Skip to main content
Log in

Pharmacokinetic Optimisation of the Treatment of Psychosis

  • Pharmacokinetics-Therapeutics
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Psychosis is a generic term covering (for the purposes of the present article)) schizophrenia, brief reactive psychoses and manic episodes. Traditionally, research has focused on the effect of antipsychotic agents on positive or productive symptoms such as hallucinations or delusions. More recently, attention has been focused on negative symptoms such as emotional withdrawal or impairment of social participation. Typical antipsychotic medications such as phenothiazines have little effect on these clinical manifestations. This has raised interest in atypical antipsychotics such as clozapine.

Acute psychotic episodes are less difficult to treat than long term schizophrenic manifestations. Current research indicates that antipsychotics are effective only if a threshold concentration is reached, but that above a certain level, dose escalation is of no benefit to the patient. This implies the existence of an optimal therapeutic concentration range. Due to interindividual variability caused by age, genetic and interethnic factors or drug-drug interactions, antipsychotic plasma concentrations show a wide range of values for the same dosage regimen. This is why clinical pharmacokinetic principles and therapeutic drug monitoring are essential tools for dosage individualisation.

Clinical pharmacokinetics in therapeutics implies that the pharmacokinetic parameters of the medication under scrutiny are known. This is, however, not always the case with anti psychotics since, due to the difficulties encountered in conducting phase I studies in healthy volunteers with these substances, published data are not always complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackenheil M. Clozapine: pharmacokinetic investigations and biochemical effects in man. Psychopharmacology 99(Suppl.): 32–37, 1989

    Article  Google Scholar 

  • Alfredsson G, Bjerkenstedt L, Edman G, Harnryd C, Oxenstierna G, et al. Relationships between drug concentrations in serum and CSF, clinical effects and monoaminergic variables in schizophrenic patients treated with sulpiride or chlorpromazine. Acta Psychiatrica Scandinavica 69: 49–74, 1984

    Article  Google Scholar 

  • American Psychiatric Association (Eds). Diagnostic and Statistical Manual of Mental Disorders (DSM-III-R), 3rd ed. (Revised), American Psychiatric Association, Washington, 1987

  • Andreasen NC. Negative symptoms in schizophrenia: definitions and reliability. Archives of General Psychiatry 39: 784–788, 1982

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC, Olsen S. Negative vs positive schizophrenia: definition and validation. Archives of General Psychiatry 39: 789–794, 1982

    Article  PubMed  CAS  Google Scholar 

  • APA Task Force on the use of laboratory tests in psychiatry. Tricyclic antidepressants - blood level measurements and clinical response: an APA Task Force report. American Journal of Psychiatry 142: 155–162, 1985

    Google Scholar 

  • Balant LP, Balant-Gorgia AE, Gex-Fabry M. Clinical experience with therapeutic plasma level monitoring of haloperidol. In Stefanis et al. (Eds) Psychiatry: a world perspective, Vol. 3, pp. 99–104, Excerpta Medica, Amsterdam, 1990

    Google Scholar 

  • Balant LP, Kolatte E, Gex-Fabry M, Balant-Gorgia AE. Le traitement au long cours des malades schizophrenes: aspects methodologiques et clinimetriques. Cahiers Psychiatriques Genevois 10: 79–100, 1991

    Google Scholar 

  • Balant-Gorgia AE, Balant L. Antipsychotic drugs: clinical pharmacokinetics of potential candidates for plasma concentration monitoring. Clinical Pharmacokinetics 13: 65–90, 1987a

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant L. Stereoselective disposition of flupentixol: influence on steady-state plasma concentrations in schizophrenic patients. European Journal of Drug Metabolism and Pharmacokinetics 12: 123–128, 1987b

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Cohen BM, Teichler MH. Significance of neuroleptic dose and plasma level in the pharmacological treatment of psychoses. Archives of General Psychiatry 45: 79–91, 1988

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Katz B, Cotton P. Dissimilar dosing with high-potency and low-potency neuroleptics. American Journal of Psychiatry 141: 748–752, 1984

    PubMed  CAS  Google Scholar 

  • Bianchetti G, Zarifian E, Poirier-Littre MF, Morselli PL, Deniker P. Influence of route of administration on haloperidol plasma levels in psychotic patients. International Journal of Clinical Pharmacology, Therapy and Toxicology 18: 324–327, 1980

