Skip to main content
Log in

Vigabatrin

Clinical Pharmacokinetics

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Vigabatrin is a structural analogue of the inhibitory neurotransmitter γ-aminobutyric acid (GABA). It is supplied as a racemic mixture, with the S(+) enantiomer possessing pharmacological activity. [R,S]-Vigabatrin plasma concentrations can be estimated using high-performance liquid Chromatographic methods. Only gas chromatography-mass spectrometry methods allow quantification of the S(+) and R(−) enantiomers.

Vigabatrin was rapidly absorbed reaching peak concentrations within 1 to 2h. Area under plasma concentration-time curves indicated dose-linear pharmacokinetics. There was no effect of food on the absorption of vigabatrin. The absorption characteristics of the enantiomers were similar to those of the [R,S]-vigabatrin. No chiral inversion was detected after administration of the pure S(+) enantiomer. Vigabatrin is not protein bound. The apparent volume of distribution of [R,S]-vigabatrin was approximately 0.8 L/kg. Despite the lack of protein binding, cerebrospinal concentrations of the [R,S]-vigabatrin were only 10% of the plasma concentration 6h after a single oral dose. The half-life of [R,S]-vigabatrin was between 5.3 and 7.4h, the half-life of the enantiomers were 7.5 and 8.1h for the S(+) and the R(−) forms, respectively. The major route of elimination was renal excretion; urinary recovery of the [R,S]-vigabatrin was close to 70%.

Pharmacokinetic studies in epileptic children did not show any significant effect of maturation on the disposition of the S(+) enantiomer: the half-life and the renal clearance were similar to adult values. Data suggest a lower bioavailability in children. In adults with epilepsy, the half-life of the [R,S]-vigabatrin ranged from 4.2 and 5.6h, similar to that measured in healthy adults. In elderly nonepileptic volunteers the pharmacokinetics of the enantiomers of vigabatrin showed delayed absorption, a major increase in peak concentration and a prolonged half-life. These changes were attributed to decreased renal clearance of vigabatrin. A nonlinear relationship between renal clearance and creatinine clearance was suggested.

Vigabatrin caused a 20% fall in plasma phenytoin concentrations, the mechanism of which has not been elucidated. There were no other interactions with most concurrently administered anticonvulsants.

The usual dosage of vigabatrin as add-on treatment in adults is 2 to 4g daily. Higher dosages up to 80 mg/kg daily were required in children. A dosage adjustment was recommended in any patient with decreased renal clearance.

Although anticonvulsant effects were clearly related to dosage, monitoring of plasma concentrations of vigabatrin as a guide to dosage is unlikely to be of as much value as with other antiepileptic drugs. The action of the drug long outlasts its presence in plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariëns EJ. Racemic therapeutics: ethical and regulatory aspects. European Journal of Clinical Pharmacology 41: 89–93, 1991

    Article  PubMed  Google Scholar 

  • Ben Menachem E, Persson LI, Schechter PJ, Haegele KD, Huebert N, et al. Effects of single doses of vigabatrin on CSF concentrations of GABA, homocarnosine, homovanillic acid and 5-hydroxyindoleacetic acid in patients with complex partial epilepsy. Epilepsy Research 2: 96–101, 1988

    Article  PubMed  CAS  Google Scholar 

  • Ben Menachem E, Persson LI, Schechter PJ, Haegele KD, Huebert N, et al. The effect of different vigabatrin treatment regimens on CSF biochemistry and seizure control in epileptic patients. British Journal of Clinical Pharmacology 27: 79S–85S, 1989

    Article  Google Scholar 

  • Browne TR, Mattson RH, Penry JK, Smith DB, Treiman DM, et al. Vigabatrin for refractory complex partial seizures: multicenter single-blind study with long-term follow-up. Neurology 37: 184–189, 1987

    Article  PubMed  CAS  Google Scholar 

  • Browne TR, Mattson RH, Penry JK, Smith DB, Treiman DM, et al. A multicentre study of vigabatrin for drug-resistant epilepsy. British Journal of Clinical Pharmacology 27: 95S–100S, 1989

    Article  PubMed  Google Scholar 

  • Cocito L, Maffini M, Perfumo P, Roncallo F, Loeb C. Vigabatrin in complex partial seizures: a long-term study. Epilepsy Research 3: 160–166, 1989

