Skip to main content
Log in

Towards precision medicine: from quantitative imaging to radiomics

精准医学发展趋势:从定量成像到放射组学

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Radiology (imaging) and imaging-guided interventions, which provide multi-parametric morphologic and functional information, are playing an increasingly significant role in precision medicine. Radiologists are trained to understand the imaging phenotypes, transcribe those observations (phenotypes) to correlate with underlying diseases and to characterize the images. However, in order to understand and characterize the molecular phenotype (to obtain genomic information) of solid heterogeneous tumours, the advanced sequencing of those tissues using biopsy is required. Thus, radiologists image the tissues from various views and angles in order to have the complete image phenotypes, thereby acquiring a huge amount of data. Deriving meaningful details from all these radiological data becomes challenging and raises the big data issues. Therefore, interest in the application of radiomics has been growing in recent years as it has the potential to provide significant interpretive and predictive information for decision support. Radiomics is a combination of conventional computer-aided diagnosis, deep learning methods, and human skills, and thus can be used for quantitative characterization of tumour phenotypes. This paper discusses the overview of radiomics workflow, the results of various radiomics-based studies conducted using various radiological images such as computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET), the challenges we are facing, and the potential contribution of radiomics towards precision medicine.

摘要

放射学(影像学)及影像引导的介入手段能提供 多参数的形态学及功能信息,在精准医学中扮演 着越来越重要的角色。因此,放射科医生需要理 解影像表型,并将这些表型与潜在的疾病相关 联,进而描述图像特征。但是为了能理解并描述 异质性实体肿瘤的分子表型(基因组学信息), 就需要通过活检取得这些组织更进一步的序列 信息。因此,放射科医生为了能获得详尽的影像 表型,需要从不同视图和角度采集图像,而这就 产生了大量的数据。从所有这些影像数据中提取 有意义的细节非常具有挑战性,并衍生出了大数 据这个命题。因为影像组学有对诊断支持提供有 意义的诠释性和预测性信息的潜力,所以近年来 对于影像组学的关注越来越多。影像组学是传统 的计算机辅助诊断、深度学习和人类技能的结 合,因此它能被用来定量描述肿瘤表型。本文对 影像组学流程的概览、基于不同手段(如计算机 断层扫描(CT)、磁共振成像(MRI)和正电子 发射计算机断层扫描(PET))的影像组学研究结 果、面临的挑战和影像组学对于精准医学潜在的 贡献等方面进行了讨论。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya UR, Raghavendra U, Fujita H, et al., 2016a. Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Biol Med, 79: 250–258. https://doi.org/10.1016/j.compbiomed.2016.10.022

    Article  CAS  PubMed  Google Scholar 

  • Acharya UR, Fujita H, Sudarshan VK, et al., 2016b. An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images. Inform Fusion, 31: 43–53. https://doi.org/10.1016/j.inffus.2015.12.007

    Article  Google Scholar 

  • Acharya UR, Chowriappa P, Fujita H, et al., 2016c. Thyroid lesion classification in 242 patient population using Gabor transform features from high resolution ultrasound images. Knowl-Based Syst, 107: 235–245. https://doi.org/10.1016/j.knosys.2016.06.010

    Article  Google Scholar 

  • Acharya UR, Ng WL, Rahmat K, et al., 2017. Data mining framework for breast lesion classification in shear wave ultrasound: a hybrid feature paradigm. Biomed Signal Proces, 33: 400–410. https://doi.org/10.1016/j.bspc.2016.11.004

    Article  Google Scholar 

  • Aerts HJWL, 2016. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol, 2: 1636–1642. https://doi.org/10.1001/jamaoncol.2016.2631

    Article  PubMed  Google Scholar 

  • Aerts HJWL, Velazquez ER, Leijenaar RTH, et al., 2014. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 5: 4006. https://doi.org/10.1038/ncomms5006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angermueller C, Pärnamaa T, Parts L, et al., 2016. Deep learning for computational biology. Mol Syst Biol, 12: 878. https://doi.org/10.15252/msb.20156651