    CAS  Google Scholar 

  • Bitter I, Volavka J, Scheurer J. The concept of neuroleptic threshold: an update. Journal of Clinical Psychopharmacology 11: 28–33, 1991

    Article  PubMed  CAS  Google Scholar 

  • Carpenter WT, Heinrichs DW, Alphs LD. Treatment of negative symptoms. Schizophrenia Bulletin 11: 440–452, 1985

    PubMed  Google Scholar 

  • Chakraborty BS, Midha KK, McKay G, Hawes EM, Hubbard JW, et al. Single dose kinetics of thioridazine and its two psychoactive metabolites in healthy humans: a dose proportionality study. Journal of Pharmaceutical Sciences 78: 796–801, 1989

    Article  PubMed  CAS  Google Scholar 

  • Chang WH, Chen TY, Lee CF, Hu WH, Yeh EK. Low plasma reduced haloperidol/haloperidol ratios in Chinese patients. Biological Psychiatry 22: 1406–1408, 1987

    Article  PubMed  CAS  Google Scholar 

  • Chang WH, Hwu HG, Lane HY, Lin SK, Chen YT, et al. Dose-dependent reduced haloperidol/haloperidol ratios in schizophrenic patients. Psychiatry Research 38: 215–225, 1991

    Article  PubMed  CAS  Google Scholar 

  • Cooper TB. Plasma level monitoring of antipsychotic drugs. Clinical Pharmacokinetics 3: 14–38, 1978

    Article  PubMed  CAS  Google Scholar 

  • Curry SH, Hu OYP. A third, ‘deep’ compartment for phenothiazine drug disposition: a new look at an old problem. Psychopharmacology Bulletin 1: 95–98, 1990

    Google Scholar 

  • Curry SH, Whelpton R, de Schepper PJ, Vranckx S, Schiff AA. Kinetics of fluphenazine after fluphenazine dihydrochloride, enanthate and decanoate administration to man. British Journal of Clinical Pharmacology 7: 325–331, 1979

    Article  PubMed  CAS  Google Scholar 

  • Dahl SF. Active metabolites of neuroleptic drugs: possible contribution to therapeutic and toxic effects. Therapeutic Drug Monitoring 4: 33–40, 1982

    Article  PubMed  CAS  Google Scholar 

  • Dahl SF. Plasma level monitoring of antipsychotic drugs: clinical utility. Clinical Pharmacokinetics 11: 36–61, 1986

    Article  PubMed  CAS  Google Scholar 

  • Dahl SG. Pharmacokinetics of methotrimeprazine after single and multiple doses. Clinical Pharmacology and Therapeutics 19: 435–442, 1976

    PubMed  CAS  Google Scholar 

  • Dahl SG. Conditions for meaningful plasma level monitoring of neuroleptics. In Stefanis et al. (Eds), Psychiatry: a world perspective, Vol. 3, pp. 87–92, Excerpta Medica, Amsterdam, 1990

    Google Scholar 

  • Dahl SG, Strandjord RE. Pharmacokinetics of chlorpromazine after single and chronic dosage. Clinical Pharmacology and Therapeutics 21: 437–448, 1977

    PubMed  CAS  Google Scholar 

  • Dahl ML, Ekqvist B, Widen J, Bertilsson L. Disposition of the neuroleptic zuclopentixol cosegregates with the polymorphic hydroxylation of debrisoquine in humans. Acta Psychiatrica Scandinavica 84: 99–102, 1991

    Article  PubMed  CAS  Google Scholar 

  • Dahl-Puustinen ML, Liden A, Aim C, Nordin C, Bertilsson L. Disposition of perphenazine is related to polymorphic debrisoquine hydroxylation in human beings. Clinical Pharmacology and Therapeutics 46: 78–81, 1989

    Article  PubMed  CAS  Google Scholar 

  • Delay J, Deniker P, Harl JM. Utilisation en therapeutique psychiatrique d’une phenothiazine d’action centrale elective (4560 R.P.). Annales de Medecine et de Psychologie 110: 112–117, 1952