    Article  PubMed  CAS  Google Scholar 

  • Challier JC, Rey E, Bintein T, Olive G. Passage of S(+) and R(−) gamma-vinyl-Gaba across the isolated perfused human placenta. British Journal of Clinical Pharmacology, in press, 1992

    Google Scholar 

  • Chiron C, Dulac O, Beaumont D, Palacios L, Pajot N, et al. Therapeutic trial of vigabatrin in refractory infantile spasms. Journal of Child Neurology 6: 2S52–2S59, 1991

    Article  Google Scholar 

  • Frisk-Holmberg M, Kerth P, Meyer Ph. Effect of food on the absorption of vigabatrin. British Journal of Clinical Pharmacology 27: 23S–25S, 1989

    Article  PubMed  CAS  Google Scholar 

  • Gram L. Vigabatrin. In Dam & Gram (Eds) Comprehensive epileptology, pp. 631–640, Raven Press, New York, 1990

    Google Scholar 

  • Gram L, Klosterskov P, Dam M. γ-Vinyl GABA: a double-blind placebo-controlled trial in partial epilepsy. Annals of Neurology 17: 262–266, 1985

    Article  PubMed  CAS  Google Scholar 

  • Gram L, Lyon BB, Dam M. Gamma-vinyl-GABA: a single-blind trial in patients with epilepsy. Acta Neurologica Scandinavica 68: 34–39, 1983

    Article  PubMed  CAS  Google Scholar 

  • Grant SM, Heel RC. Vigabatrin: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy and disorders of motor control. Drugs 41: 889–926, 1991

    Article  PubMed  CAS  Google Scholar 

  • Grove J, Alken RG, Schechter PJ. Assay of γ-vinyl-γ-aminobutyric acid (4-amino-hex-5-enoic acid) in plasma and urine by automatic amino acid analysis. Journal of Chromatography 306: 383–387, 1984

    Article  PubMed  CAS  Google Scholar 

  • Haegle KD, Huebert ND, Ebel M, Tell GP, Schechter PJ. Pharmacokinetics of vigabatrin: implications of creatinine clearance. Clinical Pharmacology and Therapeutics 44: 558–565, 1988

    Article  Google Scholar 

  • Haegele KD, Schechter PJ. Kinetics of the enantiomers of vigabatrin after an oral dose of the racemate or the active S-enantiomer. Clinical Pharmacology and Therapeutics 40: 581–586, 1986

    Article  PubMed  CAS  Google Scholar 

  • Haegele KD, Schoun J, Alken RG, Huebert ND. Determination of the R(−) and S(+) enantiomers of γ-vinyl-γ-aminobutyric acid in human body fluids by gas chromatography-mass spectrometry. Journal of Chromatography 274: 103–110, 1983

    Article  PubMed  CAS  Google Scholar 

  • Hoke JF, Chi EM, Antony KK, Kulmala HK, Sussman NM, Okerholm RA. Bioequivalence and relative bioavailability of vigabatrin. Epilepsia 32,(Suppl. 3): 7, 1991

    Google Scholar 

  • Lippert B, Metcalf BW, Jung MJ, Casara P. 4-Amino-hex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyricacid aminotransferase in mammalian brain. European Journal of Biochemistry 74: 441–445, 1977

    Article  PubMed  CAS  Google Scholar 

  • Livingston JH, Beaumont D, Arzimanoglou A, Aicardi J. Vigabatrin in the treatment of epilepsy in children. British Journal of Clinical Pharmacology 27: 109S–112S, 1989

    Article  PubMed  Google Scholar 

  • Loiseau P, Hardenberg JP, Pestre M, Guyot M, Schechter PJ, et al. Double-blind, placebo-controlled study of vigabatrin (gamma-vinyl GABA) in drug resistant epilepsy. Epilepsia 27: 115–120, 1986

    Article  PubMed  CAS  Google Scholar 

  • Luna D, Dulac O, Pajot N, Beaumont D. Vigabatrin in the treatment of childhood epilepsies: a single-blind placebo-controlled study. Epilepsia 30: 430–437, 1989