    Article  PubMed  PubMed Central  Google Scholar 

  • Antunes J, Viswanath S, Rusu M, et al., 2016. Radiomics analysis on FLT-PET/MRI for characterisation of early treatment response in renal cell carcinoma: a proof of concept study. Transl Oncol, 9(2): 155–162. https://doi.org/10.1016/j.tranon.2016.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailly C, Bodet-Milin C, Couespel S, et al., 2016. Revisiting the robustness of PET-based textural features in the context of multi-centric trials. PLoS ONE, 11: 7. https://doi.org/10.1371/journal.pone.0159984

    Google Scholar 

  • Balagurunathan Y, Gu YH, Wang H, et al., 2014a. Reproducibility and prognosis of quantitative features extracted from CT images. Transl Oncol, 7(1): 72–87. https://doi.org/10.1593/tlo.13844

    Article  PubMed  PubMed Central  Google Scholar 

  • Balagurunathan Y, Kumar V, Gu YH, et al., 2014b. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging, 27(6): 805–823. https://doi.org/10.1007/s10278-014-9716-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Boellaard R, 2009. Standards for PET image acquisition and quantitative data analysis. J Nuclear Med, 50: 11S–20S. https://doi.org/10.2967/jnumed.108.057182

    Article  CAS  Google Scholar 

  • Castellino RA, 2005. Computer-aided detection (CAD): an overview. Cancer Imaging, 5: 17–19. https://doi.org/10.1102/1470-7330.2005.0018

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaddad A, Zinn PO, Colen RR, 2015. Radiomics texture feature extraction for characterising GBM phenotypes using GLCM. IEEE 12th International Symposium on Biomedical Imaging (ISBI). New York, USA.

    Google Scholar 

  • Chaudhury B, 2015. The Use of Textural Kinetic Habitats to Mine Diagnostic Information from DCE MR Images of Breast Tumours. PhD Theses, University of South Florida, Fowler Avenue, Tampa, USA.

    Google Scholar 

  • Cheebsumon P, Boelaard R, de Ruysscher D, et al., 2012. Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology. EJNMMI Res, 2(1): 56. https://doi.org/10.1186/2191-219X-2-56

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen R, Snyder M, 2013. Promise of personalized omics to precision medicine. Wiley Interdiscip Rev Syst Biol Med, 5(1): 73–82. https://doi.org/10.1002/wsbm.1198

    Article  PubMed  Google Scholar 

  • Chen YS, Lin ZH, Zhao X, et al., 2014. Deep learning-based classification of hyperspectral data. IEEE J-STARS, 7(6): 2094–2107. https://doi.org/10.1109/JSTARS.2014.2329330

    Google Scholar 

  • Chicklore S, Goh V, Siddique M, et al., 2013. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging, 40(1): 133–140. https://doi.org/10.1007/s00259-012-2247-0

    Article  PubMed  Google Scholar 

  • Cho DS, Clausi DA, Wong A, 2015. Dermal radiomics for melanoma screening. Vision Lett, 1(1): 23. https://doi.org/10.15353/vsnl.v1i1.58

    Article  Google Scholar 

  • Chung AG, Khalvati F, Shafiee MJ, et al., 2015. Prostate cancer detection via a quantitative radiomics-driven conditional random field framework. IEEE Access, 3: 2531–2541. https://doi.org/10.1109/ACCESS.2015.2502220

    Article  Google Scholar 

  • Cook GJR, Siddique M, Taylor BP, et al., 2014. Radiomics in PET: principles and applications. Clin Transl Imaging, 2(3): 269–276. https://doi.org/10.1007/s40336-014-0064-0

    Article  Google Scholar 

  • Coquery N, Francois O, Lemasson B, et al., 2014. Microvascular MRI and unsupervised clustering yields histology-resembling images in two rat models of glioma. J Cerebr Blood Met, 34(8): 1354–1362. https://doi.org/10.1038/jcbfm.2014.90

    Article  Google Scholar 

  • Coroller TP, Grossmann P, Hou Y, et al., 2015. CT-based radiomic signature predicts metastasis in lung adenocarcinoma. J Eur Soc Therapeut Radiol Oncol, 114(3): 345–350. https://doi.org/10.1016/j.radonc.2015.02.015

