Skip to main content
Log in

Pharmacokinetic Optimisation of Anticancer Therapy

  • Review Article
  • Pharmacokinetics-Therapeutics
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

It is obvious that there are great problems with pharmacokinetic individualisation of anti-cancer therapy. The strong relationship between dose intensity (total dose/unit time) and response revealed in clinical trials with some tumours provides a strong support for studies seeking relationships between the individual plasma pharmacokinetic profile and response to treatment. Unfortunately, studies that define a therapeutic window are sparse, and trials that prospectively test such models are even rarer. Thus, for most cancer drugs, it is not possible to give any definite advice on how to use pharmacokinetic determinations to establish individualised therapy, and there is therefore a definite need for such studies. It is important, however, that attempts to establish relationships between drug concentrations and therapeutic effects be founded on a sound theoretical base. When drugs, mainly antimetabolites, are extensively metabolised intracellularly and interact with intracellular processes about which there are data showing a strong interindividual heterogeneity, such data must be considered when designing pharmacokinetic investigations. Cytarabine and fluorouracil are good examples of this. The monitoring of intracellular drug/metabolite concentrations or of the direct biochemical events in the tumour cells seems to be a promising approach with such drugs. It also needs to be emphasised that pharmacokinetically guided individualisation cannot be achieved before a therapeutic window is established, i.e. a knowledge of the relationship between drug concentration and clinical effects. The investigators in this field accept a great responsibility when clinical studies are undertaken: a poorly designed study showing no benefit from pharmacokinetically guided individualisation can impair the possibilities of performing more adequate studies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegra CJ, Drake JC, Joliver J, Chabner BA. Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proceedings of the National Academy of the Sciences of the United States of America 82: 4881–4885, 1985

    Article  CAS  Google Scholar 

  • Andersson B, Beran M, Peterson C, Tribukait B. Significance of cellular pharmacokinetics for the cytotoxic effects of daunorubicin. Cancer Research 42: 178–183, 1982

    PubMed  CAS  Google Scholar 

  • Bagley CM, Bostick FW, DeVita Jr VT. Clinical pharmacology of cyclophosphamide. Cancer Research 33: 226–233, 1973

    PubMed  Google Scholar 

  • Baram J, Chabner B, Drake JC, Fitzhugh AL, Sholar PW, et al. Identification and biochemical properties of 10-formyl dihydrofolate, a novel folate found in methotrexate-treated cells. Journal of Biological Chemistry 263: 7105–7111, 1988

    PubMed  CAS  Google Scholar 

  • Belani C, Egorin MJ, Abrams JS, Hiponia D, Eisenberger M, et al. A novel pharmacodynamically based approach to dose optimization of carboplatin when used in combination with etoposide. Journal of Clinical Oncology 7: 1896–1902, 1989

    PubMed  CAS  Google Scholar 

  • Benjamin RS. A practical approach to adriamycin toxicity. Cancer Chemotherapy Report 6: 191–194, 1975

    Google Scholar 

  • Borsi JD, Revesz T, Schuler D. Prognostic importance of systemic clearance of methotrexate in childhood acute lymphoblastic leukemia. Cancer Chemotherapy and Pharmacology 19: 261–264, 1987

    Article  PubMed  CAS  Google Scholar 

  • Carson DA, Wasson DB, Teatle R, Yu A. Specific toxicity of 2-chlorodeoxyadenosine towards resting and proliferating human lymphocytes. Blood 62: 737–743, 1983

    PubMed  CAS  Google Scholar 

  • Chabner BA. Clinical strategies for cancer treatment: the role of drugs. In Chabner & Collins (Eds) Cancer chemotherapy, pp. 1–15, J.B. Lippincott Company, Philadelphia, 1990

    Google Scholar 

  • Chabner BA, Myers CE. Clinical pharmacology of cancer chemotherapy. In De Vita et al. (Eds) Cancer, pp. 382–384, J.B. Lippincott Company, Philadelphia, 1989

    Google Scholar 

  • Clark PI, Joel SP, Houston S, Gregory WM, Slevin ML. Predictors of etoposide pharmacokinetics in man. British Journal of Cancer 58 (Suppl. 2): 258–259, 1988