    CAS  Google Scholar 

  • Douyon R, Angrist B, Peselow E, Cooper T, Rotrosen J. Neuroleptic augmentation with alprazolam: clinical effects and pharmacokinetic correlates. American Journal of Psychiatry 146: 231–234, 1989

    PubMed  CAS  Google Scholar 

  • Dysken MW, Javaid JI, Chang SS, Schaffer C, Shahid A, et al. Fluphenazine pharmacokinetics and therapeutic response. Psychopharmacology 73: 205–210, 1981

    Article  PubMed  CAS  Google Scholar 

  • Eggert Hansen C, Rosted Christensen T, Elley J, Bolvig Hansen L, Kragh-Sørensen P. Clinical pharmacokinetic studies of perphenazine. British Journal of Clinical Pharmacology 3: 915–923, 1976

    Article  PubMed  CAS  Google Scholar 

  • Forsman A, Öhman R. Pharmacokinetic studies on haloperidol in man. Current Therapeutic Research 20: 319–336, 1976

    PubMed  CAS  Google Scholar 

  • Froemming JS, Francis Lam YW, Jann MW, Davis CM. Clinical pharmacokinetics of haloperidol. Clinical Pharmacokinetics 17: 396–423, 1989

    Article  PubMed  CAS  Google Scholar 

  • Garver DL. Neuroleptic drug levels and antipsychotic effects: a difficult correlation, potential advantages of free (or derivative) versus total plasma levels. Journal of Clinical Psychopharmacology 9: 277–281, 1989

    Article  PubMed  CAS  Google Scholar 

  • Goff DC, Baldessarini RJ. Drug interactions with antipsychotic agents. Journal of Clinical Psychopharmacology 13: 57–67, 1993

    Article  PubMed  CAS  Google Scholar 

  • Goff DC, Midha KK, Brotman AW, Waites M, Baldessarini RJ. Elevation of plasma concentrations of haloperidol after the addition of fluoxetine. American Journal of Psychiatry 148: 790–792, 1991

    PubMed  CAS  Google Scholar 

  • Haase HJ. Extrapyramidal modification of fine movement: a ‘conditio sine qua non’ of the fundamental therapeutic action of neuroleptic drugs. In Bordelau (Ed.) Extrapyramidal system and neuroleptics, pp. 329–353, Editions Psychiatriques, Montreal, 1961

    Google Scholar 

  • Hals PA, Dahl SG. Dopaminergic D2 receptor binding of phenothiazine drugs and their metabolites. Nordisk Psychiatrisk Tidsskrift (Suppl.) 10: 17–20, 1984

    Article  Google Scholar 

  • Jann MW, Chang WH, Davis CM. Haloperidol and reduced haloperidol plasma levels in Chinese vs non-Chinese psychiatric patients. Psychiatry Research 30: 45–52, 1989

    Article  PubMed  CAS  Google Scholar 

  • Jann MW, Ereshefsky L, Saklad SR, Seidel DR, Davis CM, et al. Effects of carbamazepine on haloperidol levels. Journal of Clinical Psychopharmacology 5: 106–109, 1985

    Article  PubMed  CAS  Google Scholar 

  • Jann MW, Grimsley SR, Gray EC, Chang WH. Pharmacokinetics and pharmacodynamics of clozapine. Clinical Pharmacokinetics 24: 161–176, 1993

    Article  PubMed  CAS  Google Scholar 

  • Johnson DAW, Pasterski G, Ludlow JM, Street K, Taylor RDW. The discontinuance of maintenance neuroleptic therapy in chronic schizophrenic patients: drug and social consequences. Acta Psychiatrica Scandinavica 67: 339–352, 1983

    Article  PubMed  CAS  Google Scholar 

  • Johnstone EC, Crow TJ, Ferrier IN, Frith CD, Owens DGC, et al. Adverse effects of anticholinergic medication on positive schizophrenic symptoms. Psychological Medicine 13: 513–527, 1983

    Article  PubMed  CAS  Google Scholar 

  • Jolly AG, Hirsch SR. Continuous versus intermittent neuroleptic therapy in schizophrenia. Drug Safety 8: 331–339, 1993

    Article  Google Scholar 

  • Jørgensen A. Pharmacokinetic studies in volunteers of intravenous and oral cis(Z)-flupenthixol and intramuscular cis(Z)-flupenthixol decanoate in Viscoleo®. European Journal of Clinical Pharmacology 18: 355–360, 1980