    Article  Google Scholar 

  • Coroller TP, Agrawal V, Narayan V, et al., 2016. Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol, 119(3): 480–486. https://doi.org/10.1016/j.radonc.2016.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Court LE, Fave X, Mackin D, et al., 2016. Computational resources for radiomics. Transl Cancer Res, 5(4): 340–348. https://doi.org/10.21037/tcr.2016.06.17

    Article  CAS  Google Scholar 

  • Cunliffe A, Armato III SG, Castillo R, et al., 2015. Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol, 91(5): 1048–1056. https://doi.org/10.1016/j.ijrobp.2014.11.030

    Article  Google Scholar 

  • Davnall F, Yip CSP, Ljungqvist G, et al., 2012. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging, 3(6): 573–589. https://doi.org/10.1007/s13244-012-0196-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Depeursinge A, Yanagawa M, Leung AN, et al., 2015. Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT. Med Phys, 42(4): 2054–2063. https://doi.org/10.1118/1.4916088

    Article  PubMed  PubMed Central  Google Scholar 

  • Desseroit MC, Visvikis D, Tixier F, et al., 2016. Development of a nomogram combining clinical staging with 18F-FDG PET/CT image features in non-small-cell lung cancer stage I‒III. Eur J Nucl Med Mol Imaging, 43(8): 1477–1485. https://doi.org/10.1007/s00259-016-3325-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinapoli N, Casa C, Barbaro B, et al., 2016. Radiomics for rectal cancer. Transl Cancer Res, 5(4): 424–431. https://doi.org/10.21037/tlcr.2016.08.01

    Article  Google Scholar 

  • Egger J, Kapur T, Fedorov A, et al., 2013. GBM volumetry using the 3D Slicer medical image computing platform. Sci Rep, 3: 1364. https://doi.org/10.1038/srep01364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emaminejad N, Qian W, Guan YB, et al., 2016. Fusion of quantitative image and genomic biomarkers to improve prognosis assessment of early stage lung cancer patients. IEEE Trans Biomed Eng, 63(5): 1034–1043. https://doi.org/10.1109/TBME.2015.2477688

    Article  PubMed  Google Scholar 

  • Eminowicz G, McCormack M, 2015. Variability of clinical target volume delineation for definitive radiotherapy in cervix cancer. Radiother Oncol, 117(3): 542–547. https://doi.org/10.1016/j.radonc.2015.10.007

    Article  PubMed  Google Scholar 

  • Fave X, Mackin D, Yang JZ, et al., 2015. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys, 42(12): 6784–6797. https://doi.org/10.1118/1.4934826

    Article  PubMed  PubMed Central  Google Scholar 

  • Fave X, Zhang LF, Yang JZ, et al., 2016. Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl Cancer Res, 5(4): 349–363. https://doi.org/10.21037/tcr.2016.07.11

    Article  CAS  Google Scholar 

  • Felzenszwalb PF, Huttenlocher DP, 2004. Efficient graph-based image segmentation. Int J Comput Vision, 59(2): 167–181. https://doi.org/10.1023/B:VISI.0000022288.19776.77

    Article  Google Scholar 

  • Fried DV, Tucker SL, Zhou SH, et al., 2014. Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys, 90(4): 834–842. https://doi.org/10.1016/j.ijrobp.2014.07.020

    Article  PubMed  PubMed Central  Google Scholar 

  • Galavis PE, Hollensen C, Jallow N, et al., 2010. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol, 49(7): 1012–1016. https://doi.org/10.3109/0284186X.2010.498437

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillies RJ, Kinahan PE, Hricak H, 2016. Radiomics: images are more than pictures, they are data. Radiology, 278(2): 563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  • Grootjans W, Tixier F, van der Vos CS, et al., 2016. The impact of optimal respiratory gating and image noise on evaluation of intratumor heterogeneity on 18F-FDG PET imaging of lung cancer. J Nucl Med, 57(11): 1692–1698. https://doi.org/10.2967/jnumed.116.173112