    Google Scholar 

  • Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41, 1976

    Article  PubMed  CAS  Google Scholar 

  • Collins JM. Pharmacology and drug development. Journal of the National Cancer Institute 80: 790–792, 1988

    Article  PubMed  CAS  Google Scholar 

  • Collins JM, Grieshaber CK, Chabner BA. Pharmacologically guided phase I clinical trials based upon preclinical drug development. Journal of the National Cancer Institute 82: 1321–1326, 1990

    Article  PubMed  CAS  Google Scholar 

  • Collins JM, Zaharko DS, Dedrick RL, Chabner BA. Potential roles for preclinical pharmacology in phase I clinical trials. Cancer Treatment Reports 70: 73–80, 1986

    PubMed  CAS  Google Scholar 

  • D’Incalci M, Bolis G, Facchinetti T, Mangioni C, Morasca L, et al. Decreased half-life of cyclophosphamide in patients under continual treatment. European Journal of Cancer 19: 7–10, 1979

    Google Scholar 

  • D’Incalci M, Rossi C, Zucchetti M, Urso R, Cavalli F, et al. Pharmacokinetics of etoposide in patients with abnormal renal and hepatic function. Cancer Research 46: 2566–2571, 1986

    PubMed  Google Scholar 

  • Dalgleish AG, Woods RL, Levi JA. Bleomycin pulmonary toxicity: its relationship to renal dysfunction. Medical and Pediatric Oncology 12: 313–317, 1984

    Article  PubMed  CAS  Google Scholar 

  • Damon LE, Mass R, Linker CA. The association between high-dose cytarabine neurotoxicity and renal insufficiency. Journal of Clinical Oncology 7: 1563–1568, 1989

    PubMed  CAS  Google Scholar 

  • DeVita Jr VT. Dose-response is alive and well. Editorial. Journal of Clinical Oncology 4: 1157–1159, 1986

    PubMed  CAS  Google Scholar 

  • DeVita Jr VT, Serpick AA, Carbone PP. Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Annals of Internal Medicine 73: 881–895, 1970

    PubMed  Google Scholar 

  • Egorin MJ. Phase I trials: a strategy of ongoing refinement. Journal of the National Cancer Institute 82: 446–447, 1990

    Article  PubMed  CAS  Google Scholar 

  • Egorin MJ, Jodrell D, Canetta R, Langenberg P, Goldbloom E, et al. Tumor response and toxicity in ovarian cancer correlates with carboplatin (CBDCA) area under the curve (AUC). Proceedings of the Annual Meeting of the American Society of Clinical Oncology 10: 184, 1991

    Google Scholar 

  • Egorin MJ, Sigman LM, vanEcho DA, Forrest A, Whitacre MY, et al. Phase I clinical and pharmacokinetic study of hexamethylene bisacetamide (NSC 95580) administered as a five-day continuous infusion. Cancer Research 47: 617–623, 1987

    PubMed  CAS  Google Scholar 

  • Egorin MJ, vanEcho DA, Olman EA, Whitacre MY, Forrest A, et al. Prospective validation of a pharmacologically based dosing scheme for the cis-diaminedichloroplatinum (II) analog diaminecyclobutanedicarboxylatoplatinum. Cancer Research 45: 6502–6506, 1985

    PubMed  CAS  Google Scholar 

  • Egorin MJ, vanEcho DA, Tippling SJ, Olman EA, Whitacre MY, et al. Pharmacokinetics and dosage reduction of cis-Diamino(1,1-cyclobutanedicarboxylato) platinum in patients with impaired renal function. Cancer Research 44: 5432–5438, 1984

    PubMed  CAS  Google Scholar 

  • Egorin MJ, vanEcho DA, Whitacre MY, Forrest A, Sigman LM, et al. Human pharmacokinetics, excretion and metabolism of the anthracykline antibiotic menagaril (7-OMEN, NSC 269148) and their correlation with clinical toxicities. Cancer Research 46: 1513–1520, 1986

    PubMed  CAS  Google Scholar 

  • Ehrsson H, Eksborg S, Wallin I, Österborg A, Mellstedt H. Oral melphalan pharmacokinetics: influence of interferon-induced fever. Clinical Pharmacology and Therapeutics 47: 86–90, 1990

