacy and safety of acarbose (BAY g 5421) in the Rx of obese patients with NIDDM Rxed by diet alone [abstract]. Diabetes 1990; 39 (1 Suppl.): 211A

    Article  Google Scholar 

  53. Donckier J, Williams G. The roles of α-glucosidase inhibitors in diabetes. Eur J Clin Invest 1994; 24 (3 Suppl.): 522–4

    Article  PubMed  CAS  Google Scholar 

  54. Splengler M, Hänsel G, Boehme K. Acarbose and Glibenclamid bei Typ II-Diabetes. Z Allgemeinmed 1990; 66: 606–10

    Google Scholar 

  55. Fölsch UR, Spengler M, Boehme K, et al. Efficay of glucosidase inhibitors compared to sulphonylureas in the treatment and metabolic control of diet treated type II diabetic subjects: two long-term comparative studies. Diabetes Nutr Metab 1990; 3 (1 Suppl.): 63–8

    Google Scholar 

  56. Pagano G, Cavallo-Perin P. Glucosidase inhibitors and biguanides in the treatment of non-insulin-dependent diabetic patients. Diabetes Nutr Metab 1990; 3 (1 Suppl.): 69–76

    Google Scholar 

  57. Sachse G, Willms B. Effect of the α-glucosidase-inhibitor BAY g 5421 on blood glucose control of sulphonylurea-treated diabetics and insulin-treated diabetics. Diabetologia 1979; 17: 287–90

    Article  PubMed  CAS  Google Scholar 

  58. Sachse G, Mäser E, Laube H, et al. Effect of long-term acarbose therapy on the metabolic situation of sulfonylurea-treated diabetics. In: Creutzfeld W, editor. Proceedings of the First International Symposium on Acarbose; 1981 Oct 8–10: Montreux. Amsterdam: Excerpta Medica, 1982; 298–304

    Google Scholar 

  59. Willms B. Acarbose in non-insulin-dependent diabetes mellitus: combination with sulphonylureas and interaction with diet. In: Lefèbvre PJ, Standl E, editors. New aspects in diabetes. Berlin: De Gruyter, 1992: 165–76

    Google Scholar 

  60. Rosak C. Glucosidase inhibition and sulphonylurea secondary failure. Diab Nutr Metab 1990; 3 (1 Suppl.): 59–62

    Google Scholar 

  61. Raptis S, Dimitriadis G, Karaiskos C, et al. Short and long term studies of acarbose on various metabolic parameters and insulin requirements assessed by the artificial endocrine pancreas. In: Creutzfeld W, editor. Proceedings of the First International Symposium on Acarbose; 1981 Oct 8–10: Montreux. Amsterdam: Excerpta Medica, 1982: 393–401

    Google Scholar 

  62. Dimitriadis G, Karaiskos C, Raptis S. Effects of prolonged (6 months) α-glucosidase inhibition on blood glucose control and insulin requirements in patients with IDDM. Horm Metab Res 1986; 18: 253–5

    Article  PubMed  CAS  Google Scholar 

  63. Rybka J, Gregorová A, Zmydlená A, et al. Clinical study of acarbose. Drug Invest 1990; 2 (4 Suppl.): 264–7

    Google Scholar 

  64. Coniff F, Shapiro JA, Seaton TB, et al. A double-blind placebo-controlled trial evaluating the safety and efficacy of acarbose for the treatment of patients with insulin-requiring type II diabetes. Diabetes Care 1995; 18: 928–32

    Article  PubMed  CAS  Google Scholar 

  65. Sinay IR, Nusimovich B, Damilano S, et al. Acarbose: experimental assessment with the artificial pancreas. In: Creutzfeldt W, editor. Proceedings of the First International Symposium on Acarbose; 1981 Oct 8–10: Montreux. Amsterdam: Excerpta Medica, 1982: 461–70

    Google Scholar 

  66. Beyer JG, Schulz G, Jaeger H, et al. Improvement of carbohydrate tolerance in insulin dependent diabetics after administration of an α-glucosidase inhibitor demonstrated by the artificial pancreas. In: Creutzfeldt W, editor. Proceedings of the First International Symposium on Acarbose; 1981 Oct 8–10: Montreux. Amsterdam: Excerpta Medica 1982: 451–4

