Skip to main content
Log in

Interleukins

Clinical Pharmacokinetics and Practical Implications

  • Review Articles
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Interleukins and tumour necrosis factor (TNF) are a complex group of proteins and glycoproteins able to exert pleiotropic effects with respect to a number of different target cells. In physiological conditions, they are induced and released in basal amounts only in restricted micro-environments where they have paracrine activity. Any small amounts reaching the circulation do not disturb homoeostasis. During therapy, particularly when these cytokines are administered via conventional routes, it has become apparent that their presence in nonphysiological plasma concentrations and their unselective action cause toxic effects with small benefits.

The pharmacokinetics of interleukins-1, -2, -3 and -6 and TNF have been evaluated, and their disappearance from plasma after intravenous administration is very rapid (i.e. the distribution half-life is measured in minutes; the elimination half-life is several hours). The efficiency of catabolic pathways such as renal filtration and/or liver uptake is interpreted as a salutary mechanism for extracting proteins that should not be in the circulation. However, because these cytokines are very potent immunomodulatory agents there is a need to improve their therapeutic index, and to this end a number of possible formulations and routes of administration are now available and may eventually be of practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asher A, Mulé JJ, Reichert C, Shiloni E, Rosenberg SA. Studies on the anti-tumor efficacy of systematically administered recombinant tumor necrosis factor against several murine tumors in vivo. Journal of Immunology 138: 963–974, 1987

    CAS  Google Scholar 

  • Ashwell G, Harford J. Carbohydrate — specific receptors of the liver. Annual Review of Biochemistry 51: 531–554, 1982

    Article  PubMed  CAS  Google Scholar 

  • Baricos WH, Zhou Y, Fuerst RS, Barrett AJ, Shah SV. The role of aspartic and cysteine proteinases in albumin degradation by rat kidney cortical lysosomes. Archives of Biochemistry and Biophysics 256: 687–691, 1987

    Article  PubMed  CAS  Google Scholar 

  • Bendtzen K, Svenson M, Jonsson V, Hippe E. Autoantibodies to cytokines: friends or foes. Immunology Today 11: 167–169, 1990

    Article  PubMed  CAS  Google Scholar 

  • Beutler BA, Milsark IW, Cerami A. Cachectin/tumor necrosis factor: production, distribution, and metabolic fate in vivo. Journal of Immunology 135: 3972–3977, 1985

    CAS  Google Scholar 

  • Bindon C, Czerniecki M, Ruell P, Edwards A, McCarthy WH, et al. Clearance rates and systemic effects of intravenously administered interleukin 2 (IL-2) containing preparations in human subjects. British Journal of Cancer 47: 123–133, 1983

    Article  PubMed  CAS  Google Scholar 

  • Blatteis CM. Neuromodulative actions of cytokines. Yale Journal of Biology and Medicine 63: 133–146, 1990

    PubMed  CAS  Google Scholar 

  • Blick M, Sherwin SA, Rosenblum M, Gutterman J. Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Research 47: 2986–2989, 1987

    PubMed  CAS  Google Scholar 

  • Bocci V. Distribution of interferon in body fluids and tissues. Texas Reports on Biology and Medicine 35: 436–442, 1977

    PubMed  CAS  Google Scholar 

  • Bocci V. What is the role of carbohydrates in interferons? Trends in Biochemical Sciences 8: 432–434, 1983

    Article  CAS  Google Scholar 

  • Bocci V. Evaluation of routes of administration of interferon in cancer: a review and a proposal. Cancer Drug Delivery 1: 337–351, 1984

    Article  PubMed  CAS  Google Scholar 

  • Bocci V. Administration of interferon at night may increase its therapeutic index. Cancer drug Delivery 2: 313–318, 1985a

    Article  PubMed  CAS  Google Scholar 

  • Bocci V. Immunomodulators as local hormones: new insights regarding their clinical utilization. Journal of Biological Response Modifiers 4: 340–352, 1985b

    PubMed  CAS  Google Scholar 

  • Bocci V. Distribution, catabolism and pharmacokinetics of interferons. In Finter & Oldham (Eds) Interferon: in vivo and clinical studies, Vol. 4, pp. 47–72, Elsevier Science Publishers BV, Amsterdam, 1985c