    Article  PubMed  CAS  Google Scholar 

  • EORTC Pharmacokinetics and Metabolism Group. Pharmacokinetically guided dose escalation in phase I clinical trials: commentary and proposed guidelines. European Journal of Cancer and Clinical Oncology 23: 1083–1087, 1987

    Article  Google Scholar 

  • Estey EH, Keating MJ, McCredie KB, Freireich EJ, Plunkett W. Cellular ara-CTP pharmacokinetics, response and karyotype in newly diagnosed acute myelogenous leukemia. Leukemia 4: 95–99, 1990

    PubMed  CAS  Google Scholar 

  • Estey E, Keating MJ, Plunkett W, McCredie KB, Freireich EJ. Continuous infusion high dose cytosine arabinoside without anthracyclines as induction and intensification therapy in adults under age 50 with newly diagnosed acute myelogenous leukemia. Seminars in Oncology 14 (Suppl. I): 58–63, 1987

    PubMed  CAS  Google Scholar 

  • Estey EH, Plunkett WK, Keating MJ, McCredie KB, Freireich EJ. Cytosine arabinoside (ara-C) in intermediate doses (IDAC) as therapy for patients (Pts) with acute myelogenous leukemia (AML). Proceedings of the American Association for Cancer Research 29: 209, 1988

    Google Scholar 

  • Evans WE, Crom WR, Schell MJ, Kalwinsky DK, Rivera GK. Reappraisal of methotrexate clearance as prognostic factor in childhood acute lymphocytic leukemia. Proceedings of the Annual Meeting of the American Association for Cancer Research 30: 241, 1989

    Google Scholar 

  • Evans WE, Crom WR, Stewart CF, Bowman WP, Chen CH, et al. Methotrexate systemic clearance influences probability of relapse in children with standard-risk acute lymphocytic leukemia. Lancet 1: 359–362, 1984

    Article  PubMed  CAS  Google Scholar 

  • Evans WE, Crom WR, Yalowich J. Methotrexate. In Evans et al. (Eds) Applied pharmacokinetics: principles of therapeutic drug monitoring; pp. 1009–1056, Applied Therapeutics Inc., Spokane, 1986

    Google Scholar 

  • Evans WE, Rodman JH, Petros WP, Madden T, Crom WR, et al. Individualized doses of chemotherapy for children with acute lymphocytic leukemia (ALL). Proceedings of the Annual Meeting of the American Society of Clinical Oncology 9: 69, 1990

    Google Scholar 

  • Finan PJ, Chisholm EM, Woodhouse L, Giles GR. The relationship between plasma pharmacokinetics and tissue metabolites of 5-fluorouracil (5-FU) in patients with colorectal cancer. European Journal of Surgical Oncology 13: 349–353, 1987

    PubMed  CAS  Google Scholar 

  • Fraumeni JJ, Hoover R, Devesa S, Kinlen L. Epidemiology of Cancer. In De Vita et al. (Eds) Cancer: principles and practice of oncology, 3rd ed. pp. 196–235, J.B. Lippincott Company, Philadelphia, 1989

    Google Scholar 

  • Gianni L, Vigianò L, Surbone A, Ballinari D, Casali P, et al. Pharmacology and clinical toxicity of 4′-iodo-4′-deoxydoxorubicin: an example of successful application of pharmacokinetics to dose escalation in phase I trials. Journal of the National Cancer Institute 82: 469–477, 1990

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith RF, Slavik M, Carter SK. Quantitative prediction of drug toxicity in humans from toxicology in small and large animals. Cancer Research 43: 1354–1364, 1975

    Google Scholar 

  • Goren MP, Wright RK, Pratt CB, Pell FE. Dechloroethylation of ifosfamide and neurotoxicity. Lancet 2: 1219–1220, 1986

    Article  PubMed  CAS  Google Scholar 

  • Graham MA, Newell DR, Foster BJ, Calvert AH. The pharmacokinetics and toxicity of the anthrapyrazole anti-cancer drug CI-941 in the mouse: a guide for rational dose escalation in patients. Cancer Chemotherapy and Pharmacology 23: 8–14, 1989