    Google Scholar 

  67. Rios MS. Acarbose and insulin therapy in type I diabetes mellitus. Eur J Clin Invest 1994; 24 (3 Suppl.): 36–39

    Article  PubMed  Google Scholar 

  68. Marena S, Tagliaferro V, Cavallero G, et al. Double-blind crossover study of acarbose in type 1 diabetic patients. Diabetic Med 1991; 8: 674–8

    Article  PubMed  CAS  Google Scholar 

  69. Schade DS. Prospective multicenter studies of the efficacy and safety of acarbose (Bay-g-5421) in the treatment of type I diabetes mellitus. In: Lefèbvre PJ, Standl E, editors. New aspects in diabetes mellitus. Berlin: De Gruyter, 1992: 237

    Google Scholar 

  70. Zavaroni I, Reaven GM. Inhibition of carbohydrate-induced hypertriglyceridemia by a disaccharidase inhibitor. Metabolism 1981; 30: 417–20

    Article  PubMed  CAS  Google Scholar 

  71. Vasselli JR, Haraczkiewicz E, Maggio CA, et al. Effects of aglucosidase inhibitor, acarbose (Bay-g-5421) on the development of obesity and fat motivated behaviour in Zucker (fafa) rats. Pharmacol Biochem Behav 1983; 19: 85–95

    Article  PubMed  CAS  Google Scholar 

  72. Yamashita K, Sugarawa S, Sakairi I, et al. Effects of an α-glucosidase inhibitor, acarbose, on blood glucose and serum lipids in streptozotocin-induced diabetic rats. Horm Metab Res 1984; 16: 179–82

    Article  PubMed  CAS  Google Scholar 

  73. Kritchevsky D, Tepper SA, Davidson LM, et al. Influence of acarbose (a glucosidase inhibitor) on experimental atherosclerosis in the rabbit. Artery 1990; 17: 170–5

    PubMed  CAS  Google Scholar 

  74. Nestel PJ. Lower triglyceride production with carbohydraterich diet during treatment with acarbose. In: Creutzfeldt W, editor. Acarbose for the treatment of diabetes mellitus. Berlin: Springer-Verlag, 1988: 68

    Chapter  Google Scholar 

  75. Clissold SP, Edwards C. Acarbose: a preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 1988; 35: 214–43

    Article  PubMed  CAS  Google Scholar 

  76. Leonhard W, Hanefeld M, Fischer S, et al. Beneficial effects on serum lipids in non-insulin-dependent diabetics by acarbose treatment. Arzneimittelforschung 1991; 41: 735–8

    Google Scholar 

  77. Bishoff H. Pharmacology of a-glucosidase inhibition. Eur J Clin Invest 1994; 24 (3 Suppl.): 3–10

    Google Scholar 

  78. Thomas G, Keup U, Krause HP, et al. Pharmacological studies on acarbose. II: Antihyperlipaemic effects. In: Creutzfeldt W, editor. Proceedings of the First International Symposium on Acarbose; 1981 Oct 8–10; Montreux. Amsterdam: Excerpta Medica, 1982: 151–5

    Google Scholar 

  79. Raptis S, Dimitriadis G, Hdjidakis D. Acarbose treatment in insulin-dependent (type 1) diabetes mellitus. In: Creutfeldt W, editor. Acarbose for the treatment of diabetes mellitus. New York: Springer, 1987: 141–52

    Google Scholar 

  80. Hillebrand I, Philipp E, Katsimantis D, et al. Acarbose (BAY g 5421), a possible treatment for patients with type IV hyperlipoproteinemia. In: Nestel PJ, editor. Proceedings of Poster Communications, 7th International Symposium on Atherosclerosis; 1985 Oct; Melbourne. Abstract no. 278

  81. Walter-Sack IE, Wolfram G, Zöllner N. Effect of acarbose on serum lipoproteins in healthy individuals during prolonged administration of a fibre-free formula diet. Ann Nutr Metab 1989; 33: 100–7

    Article  PubMed  CAS  Google Scholar 

  82. Scheppach W, Fabian C, Sachs M, et al. The effect of starch malabsorption on fecal short-chain fatty acid excretion in man. Scand J Gastroenterol 1988; 23: 755–9

    Article  PubMed  CAS  Google Scholar 

  83. Gérard J, Lefèbvre PJ, Luyckx AS. Glibenclamide pharmacokinetics in acarbose-treated type 2 diabetics. Eur J Clin Pharmacol 1984; 27: 233–6