    Google Scholar 

  • Bocci V. Metabolism of protein anticancer agents. Pharmacology and Therapeutics 34: 1–49, 1987

    Article  PubMed  CAS  Google Scholar 

  • Bocci V. Roles of interferon produced in physiological conditions: a speculative review. Immunology 64: 1–9, 1988a

    PubMed  CAS  Google Scholar 

  • Bocci V. Central nervous system toxicity of interferons and other cytokines. Journal of Biological Regulators and Homeostatic Agents 3: 107–118, 1988b

    Google Scholar 

  • Bocci V. Catabolism of therapeutic proteins and peptides with implications for drug delivery. Advanced Drug Delivery Reviews 4: 149–169, 1990a

    Article  CAS  Google Scholar 

  • Bocci V. Is interferon effective after oral administration? The state of the art. Journal of Biological Regulators and Homeostatic Agents 4: 81–83, 1990b

    PubMed  CAS  Google Scholar 

  • Bocci V. What roles have anti-interferon antibodies in physiology and pathology? Research in Clinic and Laboratory, in press, 1991a

  • Bocci V, Pacini A, Muscettola M, Paulesu L, Pessina GP. Renal metabolism of rabbit serum interferon. Journal of General Virology 55: 297–304, 1981

    Article  PubMed  CAS  Google Scholar 

  • Bocci V, Pacini a, Muscettola M, Pessina GP, Paulesu L, et al. The kidney is the main site of interferon catabolism. Journal of Interferon Research 2: 309–314, 1982

    Article  PubMed  CAS  Google Scholar 

  • Bocci V, Pacini A, Pessina GP, Maioli E, Naldini A. Studies on tumor necrosis factor (TNF)-1. Pharmacokinetics of human recombinant TNF in rabbits and monkeys after intravenous administration. General Pharmacology 18: 343–346, 1987a

    Article  PubMed  CAS  Google Scholar 

  • Bocci V, Pacini A, Pessina GP, Paulesu L, Muscettola M, et al. Catabolic sites of human interferon-γ. Journal of General Virology 66: 887–891, 1985a

    Article  PubMed  CAS  Google Scholar 

  • Bocci V, Pessina GP, Pacini A, Paulesu L, Muscettola M, et al. Pulmonary catabolism of interferons: alveolar absorption of 125l-labeled human interferon alpha is accompanied by partial loss of biological activity. Antiviral Research 4: 211–220, 1984

    Article  PubMed  CAS  Google Scholar 

  • Bocci V, Pessina GP, Pacini A, Paulesu L, Muscettola M, et al. Pharmacokinetics of human lymphoblastoid interferon in rabbits. General Pharmacology 16: 277–279, 1985b

    Article  PubMed  CAS  Google Scholar 

  • Bocci V, Satoh Y, Pacini A, Pessina GP, Paulesu L, et al. Metabolic behaviour of recombinant interferons β. IRCS Medical Science Research 15: 187–188, 1987b

    CAS  Google Scholar 

  • Borth W, Luger TA. Identification of β2-microglobulin as a cytokine binding plasma protein. Journal of Biological Chemistry 264: 5818–5825, 1989

    PubMed  CAS  Google Scholar 

  • Castell JV, Andus T, Kunz D, Heinrich PC. The major regulator of acute-phase protein synthesis in man and rat. In Sehgal et al. (Eds) Annals of the New York Academy of Sciences: regulation of the acute phase and immune responses — interlukin-6, Vol. 557, pp. 87–99, New York Academy of Sciences, New York, 1989

    Google Scholar 

  • Castell JV, Geiger T, Gross V, Andus T, Walter E, et al. Plasma clearance, organ distribution and target cells of interleukin-6/hepatocyte-stimulating factor in the rat. European Journal of Biochemistry 177: 357–361, 1988

    Article  PubMed  CAS  Google Scholar 

  • Chang AE, Hyatt CL, Rosenberg SA. Systemic administration of recombinant human interleukin-2 in mice. Journal of Biological Response Modifiers 3: 561–572, 1984