    Article  PubMed  Google Scholar 

  • Grossmann P, Gutman DA, Dunn Jr WD, et al., 2016. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in glioblastoma. BMC Cancer, 16: 611. https://doi.org/10.1186%2Fs12885-016-2659-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo WT, Li H, Zhu YT, et al., 2015. Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data. J Med Imaging, 2(4): 041007. https://doi.org/10.1117/1.JMI.2.4.041007

    Article  Google Scholar 

  • Gutman DA, Cooper LAD, Hwang SN, et al., 2013. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology, 267(2): 560–569. https://doi.org/10.1148/radiol.13120118

    Article  PubMed  PubMed Central  Google Scholar 

  • Haralick RM, Shanmugam K, Dinstein I, 1973. Textural features for image classification. IEEE Trans Syst Man Cybernetics, SMC-3(6):610–621. https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  • Hawkins SH, Korecki JN, Balagurunathan Y, et al., 2014. Predicting outcomes of non-small cell lung cancer using CT image features. IEEE Access, 2: 1418–1426. https://doi.org/10.1109/ACCESS.2014.2373335

    Article  Google Scholar 

  • He L, Huang YQ, Ma ZL, et al., 2016. Effects of contrastenhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci Rep, 6: 34921. https://doi.org/10.1038/srep34921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horgan RP, Kenny LC, 2011. SAC review ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynaecol, 13(3): 189–195.

    Google Scholar 

  • Huang YQ, Liang CH, He L, et al., 2016. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol, 34(18): 2157–2164. https://doi.org/10.1200/JCO.2015.65.9128

    Article  PubMed  Google Scholar 

  • Hunter LA, Krafft S, Stingo F, et al., 2013. High-quality machine-robust image features: identification in nonsmall cell lung cancer computed tomography images. Med Phys, 40(12): 121916. https://doi.org/10.1118/1.4829514

    Article  PubMed  PubMed Central  Google Scholar 

  • Huynh E, Coroller TP, Narayan V, et al., 2016. CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiother Oncol, 120(2): 258–266. https://doi.org/10.1016/j.radonc.2016.05.024

    Article  PubMed  Google Scholar 

  • Kass M, Witkin A, Terzopoulos D, 1988. Snakes: active contour models. Int J Comput Vision, 1(4): 321–331. https://doi.org/10.1007/BF00133570

    Article  Google Scholar 

  • Kato H, Nakajima M, 2012. The efficacy of FDG-PET for the management of esophageal cancer: review article. Ann. Thorac Cardiovasc Surg, 18(5): 412–419. https://doi.org/10.5761/atcs.ra.12.01954

    Article  PubMed  Google Scholar 

  • Khalvati F, Wong A, Haider MA, 2015. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imaging, 15: 27. https://doi.org/10.1186/s12880-015-0069-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Gu Y, Basu S, et al., 2012. Radiomics: the process and the challenges. Magn Reson Imaging, 30(9): 1234–1248. https://doi.org/10.1016/j.mri.2012.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar YR, Muthukrishnan NM, Mahajan A, et al., 2016. Statistical parameter-based automatic liver tumor segmentation from abdominal CT scans: a potiential radiomic signature. Proced Comput Sci, 93: 446–452. https://doi.org/10.1016/j.procs.2016.07.232

    Article  Google Scholar 

  • Kuo MD, Jamshidi N, 2014. Behind the numbers: decoding molecular phenotypes with radiogenomics—guiding principles and technical considerations. Radiology, 270(2): 320–325. https://doi.org/10.1148/radiol.13132195

    Article  PubMed  Google Scholar 

  • Lacroix M, Abi-Said D, Fourney DR, et al., 2001. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosur, 95(2): 190&–198. https://doi.org/10.3171/jns.2001.95.2.0190

    Article  CAS  Google Scholar 

  • Lambin P, Rios-Velazquez E, Leijenaar R, et al., 2012. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 48(4): 441–446. https://doi.org/10.1016/j.ejca.2011.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Narang S, Martinez JJ, et al., 2015. Associating spatial diversity features of radiologically defined tumor habitats with epidermal growth factor receptor driver status and 12-month survival in glioblastoma: methods and preliminary investigation. J Med Imaging, 2(4): 041006. https://doi.org/10.1117/1.JMI.2.4.041006