    Article  PubMed  Google Scholar 

  84. McCulloch DK, Kurtz AB, Tattersall RB. A new approach to the treatment of nocturnal hypoglycaemia using α-glucosidase inhibition. Diabetes Care 1983; 6: 483–7

    Article  PubMed  CAS  Google Scholar 

  85. Schrezenmeier J, Kasper H. Therapeutic effect of acarbose in reactive hypoglycaemia. In: Creutzfeldt W, editor. Proceedings of the First International Symposium on Acarbose; 1981 Oct 8–10: Montreux. Amsterdam: Excerpta Medica, 1982: 530

    Google Scholar 

  86. Gérard J, Luyckx AS, Lefèbvre PJ. Acarbose in reactive hypoglycaemia: a double-blind study. Int J Clin Pharmacol 1984; 22: 25–31

    Google Scholar 

  87. Richard JL, Rodier M, Monnier L, et al. Effect of acarbose on glucose and insulin response to sucrose load in reactive hypoglycaemia. Diab Metab (Paris) 1988; 14: 114–8

    CAS  Google Scholar 

  88. Buchanan KD, McLoughlin JC, Alam MJ. Acarbose in the dumping syndrome. In: Creutzfeldt W, editor. Proceedings of the First International Symposium on Acarbose; 1981 Oct 8–10: Montreux. Amsterdam: Excerpta Medica, 1982: 515

    Google Scholar 

  89. Speth PAJ, Jansen JBMJ, Lamers CBHW. Acarbose and pectin in the dumping syndrome. In: Creutzfeldt W, editor. Proceedings of the First International Symposium on Acarbose; 1981 Oct 8–10: Montreux. Amsterdam: Excerpta Medica, 1982: 524

    Google Scholar 

  90. Taylor RH, Jenkins DJA, Barker HM. Low-dose acarbose and the dumping syndrome. In: Creutzfeldt W, editor. Proceedings of the First International Symposium on Acarbose; 1981 Oct 8–10: Montreux. Amsterdam: Excerpta Medica, 1982: 527

    Google Scholar 

  91. Toeller M. Nutritional recommendations for diabetic patients and treatment with α-glucosidase inhibitors. Drugs 1992; 44 (3 Suppl.): 13–20

    Article  PubMed  Google Scholar 

  92. Bustamante S, Gasparo M, Kendall K, et al. Increased activity of rat intestinal lactase due to increased intake of α-saccharides (starch, sucrose) in isocaloric diets. J Nutr 1981; 111: 943–53

    PubMed  CAS  Google Scholar 

  93. Yamada K, Bustamante S, Koldovsky O. Time- and dose-dependency of intestinal lactase activity in adult rats on starch intake. Biochem Biophys Acta 1981; 676: 108–12

    Article  PubMed  CAS  Google Scholar 

  94. Lee S, Bustamante S, Koldovsky O. The effect of alpha-glucosidase inhibition on intestinal disaccharidase activity in normal and diabetic mice. Metabolism 1983; 32: 793–9

    Article  PubMed  CAS  Google Scholar 

  95. Hillebrand I, Graefe KH, Bischoff H, et al. Serum digoxin and propranolol levels during acarbose treatment [abstract]. Diabetologia 1981; 21: 282–3

    Google Scholar 

  96. Gérard J, Lefèbvre PJ, Luyckx AS. Glibenclamide pharmacokinetics in acarbose-treated type 2 diabetics. Eur J Clin Pharmacol 1984; 27: 233–6

    Article  PubMed  Google Scholar 

  97. Scheen AJ, Ferreira Alves de Magalhaes AC, Salvatore T, et al. Reduction of the acute bioavailability of metformin by the α-glucosidase inhibitor acarbose in normal man. Eur J Clin Invest 1994; 24 (3 Suppl.): 50–4

    Article  PubMed  CAS  Google Scholar 

  98. Peterson RG. α-Glucosidase inhibitors in diabetes: lessons from animal studies. Eur J Clin Invest 1994; 24 (3 Suppl.): 11–8

    Article  PubMed  CAS  Google Scholar 

  99. Lefèbvre PJ, Scheen AJ. The use of acarbose in the prevention and treatment of hypoglycaemia. Eur J Clin Invest 1994; 24 (3 Suppl.): 40–44

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvatore, T., Giugliano, D. Pharmacokinetic-Pharmacodynamic Relationships of Acarbose. Clin-Pharmacokinet 30, 94–106 (1996). https://doi.org/10.2165/00003088-199630020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199630020-00002

Keywords

Navigation