    PubMed  CAS  Google Scholar 

  • Cheever MA, Thompson JA, Kern DE, Greenberg PD. Interleukin 2 (IL 2) administered in vivo: influence of IL 2 route and timing on T cell growth. Journal of Immunology 134: 3895–3900, 1985

    CAS  Google Scholar 

  • Conradt HS, Geyer R, Hoppe J, Grotjahn L, Plessing A, et al. Structures of the major carbohydrates of natural human interleukin-2. European Journal of Biochemistry 153: 255–261, 1985

    Article  PubMed  CAS  Google Scholar 

  • Creaven PJ, Plager JE, Dupere S, Huben RP, Takita H, et al. Phase I clinical trial of recombinant human tumor necrosis factor. Cancer Chemotherapy and Pharmacology 20: 137–144, 1987

    PubMed  CAS  Google Scholar 

  • Donohue JH, Rosenberg SA. The fate of interleukin-2 after in vivo administration. Journal of Immunology 130: 2203–2208, 1983

    CAS  Google Scholar 

  • Engelmann H, Aderka D, Rubinstein M, Rotman D, Wallach D. A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. Journal of Biological Chemistry 264: 11974–11980, 1989

    PubMed  CAS  Google Scholar 

  • Feinberg B, Kurzrock R, Talpaz M, Blick M, Saks S, et al. A phase I trial of intravenously-administered recombinant tumor necrosis factor-alpha in cancer patients. Journal of Clinical Oncology 6: 1328–1334, 1988

    PubMed  CAS  Google Scholar 

  • Ferraiolo BL, Moore JA, Crase D, Gribling P, Wilking H, et al. Pharmacokinetics and tissue distribution of recombinant human tumor necrosis factor-α in mice. Drug Metabolism and Disposition 16: 270–275, 1988

    PubMed  CAS  Google Scholar 

  • Ferraiolo BL, McCabe J, Hollenbach S, Hultgren B, Pitti R, et al. Pharmacokinetics of recombinant human tumor necrosis factor-α in rats: effects of size and number of doses and nephrectomy. Drug Metabolism and Disposition 17: 369–372, 1989

    PubMed  CAS  Google Scholar 

  • Flick DA, Gifford GE. Pharmacokinetics of murine tumor necrosis factor. Journal of Immunopharmacology 8: 89–97, 1986

    Article  PubMed  CAS  Google Scholar 

  • Fountoulakis M, Juranville JF, Stüber D, Weibel EK, Garotta G. Purification and biochemical characterization of a soluble human interferon γ receptor expressed in Escherichia coli. Journal of Biological Chemistry 265: 13268–13275, 1990

    PubMed  CAS  Google Scholar 

  • Garland JM, Aldridge A, Wagstaffe J, Dexter TM. Studies on the in vivo production of a lymphokine activity, interleukin 3 (IL-3) elaborated by lymphocytes and a myeloid leukaemic line in vitro and the fate of IL-3 dependent cell lines. British Journal of Cancer 48: 247–259, 1983

    Article  PubMed  CAS  Google Scholar 

  • Gaynor ER, Vitek L, Sticklin L, Creekmore SP, Ferraro ME, et al. The hemodynamic effects of treatment with interleukin-2 and lymphokine-activated killer cells. Annals of Internal Medicine 109: 953–958, 1988

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Koch-Weser J. Clinical pharmacokinetics. New England Journal of Medicine 293: 702–705, 1975

    Article  PubMed  CAS  Google Scholar 

  • Gresser I, Woodrow D, Moss J, Maury C, Tavernier J, et al. Toxic effects of recombinant tumor necrosis factor in suckling mice. American Journal of Pathology 128: 13–18, 1987

    PubMed  CAS  Google Scholar 

  • Hirano T, Kishimoto T. Interleukin-6: possible implications in human diseases. Research in Clinic and Laboratory 19: 1–10, 1989

    PubMed  Google Scholar 

  • James K. Interactions between cytokines and α2-macroglobulin. Immunology Today 11: 163–166, 1990