    Article  PubMed  CAS  Google Scholar 

  • Griffin TW, Bogden AE, Reich SD, Antonelli D, Hunter RE, et al. Initial clinical trials of the subrenal capsule assay as a predictor of tumor response to chemotherapy. Cancer 52: 185–192, 1983

    Article  Google Scholar 

  • Grochow LB, Baraldi C, Noe D. Is dose normalization to weight or body surface area useful in adults? Journal of National Cancer Institute 82: 323–325, 1990

    Article  CAS  Google Scholar 

  • Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 197: 461–463, 1977

    Article  PubMed  CAS  Google Scholar 

  • Hande KR. Reply. Journal of Clinical Oncology 8: 2088–2089, 1990

    Google Scholar 

  • Hande KR, Wolff SN, Greco FA, Hainsworth JD, Reed G, et al. Etoposide kinetics in patients with obstructive jaundice. Journal of Clinical Oncology 8: 1101–1108, 1990

    PubMed  CAS  Google Scholar 

  • Harris BE, Song R, Soong S-J, Diasio RB. Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Research 50: 197–201, 1990

    PubMed  CAS  Google Scholar 

  • Hayder S. Maintenance therapy in childhood acute lymphoblastic leukemia, Thesis, Karolinska Institute, Stockholm, 1989

    Google Scholar 

  • Hayder S, Lafolie P, Björk O, Peterson C. 6-Mercaptopurine plasma levels in children with acute lymphoblastic leukemia: relation to relapse risk and myelotoxicity. Therapeutic Drug Monitoring 11: 617–622, 1989

    Article  PubMed  CAS  Google Scholar 

  • Heinemann V, Estey E, Keating MJ, Plunkett W. Patient-specific dose rate for continuous infusion high-dose cytarabine in relapsed acute myelogenous leukemia. Journal of Clinical Oncology 7: 622–628, 1989

    PubMed  CAS  Google Scholar 

  • Heinemann V, Jehn U. Rationals for a pharmacologically optimized treatment of acute nonlymphocytic leukemia with cytosine arabinoside. Leukemia 4: 790–796, 1990

    PubMed  CAS  Google Scholar 

  • Herzig RH, Hines JD, Herzig GP, Wolff SN, Cassileth PA, et al. Cerebellar toxicity with high-dose cytosine arabinoside. Journal of Clinical Oncology 6: 927–932, 1987

    Google Scholar 

  • Hillcoat BL, McCulloch PB, Figueredo AT, Ehsan MH, Rosenfeld JM. Clinical response and plasma levels of 5-fluorouracil in patients with colonic cancer treated by drug infusion. British Journal of Cancer 38: 719–724, 1978

    Article  PubMed  CAS  Google Scholar 

  • Hryniuk WM. More is better. Journal of Clinical Oncology 6: 1365–1367, 1988

    PubMed  CAS  Google Scholar 

  • Hryniuk W, Bush H. The importance of dose intensity in chemotherapy of metastatic breast cancer. Journal of Clinical Oncology 2: 1281–1288, 1984

    PubMed  CAS  Google Scholar 

  • Jacobs C, Kaiman SM, Tretton M, Weiner MW. Renal handling of cis-diaminedichloroplatinum (II). Cancer Treatment Reports 64: 1223–1226, 1980

    PubMed  CAS  Google Scholar 

  • Juma FD. Effect of liver function on the pharmacokinetics of cyclofosfamide. European Journal of Clinical Pharmacology 26: 591–593, 1984

    Article  PubMed  CAS  Google Scholar 

  • Juma FD, Rogers HJ, Trounce JR. Effect of renal insufficiency on the pharmacokinetics of cyclophosphamide and some of its metabolites. European Journal of Clinical Pharmacology 19: 443–451, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Rosenfeld J, McCulloch P, Hillcoat B. Blood levels of 5-fluorouracil during a five day continuous infusion. British Journal of Cancer 36: 346–347, 1976

    Article  Google Scholar 

  • Kerr IG, Jolivet J, Collins JM, Drake J, Chabner BA. Test dose for predicting high-dose methotrexate infusions. Clinical Pharmacology and Therapeutics 33: 44–51, 1983

    Article  PubMed  CAS  Google Scholar 

  • Koren G, Ferrazini G, Sulh H, Langevin AM, Kapelushnik J, et al. Systemic exposure to mercaptopurine as a prognostic factor in acute lymphocytic leukemia in children. New England Journal of Medicine 323: 17–21, 1990