    Article  PubMed  Google Scholar 

  • Jørgensen A. Metabolism and pharmacokinetics of antipsychotic drugs. In Bridges & Chasseaud (Eds) Progress in drug metabolism, Vol. 9, pp. 111–174, Taylor & Francis, London, 1986

    Google Scholar 

  • Laborit H, Huguenard P, Alluaume R. Un nouveau stabilisateur neuro-vegetatif, le 4560 R.P. La Presse Medicale 60: 206–208, 1952

    PubMed  CAS  Google Scholar 

  • Llerena A, Aim C, Dahl ML, Ekqvist B, Bertilsson L. Haloperidol disposition is dependent on debrisoquine hydroxylation phenotype. Therapeutic Drug Monitoring 14: 92–97, 1992a

    Article  PubMed  CAS  Google Scholar 

  • Llerena A, Dahl ML, Ekqvist B, Bertilsson L. Haloperidol disposition is dependent on the debrisoquine hydroxylation phenotype: increased plasma levels of the reduced metabolite in poor metabolizers. Therapeutic Drug Monitoring 14: 261–264, 1992b

    Article  PubMed  CAS  Google Scholar 

  • Lieberman JA, Kane JM, Johns CA. Clozapine: guidelines for clinical management. Journal of Clinical Psychiatry 50: 329–338, 1989

    PubMed  CAS  Google Scholar 

  • Lin KM, Poland RE, Lau JK. Haloperidol and prolactin concentrations in Asians and Caucasians. Journal of Clinical Psychopharmacology 8: 195–201, 1988

    Article  PubMed  CAS  Google Scholar 

  • Lin KM, Poland RE, Nuccio I, Matsuda K, Hatchuc N, et al. Longitudinal assessment of haloperidol dosage and serum concentration in Asian and Caucasian schizophrenic patients. American Journal of Psychiatry 146: 1307–1311, 1989

    PubMed  CAS  Google Scholar 

  • Loga S, Curry S, Lader M. Interactions of orphenadrine and phenobabitone with chlorpromazine: plasma concentrations and effect in man. British Journal of Clinical Pharmacology 2: 197–208, 1975

    Article  PubMed  CAS  Google Scholar 

  • Loga S, Curry S, Lader M. Interaction of chlorpromazine and nortriptyline in patients with schizophrenia. Clinical Pharmacokinetics 6: 454–462, 1981

    Article  PubMed  CAS  Google Scholar 

  • Loo JCK, Midha KK, McGilveray IJ. Pharmacokinetics of chlorpromazine in normal volunteers. Communications in Psychopharmacology 4: 121–129, 1980

    PubMed  CAS  Google Scholar 

  • Marder SR, Hubbard JW, van Putten T, Midha KK. Pharmacokinetics of long-acting injectable neuroleptic drugs: clinical implications. Psychopharmacology 98: 433–439, 1989a

    Article  PubMed  CAS  Google Scholar 

  • Marder SR, van Putten T, Aravagiri M, Hubbard JW, Hawes EM, et al. Plasma levels of parent drug and metabolites in patients receiving oral and depot fluphenazine. Psychopharmacology Bulletin 25: 479–482, 1989b

    PubMed  CAS  Google Scholar 

  • May PRA, Goldberg S. Prediction of schizophrenic patient’s response to pharmacotherapy. In Lipton et al. (Eds) Psychopharmacology: a generation of progress, pp. 1139–1153, Raven Press, New York, 1978

    Google Scholar 

  • McCreadie RG, Heykants JJP, Chalmers A, Anderson AM. Plasma pimozide profiles in chronic schizophrenics. British Journal of Clinical Pharmacology 7: 533–534, 1979

    Article  PubMed  CAS  Google Scholar 

  • Midha KK, Hawes EM, Hubbard JW, Korchinski ED, McKay G. Variation in the single dose pharmacokinetics of fluphenazine in psychiatric patients. Psychopharmacology 96: 206–211, 1988

    Article  PubMed  CAS  Google Scholar 

  • Midha KK, Hawes EM, Hubbard JW, Korchinski ED, McKay G. Intersubject variation in the pharmacokinetics of chlorpromazine in healthy men. Journal of Clinical Psychopharmacology 9: 4–8, 1989