    Article  PubMed  CAS  Google Scholar 

  • Jiang PH, Chany-Fournier F, Robert-Galliot B, Sarragne M, Chany C. Sarcolectin: an interferon antagonist extracted from hamster sarcomas and normal muscles. Journal of Biological Chemistry 258: 12361–12367, 1983

    PubMed  CAS  Google Scholar 

  • Jones EY, Stuart DI, Walker NPC. Structure of tumour necrosis factor. Nature 338: 225–228, 1989

    Article  PubMed  CAS  Google Scholar 

  • Kampschmidt RF, Jones T. Rate of clearance of interleukin-1 from the blood of normal and nephrectomized rats. Proceedings of the Society for Experimental Biology and Medicine 180: 170–173, 1985

    PubMed  CAS  Google Scholar 

  • Kampschmidt RF, Upchurch HF. Rate of clearance of circulating leukocytic endogenous mediator in the rat. Proceedings of the Society for Experimental Biology and Medicine 164: 537–539, 1980

    PubMed  CAS  Google Scholar 

  • Katre NV. Immunogenicity of recombinant IL-2 modified by covalent attachment of polyethylene glycol. Journal of Immunology 144: 209–213, 1990

    CAS  Google Scholar 

  • Kimball ES, Pickerai SF, Oppenheim JJ, Rossio JL. Interleukin 1 activitiy in normal human urine. Journal of Immunologyu 133: 256–260, 1984

    CAS  Google Scholar 

  • Kimura K, Taguchi T, Urushizaki I, Ohno R, Abe O, et al. Phase I study of recombinant human tumor necrosis factor. Cancer Chemotherapy and Pharmacology 20: 223–229, 1987

    Article  PubMed  CAS  Google Scholar 

  • Klapproth J, Castell J, Geiger T, Andus T, Heinrich PC. Fate and biological action of human recombinant interleukin 1β in the rat in vivo. European Journal of Immunology 19: 1485–1490, 1989

    Article  PubMed  CAS  Google Scholar 

  • Klausner JM, Goldman G, Skornick Y, Valeri R, Inbar M, et al. Interleukin-2-induced lung permeability is mediated by leukotriene B4. Cancer 66: 2357–2364, 1990

    Article  PubMed  CAS  Google Scholar 

  • Knauf MJ, Bell DP, Hirtzer P, Ping Luo Z, Young JD, et al. Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water-soluble polymers. Journal of Biological Chemistry 263: 15064–15070, 1988

    PubMed  CAS  Google Scholar 

  • Konrad MW, Hemstreet G, Hersh EM, Mansell PWA, Mertelsmann R, et al. Pharmacokinetics of recombinant interleukin 2 in humans. Cancer Research 50: 2009–2017, 1990

    PubMed  CAS  Google Scholar 

  • Krueger JM, Obal F, Opp M, Toth L, Johannsen L, et al. Somnogenic cytokines and models concerning their effects on sleep. Yale Journal of Biology and Medicine 63: 157–172, 1990

    PubMed  CAS  Google Scholar 

  • Kucharz EJ, Goodwin JS. Serum inhibitors of interleukin-2. Life Sciences 42: 1485–1491, 1988

    Article  PubMed  CAS  Google Scholar 

  • Kudo S, Mizuno K, Hirai Y, Shimizu T. Clearance and tissue distribution of recombinant human interleukin 1β in rats. Cancer Research 50: 5751–5755, 1990

    PubMed  CAS  Google Scholar 

  • Langer R. New methods of drug delivery. Science 249: 1527–1533, 1990

    Article  PubMed  CAS  Google Scholar 

  • Larrick JW. Native interleukin 1 inhibitors. Immunology Today 10: 61–66, 1989

    Article  PubMed  CAS  Google Scholar 

  • Lee RE, Lotze MT, Skibber JM, Tucker E, Bonow RO, et al. Cardiorespiratory effects of immunotherapy with interleukin-2. Journal of Clinical Oncology 7: 7–20, 1989

    PubMed  CAS  Google Scholar 

  • Lefkowitz EJ, Fleischmann Jr WR. An inhibitor of interferon action: 1. Physical association of the inhibitor with interferon-gamma. Journal of Interferon Research 5: 85–99, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lotze MT, Matory YL, Ettinghausen SE, Rayner AA, Sharrow SO, et al. In vivo administration of purified human interleukin 2: II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. Journal of Immunology 135: 2865–2875, 1985