    Article  Google Scholar 

  • Leijenaar RTH, Carvalho S, Velazquez ER, et al., 2013. Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol, 52(7): 1391–1397. https://doi.org/10.3109/0284186X.2013.812798

    Article  CAS  PubMed  Google Scholar 

  • Leijenaar RTH, Nalbantov G, Carvalho S, et al., 2015. The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep, 5: 11075. https://doi.org/10.1038/srep11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian CF, Ruan S, Denoeux T, et al., 2016. Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Med Image Anal, 32: 257–268. https://doi.org/10.1016/j.media.2016.05.007

    Article  PubMed  Google Scholar 

  • Liang CS, Huang YQ, He L, et al., 2016. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I‒II and stage III‒IV colorectal cancer. Oncotarget, 7(21): 31401–31412. https://doi.org/10.18632/oncotarget.8919

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu W, Chen W, 2016. Positron emission tomography/computerized tomography for tumor response assessment—a review of clinical practices and radiomics studies. Transl Cancer Res, 5(4): 364–370. https://doi.org/10.21037/tcr.2016.07.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Wang J, Zhang HH, 2015. Computerized PET/CT image analysis in the evaluation of tumour response to therapy. Brit J Radiol, 88(1048): 20140625. https://doi.org/10.1259/bjr.20140625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Wu F, Jiang T, et al., 2017a. Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images. Med Phys, 44(5): 1678–1691. https://doi.org/10.1002/mp.12134

    Article  PubMed  Google Scholar 

  • Ma J, Wu F, Zhu J, et al., 2017b. A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics, 73: 221–230. https://doi.org/10.1016/j.ultras.2016.09.011

    Article  PubMed  Google Scholar 

  • Mackin D, Fave X, Zhang LF, et al., 2015. Measuring computed tomography scanner variability of radiomics features. Invest Radiol, 50(11): 757–765. https://doi.org/10.1097/RLI.0000000000000180

    Article  PubMed  PubMed Central  Google Scholar 

  • Malladi R, Sethian JA, Vemuri BC, 1995. Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Machine Intell, 17(2): 158–175. https://doi.org/10.1109/34.368173

    Article  Google Scholar 

  • Mattonen SA, Tetar S, Palma DA, et al., 2015. Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy. J Med Imaging, 2(4): 041010. https://doi.org/10.1117/1.JMI.2.4.041010

    Article  Google Scholar 

  • Mattonen SA, Palma DA, Johnson C, et al., 2016. Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment. Int J Radiat Oncol Biol Phys, 94(5): 1121–1128. https://doi.org/10.1016/j.ijrobp.2015.12.369

    Article  PubMed  Google Scholar 

  • Mitra S, Shankar BU, 2015. Medical image analysis for cancer management in natural computing framework. Inform Sci, 306: 111–131. https://doi.org/10.1016/j.ins.2015.02.015

    Article  Google Scholar 

  • Nair VS, Gevaert O, Davidzon G, et al., 2012. Prognostic PET 18F-FDG uptake imaging features are associated with major oncogenomic alterations in patients with resected non-small cell lung cancer. Cancer Res, 72(15): 3725–3734. https://doi.org/10.1158/0008-5472.CAN-11-3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narang S, Lehrer M, Yang D, et al., 2016. Radiomics in glioblastoma: current status, challenges and potential opportunities. Transl Cancer Res, 5(4): 383–397. https://doi.org/10.21037/tcr.2016.06.31

    Article  CAS  Google Scholar 

  • Nelson B, 2009. Data sharing: empty archives. Nature, 461: 160–163. https://doi.org/10.1038/461160a

    Article  CAS  PubMed  Google Scholar 

  • Nyflot MJ, Yang F, Byrd D, et al., 2015. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards. J Med Imaging, 2(4): 041002. https://doi.org/10.1117/1.JMI.2.4.041002