    Article  PubMed  CAS  Google Scholar 

  • Matilainen R, Pitkänen A, Ruutiainen T, Mervaala E, Sarlund H, et al. Effect of vigabatrin on epilepsy in mentally retarded patients: a γ-month follow-up study. Neurology 38: 743–747, 1988

    Article  PubMed  CAS  Google Scholar 

  • Mumford JP. A profile of vigabatrin. British Journal of Clinical Practice 42 (Suppl. 61): 7–9, 1988

    Google Scholar 

  • Pedersen SA, Klosterskov P, Gram L, Dam M. Long-term study of gamma-vinyl GABA in the treatment of epilepsy. Acta Neurologica Scandinavica 72: 295–298, 1985

    Article  PubMed  CAS  Google Scholar 

  • Rey E, Pons G, Richard MO, Vauzelle F, d’Athis Ph, et al. Pharmacokinetic of the individual enantiomers of vigabatrin (γ-vinyl GABA) in epileptic children. British Journal of Clinical Pharmacology 30: 253–257, 1990

    Article  PubMed  CAS  Google Scholar 

  • Richens A. Pharmacology and clinical pharmacology of vigabatrin. Journal of Child Neurology 6: 2S7–2S10, 1991

    Article  Google Scholar 

  • Riekkinen PJ, Ylinen A, Halonen T, Sivenius J, Pitkanen A. Cerebrospinal fluid GABA and seizure control with vigabatrin. British Journal of Clinical Pharmacology 27: 87S–94S, 1989

    Article  PubMed  Google Scholar 

  • Rimmer EM, Kongola G, Richens A. Inhibition of the enzyme GABA-aminotransferase in human platelets by vigabatrin, a potential antiepileptic drug. British Journal of Clinical Pharmacology 25: 251–259, 1988

    Article  PubMed  CAS  Google Scholar 

  • Rimmer EM, Richens A. Double-blind study of γ-vinyl GABA in patients with refractory epilepsy. Lancet 28: 189–190, 1984

    Article  Google Scholar 

  • Rimmer EM, Richens A. Interaction between vigabatrin and phenytoin. British Journal of Clinical Pharmacology 27: 27S–33S, 1989

    Article  PubMed  Google Scholar 

  • Saletu B, Grünberger J, Linzmayer L, Schwartz JJ, Haegele KD, et al. Psychophysiological and psychometric studies after manipulating the gaba system by vigabatrin, a GABA-transaminase inhibitor. International Journal of Psychophysiology 4: 63–80, 1986

    Article  PubMed  CAS  Google Scholar 

  • Schechter PJ. Vigabatrin. In Meldrum & Porter (Eds) New anticonvulsant drugs, pp. 265–275, John Libbey, London, 1986

    Google Scholar 

  • Schechter PJ. Clinical pharmacology of vigabatrin. British Journal of Clinical Pharmacology 27: 19S–22S, 1989

    Article  PubMed  CAS  Google Scholar 

  • Sivenius J, Kälviäinen R, Saksa M, Aikiä M, Partanen J, et al. Randomized controlled study of the efficacy and safety of vigabatrin versus carbamazepine monotherapy in newly diagnosed epilepsy. American Academy of Neurology 43rd Annual Meeting, Boston, April 21–27, 1991

  • Sivenius J, Ylinen A, Murros K, Matilainen R, Riekkinen P. Double-blind dose reduction study of vigabatrin in complex partial epilepsy. Epilepsia 28: 688–692, 1987

    Article  PubMed  CAS  Google Scholar 

  • Smithers JA, Lang JF, Okerholm RA. Quantitative analysis of vigabatrin in plasma and urine by reversed-phase high-performance liquid chromatography. Journal of Chromatography 341: 232–238, 1985

    Article  PubMed  CAS  Google Scholar 

  • Tsanaclis LM, Wicks J, Williams J, Richens A. Determination of vigabatrin in plasma by reversed-phase high performance liquid chromatography. Therapeutic Drug Monitoring 13: 251–253, 1991

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rey, E., Pons, G. & Olive, G. Vigabatrin. Clin. Pharmacokinet. 23, 267–278 (1992). https://doi.org/10.2165/00003088-199223040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199223040-00003

Keywords

Navigation