    CAS  Google Scholar 

  • Lotze MT, Robb RJ, Sharrow SO, Frana LW, Rosenberg SA. Systemic administration of interleukin-2 in humans. Journal of Biological Response Modifiers 3: 475–482, 1984

    PubMed  CAS  Google Scholar 

  • Marmenout A, Fransen L, Tavernier J, Van Der Heyden J, Tizard R, et al. Molecular cloning and expression of human tumor necrosis factor and comparison with mouse tumor necrosis factor. European Journal of Biochemistry 152: 515–522, 1985

    Article  PubMed  CAS  Google Scholar 

  • Matsuda T, Hirano T, Nagasawa S, Kishimoto T. Identification of α2-macroglobulin as a carrier protein for IL-6. Journal of Immunology 142: 148–152, 1989

    CAS  Google Scholar 

  • Metcalf D. The consequences of excess levels of haemopoietic growth factors. British Journal of Haematology 75: 1–3, 1990

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D, Nicola NA. Tissue localization and fate in mice of injected multipotential colony-stimulating factor. Proceedings of the National Academy of Sciences of the United States of America 85: 3160–3164, 1988

    Article  PubMed  CAS  Google Scholar 

  • Milici AJ, Watrous NE, Stukenbrok H, Palade GE. Transcytosis of albumin in capillary endothelium. Journal of Cellular Biology 105: 2603–2612, 1987

    Article  CAS  Google Scholar 

  • Moritz T, Niederle N, Baumann J, May D, Kurschel E, et al. Phase I study of recombinant human tumor necrosis factor α in advanced malignant disease. Cancer Immunology and Immunotherapy 29: 144–150, 1989

    PubMed  CAS  Google Scholar 

  • Mulé JJ, McIntosh JK, Jablons DM, Rosenberg SA. Antitumor activity of recombinant interleukin 6 in mice. Journal of Experimental Medicine 171: 629–636, 1990

    Article  PubMed  Google Scholar 

  • Mühlradt PF, Opitz HG. Clearance of interleukin 2 from the blood of normal and T cell-depleted mice. European Journal of Immunology 12: 983–985, 1982

    Article  PubMed  Google Scholar 

  • Newton RC, Uhl J, Covington M, Back O. The distribution and clearance of radiolabeled human interleukin-1 beta in mice. Lymphokine Research 7: 207–216, 1988

    PubMed  CAS  Google Scholar 

  • Novick D, Engelmann H, Wallach D, Rubinstein M. Soluble cytokine receptors are present in normal human urine. Journal of Experimental Medicine 170: 1409–1414, 1989

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi H, Lin KM, Ming Chu T. Prolongation of serum half-life of interleukin 2 and augmentation of lymphokine-activated killer cell activity by pepstatin in mice. Cancer Research 50: 1107–1112, 1990

    PubMed  CAS  Google Scholar 

  • Pacini A, Maioli E, Bocci V, Pessina GP. Studies on tumor necrosis factor (TNF): III. Plasma disappearance curves after intramuscular, subcutaneous, intraperitoneal and oral administration of human recombinant TNF. Cancer Drug Delivery 4: 17–23, 1987

    Article  PubMed  CAS  Google Scholar 

  • Papa MZ, Vetto JT, Ettinghausen SE, Mulé JJ, Rosenberg SA. Effect of corticosteroid on the antitumor activity of lymphokine-activated killer cells and interleukin 2 in mice. Cancer Research 46: 5618–5623, 1986

    PubMed  CAS  Google Scholar 

  • Pessina GP, Pacini A, Bocci V, Maioli E, Naldini A. Studies on tumor necrosis factor (TNF): II Metabolic fate and distribution of human recombinant TNF. Lymphokine Research 6: 35–43, 1987

    PubMed  CAS  Google Scholar 

  • Rosenberg SA, Grimm EA, McGrogan M, Doyle M, Kawasaki E, et al. Biological activity of recombinant human interleukin-2 produced in escherichia coli. Science 223: 1412–1415, 1984