    Article  Google Scholar 

  • Oliver JA, Budzevich M, Zhang GG, et al., 2015. Variability of image features computed from conventional and respiratorygated PET/CT images of lung cancer. Transl Oncol, 8(6): 524–534. https://doi.org/10.1016/j.tranon.2015.11.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Parekh V, Jacobs MA, 2016. Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev, 1(2): 207–226. https://doi.org/10.1080/23808993.2016.1164013

    Article  PubMed  PubMed Central  Google Scholar 

  • Parmar C, Velazquez ER, Leijenaar R, et al., 2014. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE, 9(7): e102107. https://doi.org/10.1371/journal.pone.0102107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parmar C, Leijenaar RTH, Grossmann P, et al., 2015a. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep, 5: 11044. https://doi.org/10.1038/srep11044

    Article  PubMed  PubMed Central  Google Scholar 

  • Parmar C, Grossmann P, Rietveld D, et al., 2015b. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol, 5: 272. https://doi.org/10.3389/fonc.2015.00272

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizer SM, Amburn EP, Austin JD, et al., 1987. Adaptive histogram equalization and its variations. Comput Vision Graph Image Proc, 39(3): 355–368. https://doi.org/10.1016/S0734-189X(87)80186-X

    Article  Google Scholar 

  • Raghavendra U, Acharya UR, Gudigar A, et al., 2017. Fusion of spatial gray level dependency and fractal texture features for the characterization of thyroid lesions. Ultrasonics, 77: 110–120. https://doi.org/10.1016/j.ultras.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  • Rahim MK, Kim SE, So H, et al., 2014. Recent trends in PET image interpretations using volumetric and texture-based quantification methods in nuclear oncology. Nucl Med Mol Imaging, 48(1): 1–15. https://doi.org/10.1007/s13139-013-0260-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Sala E, Mema E, Himoto Y, et al., 2017. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol, 72(1): 3–10. https://doi.org/10.1016/j.crad.2016.09.013

    Article  CAS  PubMed  Google Scholar 

  • Scrivener M, de Jong EEC, van Timmeren JE, et al., 2016. Radiomics applied to lung cancer: a review. Transl Cancer Res, 5(4): 398–409. https://doi.org/10.21037/tcr.2016.06.18

    Article  Google Scholar 

  • Segal E, Sirlin CB, Ooi C, et al., 2007. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol, 25: 675–680. https://doi.org/10.1038/nbt1306

    Article  CAS  PubMed  Google Scholar 

  • Song JD, Dong D, Huang YQ, et al., 2016. Association between tumour heterogeneity and overall survival in patients with non-small cell lung cancer. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). Prague, Czech Republic, p.1249–1252. https://doi.org/10.1109/ISBI.2016.7493493

    Google Scholar 

  • Sonka, M., Hlavac, V., Boyle, R., 2007. Image processing, analysis, and machine vision. Cengage Learning.

    Google Scholar 

  • Stoyanova R, Takhar M, Tschudi Y, et al., 2016. Prostate cancer radiomics and the promise of radiogenomics. Transl Cancer Res, 5(4): 432–447. https://doi.org/10.21037/tcr.2016.06.20

    Article  PubMed  PubMed Central  Google Scholar 

  • Szigeti K, Szabó T, Korom C, et al., 2016. Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data. BMC Med Imaging, 16: 14. https://doi.org/10.1186/s12880-016-0118-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Thie JA, 2004. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med, 45(9): 1431–1434.

    PubMed  Google Scholar 

  • Tixier F, Hatt M, Cheze Le Re st C, et al., 2012. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med, 53(5): 693–700. https://doi.org/10.2967/jnumed.111.099127

    Article  PubMed  PubMed Central  Google Scholar 

  • Tixier F, Hatt M, Valla C, et al., 2015. Visual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J Nucl Med, 55(8): 1235–1241. https://doi.org/10.2967/jnumed.113.133389

    Article  CAS  Google Scholar 

  • Upadhaya T, Morvan Y, Stindel E, et al., 2015a. A framework for multimodal imaging-based prognostic model building: preliminary study on multimodal MRI in glioblastoma multiforme. IRBM, 36(6): 345–350. https://doi.org/10.1016/j.irbm.2015.08.001

