Skip to main content
Log in

Isotope Ratio Analysis of Lead in Blood and Environmental Samples by Multi-collector Inductively Coupled Plasma Mass Spectrometry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

It is widely recognized that lead (Pb) affects children’s cognitive function, even at relatively low blood lead levels (<10 μg dL–1). The determination of the source of Pb in children is essential for effective risk management. The use of multi-collector ICPMS (MC-ICPMS) for isotope ratio measurements of Pb in environmental and biological samples was examined for this purpose. MC-ICPMS with an instrumental mass fractionation correction by Tl allowed accurate isotope ratio measurements of the Pb isotopic reference material NIST SRM 981. However, the presence of matrix elements (Al, Ca, Fe and Na) at more than 10 mg kg–1 in the sample solution significantly deteriorated the accuracy. The separation of Pb from the matrix is necessary for accurate measurements of the isotope ratio of Pb in environmental and biological samples. Bromide-complexation, followed by anion exchange was found to be satisfactory in terms of the recovery of Pb (90 to 104%) and the efficiency of matrix separation. The procedure was applied to a preliminary source analysis of Pb in the blood of Japanese children, and a significant contribution of indoor dust was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Center for Disease Control and Prevention (CDC), Preventing Lead Poisoning in Young Children, Atlanta, CDC, 1991.

  2. B. P. Lanphear, K. Dietrich, P. Auinger, and C. Cox, Public Health Reports, 2000, 115, 521.

    Article  CAS  Google Scholar 

  3. J. Schwartz, Environ. Res., 1994, 65, 42.

    Article  CAS  Google Scholar 

  4. B. P. Lanphear, R. Hornung, J. Khoury, K. Yolton, P. Baghurst, D. C. Bellinger, R. L. Canfield, K. N. Dietrich, R. Bornschein, T. Greene, S. J. Rothenberg, H. L. Needleman, L. Schnaas, G. Wasserman, J. Graziano, and R. Roberts, Environ. Health Perspect., 2005, 113, 894.

    Article  CAS  Google Scholar 

  5. M. Kaji, Biomed. Re. Trace Elements, 2007, 18, 199.

    CAS  Google Scholar 

  6. W. I. Manton, Arch. Environ. Health, 1977, 3, 149.

    Article  Google Scholar 

  7. O. Tera, D. W. Schwartzman, and T. R. Watkins, Arch. Environ. Health, 1985, 40, 120.

    Article  CAS  Google Scholar 

  8. Y. Yaffe, C. P. Flessel, J. J. Wesolowski, A. Del Rosario, G. N. Guirguis, T. E. Degarmo, and G. C. Coleman, Arch. Environ. Health, 1983, 38, 237.

    Article  CAS  Google Scholar 

  9. M. Rehkamper and K. Mezger, J. Anal. At. Spectrom., 2000, 15, 1451M.

  10. A. J. Walder, D. Koller, N. M. Reed, R. C. Hutton, and P. A. Freedman, J. Anal. At. Spectrom., 1993, 8, 1037.

    Article  Google Scholar 

  11. W. M. White, F. Albarede, and P. Telouk, Chem. Geol., 2000, 167, 257.

    Article  CAS  Google Scholar 

  12. J. Barling and D. Weis, J. Anal. At. Spectrom., 2008, 23, 1017.

    Article  CAS  Google Scholar 

  13. G. H. Fontaine, B. Hattendorf, B. Bourdon, and D. Gunther, J. Anal. At. Spectrom., 2009, 24, 637.

    Article  CAS  Google Scholar 

  14. G. Fortunato, A. Ritter, and D. Fabian, Analyst, 2005, 130, 898.

    Article  CAS  Google Scholar 

  15. M. K. Reuer, E. A. Boyle, and B. C. Grant, Chem. Geol., 2003, 200, 137.

    Article  CAS  Google Scholar 

  16. K. Okamoto and K. Fuwa, Anal. Chem., 1984, 56, 1758.

    Article  CAS  Google Scholar 

  17. M. Takagi, S. Tamiya, J. Yoshinaga, H. Utagawa, A. Tanaka, H. Seyama, Y. Shibata, A. Uematsu, and M. Kaji, J. Environ. Chem., 2008, 18, 521.

    Article  CAS  Google Scholar 

  18. A. G. Oomen, A. Hack, M. Minekus, E. Zeijdner, C. Cornelis, G. Schoeters, W. Verstraete, T. V. D. Wiele, J. Wragg, C. J. M. Rompelberg, A. J. A. M. Sips, and J. H. V. Wijnen, Environ. Sci. Technol., 2002, 36, 3326.

    Article  CAS  Google Scholar 

  19. T. Matsumoto, Y. Hirao, M. Iwasaki, E. Fukuda, H. Hanami, S. Nara, and A. Kimura, Bunseki Kagaku, 1986, 35, 590.

    Article  CAS  Google Scholar 

  20. Hitachi High-Technologies Corporation, Nobias Chelate Column, http://www.hitachi-hitec.com/index.html.

  21. D. Weis, B. Kieffer, C. Maerschalk, J. Barling, J. de Jong, G. A. Williams, D. Hanano, W. Pretorius, N. Mattielli, J. S. Scoates, A. Goolaerts, R. M. Friedman, and J. B. Mahoney, Geochem. Geophys. Geosyst., 2006, 7, 1.

    Article  Google Scholar 

  22. A. Cocherie and M. Robert, Chem. Geol., 2007, 243, 90.

    Article  CAS  Google Scholar 

  23. S. Ehrlich, Z. Karpas, L. Dor, and L. Halicz, J. Anal. At. Spectrom., 2001, 16, 975.

    Article  CAS  Google Scholar 

  24. D. M. Unruh, D. L. Fey, and S. E. Church, USGS Open-File Report 00-038, 2000.

  25. N. Kobayashi, W. Naito, and J. Nakanishi, “Risk Assessment Documents”, ed. Research Center for Chemical Risk Management, National Institute of Advanced Industrial Science and Technology, 2006, Maruzen, Tokyo.

  26. N. N. Aung, J. Yoshinaga, and J. Takahashi, Environ. Health Prev. Med., 2004, 9, 257.

    Article  CAS  Google Scholar 

  27. M. Murozumi, S. Nakamura, and K. Yoshida, Nippon Kagaku Kaishi, 1982, 1479.

  28. M. Takaoka, J. Yoshinaga, and A. Tanaka, J. Environ. Monit., 2006, 8, 393.

    Article  CAS  Google Scholar 

  29. J. L. Adgate, C. Weisel, Y. Wang, G. G. Rhoads, and P. J. Lioy, Environ. Res., 1995, 70, 134.

    Article  CAS  Google Scholar 

  30. B. P. Lanphear, M. Weitzman, N. L. Winter, S. Eberly, B. Yakir, M. Tanner, M. Emond, and T. D. Matte, Am. J. Public Health, 1996, 86, 1416.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Takagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagi, M., Yoshinaga, J., Tanaka, A. et al. Isotope Ratio Analysis of Lead in Blood and Environmental Samples by Multi-collector Inductively Coupled Plasma Mass Spectrometry. ANAL. SCI. 27, 29–35 (2011). https://doi.org/10.2116/analsci.27.29

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.27.29

Navigation