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 alone. New England Journal of Medicine 316: 889–897, 1987

    Article  PubMed  CAS  Google Scholar 

  • Sanders LM. Drug delivery systems and routes of administration of peptide and protein drugs. European Journal of Drug Metabolism and Pharmacokinetics 15: 95–102, 1990

    Article  PubMed  CAS  Google Scholar 

  • Sarna G, Collins J, Figlin R, Robertson P, Altrock B, et al. A pilot study of intralymphatic interleukin-2: II. Clinical and biological effects. Journal of Biological Response Modifiers 9: 81–86, 1990

    PubMed  CAS  Google Scholar 

  • Seckinger P, Zhang JH, Haputmann B, Dayer JM. Characterization of a tumor necrosis factor α (TNF-α) inhibitor: evidence of immunological cross-reactivity with the TNF receptor. Proceedings of the National Academy of Sciences of the United States of America 87: 5188–5192, 1990

    Article  PubMed  CAS  Google Scholar 

  • Shau H, Isacescu V, Ibayashi Y, Tokuda Y, Golub SH, et al. A pilot study of intralymphatic interleukin-2: 1. Cytotoxic and surface marker changes of peripheral blood lykmphocytes. Journal of Biological Response Modifiers 9: 71–80, 1990

    PubMed  CAS  Google Scholar 

  • Shibata M. Hypothalamic neuronal responses to cytokines. Yale Journal of Biology and Medicine 63: 147–156, 1990

    PubMed  CAS  Google Scholar 

  • Siegel JP, Lane HC, Stocks NI, Quinnan Jr GV, Fauci AS. Pharmacokinetics of lymphocyte-derived and recombinant DNA-derived interleukin-2 after intravenous administration to patients with the acquired immunodeficiency syndrome. Journal of Biological Response Modifiers 4: 596–601, 1985

    PubMed  CAS  Google Scholar 

  • Spriggs DR, Sherman ML, Michie H, Arthur KA, Imamura K, et al. Recombinant human tumor necrosis factor administered as a 24-hour intravenous infusion: a phase I and pharmacologic study. Journal of the National Cancer Institute 80: 1039–1044, 1988

    Article  PubMed  CAS  Google Scholar 

  • Stephens KE, Ishizaka A, Larrick JW, Raffin TA. Tumor necrosis factor causes increased pulmonary permeability and edema. American Review of Respiratory Disease 137: 1364–1370, 1988

    PubMed  CAS  Google Scholar 

  • Stitt JT. Passage of immunomodulators across the blood-brain barrier. Yale Journal of Biology and Medicine 63: 121–131, 1990

    PubMed  CAS  Google Scholar 

  • Townsend Y, Cranston WI. Sites of clearance of leucocyte pyrogen in the rabbit. Clinical Science 56: 265–268, 1979

    PubMed  CAS  Google Scholar 

  • Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330: 662–664, 1987

    Article  PubMed  CAS  Google Scholar 

  • Waage A. Production and clearance of tumor necrosis factor in rats exposed to endotoxin and dexamethasone. Clinical Immunology and Immunopathology 45: 348–355, 1987

    Article  PubMed  CAS  Google Scholar 

  • West WH, Tauer KW, Yannelli JR, Marshall GD, Orr DW, et al. Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. New England Journal of Medicine 316: 898–905, 1987

    Article  PubMed  CAS  Google Scholar 

  • Whitehead RP, Ward D, Hemingway L, Hemstreet III GP, Bradley E, et al. Subcutaneous recombinant interleukin 2 in a dose escalating regimen in patients with metastatic renal cell adenocarcinoma. Cancer Research 50: 6708–6715, 1990

    PubMed  CAS  Google Scholar 

  • Zimmerman RJ, Aukerman SL, Katre NV, Winkelhake JL, Young JD. Schedule dependency of the antitumor activity and toxicity of polyethylene glycol-modified interleukin 2 in murine tumor models. Cancer Research 49: 6521–6528, 1989

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocci, V. Interleukins. Clin. Pharmacokinet. 21, 274–284 (1991). https://doi.org/10.2165/00003088-199121040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199121040-00004

Keywords

Navigation