    Article  PubMed  CAS  Google Scholar 

  • Lafolie P, Hayder S, Björk O, Åström L, Liliemark J, et al. Large interindividual variations in the pharmacokinetics of oral 6-mercaptopurine in maintenance therapy of children with acute leukemia and non-Hodgkin lymphoma. Acta Paediatrica Scandinavica 75: 797–803, 1986

    Article  PubMed  CAS  Google Scholar 

  • Lafolie P, Hayder S, Björk O, Peterson C. Intra-individual variations in 6-mercaptopurine concentrations in plasma and red blood cells during oral maintenance therapy of leukemic children. European Journal of Clinical Pharmacology, in press, 1991

  • Langevin AM, Koren G, Soldin SJ, Greenberg M. Pharmacokinetic case for giving 6-mercaptopurine maintenance doses at night. Lancet 2: 505–506, 1987

    Article  PubMed  CAS  Google Scholar 

  • Laurell G, Jungnelius U. High-dose cisplatin treatment. Hearing loss and plasma concentrations. Laryngoscope 100: 724–734, 1990

    Article  PubMed  CAS  Google Scholar 

  • Lennard L, Lilleyman JS. Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. Journal of Clinical Oncology 7: 1816–1823, 1989

    PubMed  CAS  Google Scholar 

  • Lennard L, Lilleyman JS, Loon JV, Weinshilboum RM. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukemia. Lancet 336: 225–229, 1990

    Article  PubMed  CAS  Google Scholar 

  • Lennard L, Rees CA, Lilleyman JS, Maddocks JL. Childhood leukemia: a relationship between intracellular 6-mercaptopurine metabolites and neutropenia. British Journal of Clinical Pharmacology 16: 359–363, 1983

    Article  PubMed  CAS  Google Scholar 

  • Liliemark J, Dixon DO, Plunkett W. The relationship between 1-β-D arabinofuranosyl cytosine in plasma to 1-β-D arabinofuranosyl cytosine 5-triphosphate in leukemic cells during treatment with high dose 1-β-D arabinofuranosyl cytosine. Cancer Research 45: 5952–5957, 1985a

    PubMed  CAS  Google Scholar 

  • Liliemark JO, Gahrton G, Paul CY, Peterson CO. AraC in plasma and araCTP in leukemic cells after subcutaneous injection and continuous infusion of araC in patients with acute nonlymphoblastic leukemia. Seminars in Oncology 14 (Suppl. 1): 167–171, 1987

    PubMed  CAS  Google Scholar 

  • Liliemark JO, Paul CY, Gahrton CG, Peterson CO. Pharmacokinetics of 1-β-D-arabinofuranosylcytosine 5′-triphosphate in leukemic cells after intravenous and subcutaneous administration of 1-β-D-arabinofuranosylcytosine. Cancer Research 45: 2373–2375, 1985b

    PubMed  CAS  Google Scholar 

  • Lönnerholm G, Lindström B, Ludvigsson J, Myrdal U. Plasma and erythrocyte concentrations of mercaptopurine after oral administration in children. Pediatric and Hematological Oncology 3: 27–35, 1986

    Article  Google Scholar 

  • Matherly LH, Fry DW, Goldman ID. Role of methotrexate polyglutamation and cellular energy metabolism in inhibition of methotrexate binding to dihydrofolate reductase by 5-formyltetrahydrofolate in Ehrlich ascites tumor cells in vitro. Cancer Research 43: 1313–1318, 1983

    Google Scholar 

  • Meanwell CS, Blake AE, Kelly KA, Honigsberger L, Blackledge G. Prediction of ifosfamide/mesna associated encephalopathy. European Journal of Cancer and Clinical Oncology 22: 815–819, 1986

    Article  CAS  Google Scholar 

  • Milano G, Roman P, Khater R, Frenay M, Renee N, et al. Dose versus pharmacokinetics for predicting tolerance to 5-day continuous infusion of 5-FU. International Journal of Cancer 41: 537–541, 1988