    PubMed  CAS  Google Scholar 

  • Midha KK, Ormsby ED, Hubbard JW, McKay G, Hawes EH, et al. Logarithmic transformation in bioequivalence: application with two formulations of perphenazine. Journal of Pharmaceutical Sciences 82: 138–144, 1993

    Article  PubMed  CAS  Google Scholar 

  • Morselli PL. Clinical significance of neuroleptic plasma level monitoring. In Usdin et al. (Eds) Clinical pharmacology in psychiatry, pp. 199–209, Macmillan, London, 1981

    Google Scholar 

  • O’Donoghue SEF. Metabolic activity in the human foetus and neonate as shown by administration of chlorpromazine. Journal of Physiology 242: 105P–106P, 1974

    PubMed  Google Scholar 

  • Overall J, Gorham D. The brief psychiatric rating scale. Psychological Reports 10: 799–812, 1962

    Article  Google Scholar 

  • Potkin SG, Shen Y, Pardes H, Phelps BH, Zhou D, et al. Haloperidol concentrations elevated in Chinese patients. Psychiatry Research 12: 167–172, 1984

    Article  PubMed  CAS  Google Scholar 

  • Raskind MS, Risse SC. Antipsychotic drugs and the elderly. Journal of Clinical Psychiatry 47(Suppl.): 17–22, 1986

    PubMed  Google Scholar 

  • Sakalis G, Curry SH, Mould GP, Lader MH. Physiologic and clinical effects of chlorpromazine and their relationship to plasma level. Clinical Pharmacology and Therapeutics 13: 931–946, 1972

    PubMed  CAS  Google Scholar 

  • Salzman C. Treatment of the elderly agitated patient. Journal of Clinical Psychiatry 48: 19–22, 1987

    PubMed  Google Scholar 

  • Schwarz JT, Brotman AW. A clinical guide to antipsychotic drugs. Drugs 44: 981–992, 1992

    Article  Google Scholar 

  • Schou M. Adverse lithium-neuroleptic interactions - are there permanent effects? Human Psychopharmacology 5: 263–265, 1990

    Article  CAS  Google Scholar 

  • Shvartsburd A, Dekirmenjian H, Smith RC. Blood levels of haloperidol in schizophrenic patients. Journal of Clinical Psychopharmacology 3: 7–12, 1983

    Article  PubMed  CAS  Google Scholar 

  • Simpson GM, Yadalam K. Blood levels of neuroleptics: state of the art. Journal of Clinical Psychiatry 46: 22–28, 1985

    PubMed  CAS  Google Scholar 

  • Someya T, Takahashi S, Shibasaki M, Inaba T, Cheung SW, Tang SW. Reduced haloperidol/haloperidol ratios in plasma: polymorphism in Japanese psychiatric patients. Psychiatry Research 31: 111–120, 1990

    Article  PubMed  CAS  Google Scholar 

  • Teicher MH, Glod CA. Neuroleptic drugs: indications and guidelines for their rational use in children and adolescents. Journal of Children and Adolescents Psychopharmacology 1: 33–56, 1990

    Article  CAS  Google Scholar 

  • Verghese C, Kessel JB, Simpson GM. Pharmacokinetics of neuroleptics. Psychopharmacology Bulletin 27: 551–563, 1991

    PubMed  CAS  Google Scholar 

  • von Bahr C, Movin G, Nordin C, Liden A, Hammarlund-Udenaes M, et al. Plasma levels of thioridazine and metabolites are influenced by the debrisoquine hydroxylation phenotype. Clinical Pharmacology and Therapeutics 49: 234–240, 1991

    Article  Google Scholar 

  • Wolkin A, Brodie JD, Barouche F, Rotrosen J, Wolf AP, et al. Dopamine receptor occupancy and plasma haloperidol levels. Archives of General Psychiatry 46: 482–483, 1989

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balant-Gorgia, A.E., Balant, L.P. & Andreoli, A. Pharmacokinetic Optimisation of the Treatment of Psychosis. Clin-Pharmacokinet 25, 217–236 (1993). https://doi.org/10.2165/00003088-199325030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199325030-00005

Keywords

Navigation