    Article  CAS  Google Scholar 

  • Paul C, Tidefelt U, Liliemark J, Peterson C. Increasing the accumulation of daunorubicin in human leukemic cells by prolonging the infusion time. Leukemia Research 13: 191–196, 1989

    Article  PubMed  CAS  Google Scholar 

  • Plunkett W, Iacoboni S, Estey E, Dannhauser L, Liliemark JO, et al. Pharmacologically directed ara-C therapy for refractory leukemia. Seminars in Oncology 2 (Suppl. 1): 20–30, 1985

    Google Scholar 

  • Plunkett W, Liliemark JO, Adams TM, Nowak B, Estey E, et al. Saturation of 1-β-D-arabinofuranosylcytosine 5-triphosphate accumulation in leukemia cells during high-dose 1-β-D-arabinofuranosylcytosine therapy. Cancer Research 47: 3005–3011, 1987

    PubMed  CAS  Google Scholar 

  • Retain MJ. Dose reduction of etoposide in jaundiced patients. Journal of Clinical Oncology 8: 2088, 1990

    Google Scholar 

  • Retain MJ, Schilsky RL, Choi KE, Guarnieri C, Grimmer D, et al. Adaptive control of etoposide administration: impact on interpatient pharmacodynamic variability. Clinical Pharmacology and Therapeutics 45: 226–233, 1989

    Article  Google Scholar 

  • Retain MJ, Vogelzang NJ, Sinkule JA. Interpatient and intrapatient variability in vinblastine pharmacokinetics. Clinical Pharmacology and Therapeutics 41: 61–67, 1987

    Article  Google Scholar 

  • Rivard GE, Hoyoux C, Infante-Rivard C, Champagne J. Maintenance chemotherapy of childhood acute lymphoblastic leukemia: better in the evening. Lancet 2: 1264–1266, 1985

    Article  PubMed  CAS  Google Scholar 

  • Rodman JH, Abromowith M, Sinkule JA, Hayes FA, Rivera GK, et al. Clinical pharmacodynamics of continuous infusion teniposide: systemic exposure as a determinant of response in a phase I trial. Journal of Clinical Oncology 5: 1007–1014, 1987

    PubMed  CAS  Google Scholar 

  • Rustum YM, Preisler HD. Correlation between leukemic cell retention of 1-β-D-arabinofuranosylcytosine 5′-triphosphate and response to therapy. Cancer Research 39: 42–49, 1979

    PubMed  CAS  Google Scholar 

  • Schmiegelow K, Pulczynska M, Seip M. White cell count during maintenance chemotherapy for standard-risk childhood acute lymphoblastic leukemia: relation to relapse rate. Pediatric Hematology and Oncology 5: 259–267, 1988

    Article  PubMed  CAS  Google Scholar 

  • Seitz JF, Cano JP, Rigault JP, Aubert C, Carcassonne Y. Chimothérapie des cancers digestifs étendus par le fluorouracil: relations entre la réponse clinique et la clairance plasmatique du médicament. Gastroenterologie Clinique et Biologie 7: 374–380, 1983

    CAS  Google Scholar 

  • Sinkule JA, Hutson P, Hayes FA, Etcubanas E, Evans W. Pharmacokinetics of etoposide (VP-16) in children and adolescents with refractory solid tumors. Cancer Research 44: 3109–3113, 1984

    PubMed  CAS  Google Scholar 

  • Sjöqvist F, Borgå, O, Orme MLE. Fundamentals of clinical pharmacology. In Avery (Ed.) Drug treatment: principles and practice of clinical pharmacology and therapeutics, pp. 1–61, Adis Press, Sydney, 1980

    Google Scholar 

  • Skipper HE, Schabel J, Wilcox WS. Experimental evaluation of potential anticancer agents XIII: on the criteria and kinetics associated with ‘curability’ of experimental leukemia. Cancer Treatment Reports 55: 1–111, 1964

    Google Scholar 

  • Slevin ML, Clark PI, Joel SP, Malik S, Osborne RJ, et al. A randomized trial to evaluate the effect of schedule on the activity of etoposide in small-cell lung cancer. Journal of Clinical Oncology 7: 1333–1340, 1989

    PubMed  CAS  Google Scholar 

  • Slevin ML, Piall EM, Aherne GW, Johnstone A, Sweatman MC, et al. The pharmacokinetics of subcutaneous cytosine arabinoside in patients with acute myelogenous leukemia. British Journal of Clinical Pharmacology 12: 507–510, 1981

    Article  PubMed  CAS  Google Scholar 

  • Spears CP, Gustavsson BG, Frösing R. Folinic acid modulation of fluorouracil: tissue kinetics of bolus administration. Investigational New Drugs 7: 27–36, 1989

    Article  PubMed  CAS  Google Scholar 

  • Spears C, Gustavsson B, Mitchel MS, Spicer D, Berne M, et al. Thymidylate synthetase inhibition in malignant tumours and normal liver in patients given bolus intravenous 5-fluorouracil. Cancer Research 44: 4144–4150, 1984

    PubMed  CAS  Google Scholar 

  • Spears CP, Waugh W, Leichman L, Leichman CG, Jeffers S, et al. Salvage therapy of breast cancer with fluorouracil (5-FU) and high-dose leukovorin (LV): response correlations with tumor pharmacodynamics. Proceedings of the Annual Meeting of the American Society of Clinical Oncology 9: 73, 1990

    Google Scholar 

  • Spriggs DR, Griffin J, Wisch J, Kufe DW. Clinical pharmacology of low-dose cytosine arabinoside. Blood 65: 1087–1089, 1985

    PubMed  CAS  Google Scholar 

  • Stewart CF, Arbuck SG, Fleming RA, Evans WE. Changes in the clearance of total and unbound etoposide in patients with liver dysfunction. Journal of Clinical Oncology 8: 1874–1879, 1990

    PubMed  CAS  Google Scholar 

  • Stroller RG, Hande KR, Jacobs SA, Rosenberg SA, Chabner BA, et al. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. New England Journal of Medicine 297: 630–634, 1977

    Article  Google Scholar 

  • Thyss A, Milano G, Renée N, Vallicioni J, Schneider M, et al. Clinical pharmacokinetic study of 5-FU in continuous 5 day infusion for head and neck cancer. Cancer Chemotherapy and Pharmacology 16: 64–66, 1986

    Article  PubMed  CAS  Google Scholar 

  • Tidd DM, Kim SC, Horakova K, Morivaki A, Paterson ARP. A delayed cytotoxic reaction for 6-mercaptopurine. Cancer Research 32: 317–322, 1972

    PubMed  CAS  Google Scholar 

  • Tidefelt U, Sundman-Engberg B, Rhedin A-S, Paul C. In vitro drug testing in patients with acute leukemia with incubations mimicking in vivo intracellular drug concentrations. European Journal of Hematology 43: 374–384, 1989

    Article  CAS  Google Scholar 

  • Weisenthal LM, Lippman ME. Clonogenic and nonclonogenic in vitro chemosensitivity assays. Cancer Treatment Reports 69: 615–632, 1985

    PubMed  CAS  Google Scholar 

  • Whitehead WM, Vuchich MJ, Rosenblatt DS, Shuster J, Witte A, et al. Children with acute lymphoblastic leukemia (ALL) experience better event free survival (EFS) if their lymphoblasts (LY) at diagnosis accumulate high levels of methotrexate polyglutamates (MTXPG). Proceedings of the Annual Meeting of the American Association for Cancer Research 30: 246, 1989

    Google Scholar 

  • Wolf W, Present CA, Servis KL, El-Tahtawry A, Albright MJ, et al. Tumor trapping of 5-fluorouracil: in vivo 19F NMR spectroscopic pharmacokinetics in tumor bearing humans and rabbits. Proceedings of the National Academy of the Sciences of the United States of America 87: 492–496, 1990

    Article  CAS  Google Scholar 

  • Zimm S, Collins J, Riccardi R, O’Neill D, Narang P, et al. Variable bioavailability of oral mercaptopurine: is maintenance chemotherapy in acute lymphoblastic leukemia being optimally delivered? New England Journal of Medicine 308: 1005–1009, 1983

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liliemark, J., Peterson, C. Pharmacokinetic Optimisation of Anticancer Therapy. Clin. Pharmacokinet. 21, 213–231 (1991). https://doi.org/10.2165/00003088-199121030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199121030-00005

Keywords

Navigation