    Article  Google Scholar 

  • Upadhaya T, Morvan Y, Stindel E, et al., 2015b. Prognostic value of multimodal MRI tumor features in glioblastoma multiforme using textural features analysis. 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York, NY, USA. IEEE. https://doi.org/10.1109/ISBI.2015.7163814

    Book  Google Scholar 

  • Vallières X, Freeman CR, Skamene SR, et al., 2015. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in softtissue sarcomas of the extremities. Phys Med Biol, 60: 5471–5496. https://doi.org/10.1088/0031-9155/60/14/5471

    Article  PubMed  Google Scholar 

  • van den Burg EL, van Hoof M, Postma AA, et al., 2016. An exploratory study to detect Ménière’s disease in conventional MRI scans using radiomics. Front Neurol, 7: 190. https://doi.org/10.3389/fneur.2016.00190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Rossum PSN, Xu C, Fried DV, et al.,2016. The emerging field of radiomics in esophageal cancer: current evidence and future potential. Transl Cancer Res, 5(4): 410&–423. https://dowi.org/10.21037/tcr.2016.06.19

    Article  Google Scholar 

  • van Velden FHP, Kramer GM, Frings V, et al., 2016. Repeatability of radiomic features in non-small-cell lung cancer [18F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol, 18(5): 788–795. https://doi.org/10.1007/s11307-016-0940-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velazquez ER, Parmar C, Jermoumi M, et al., 2013. Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci Rep, 3: 3529. https://doi.org/10.1038/srep03529

    Article  PubMed  PubMed Central  Google Scholar 

  • Velazquez ER, Meier R, Dunn Jr WD, et al., 2015. Fully automatic GBM segmentation in the TCGA-GBM dataset: prognosis and correlation with VASARI features. Sci Rep, 5: 16822. https://doi.org/10.1038/srep16822

    Article  CAS  Google Scholar 

  • Wang H, Schabath MB, Liu Y, et al., 2015. Semiquantitative computed tomography characteristics for lung adenocarcinoma and their association with lung cancer survival. Clin Lung Cancer, 16(6): e141–e163. https://doi.org/10.1016/j.cllc.2015.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Xu ZS, Fujita H, et al., 2016. Towards felicitous decision making: an overview on challenges and trends of Big Data. Inform Sci, 367–368: 747–765. https://doi.org/10.1016/j.ins.2016.07.007

    Article  Google Scholar 

  • Wang X, Wong BS, Guan TC, 2005. Image enhancement for radiography inspection. Proceedings Volume 5852, Third International Conference on Experimental Mechanics and Third Conference of the Asian Committee on Experimental Mechanics, Singapore. https://doi.org/10.1117/12.621707

    Google Scholar 

  • Wanichthanarak K, Fahrmann JF, Grapov D, 2015. Genomic, proteomic, and metabolomic data integration strategies. Biomark Insights, 10(Suppl 4): 1–6. https://doi.org/10.4137/BMI.S29511

    PubMed  PubMed Central  Google Scholar 

  • WHO (World Health Organization), 2017. Diagnostic imaging. https://www.who.int/diagnostic_imaging/en [accessed on May 13, 2017].

    Google Scholar 

  • Wong AJ, Kanwar A, Mohamed AS, et al., 2016. Radiomics in head and neck cancer: from exploration to application. Transl Cancer Res, 5(4): 371–382. https://doi.org/10.21037/tcr.2016.07.18

    Article  CAS  Google Scholar 

  • Wu WM, Parmar C, Grossmann P, et al., 2016. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol, 6: 71. https://doi.org/10.3389/fonc.2016.00071

    PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Korn RL, Oklu R, et al., 2014. ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization. Radiology, 272(2): 568–576. https://doi.org/10.1148/radiol.14140789

    Article  PubMed  Google Scholar 

  • Yamamoto S, Han W, Kim Y, et al., 2015. Breast cancer: radiogenomic biomarker reveals associations among dynamic contrast-enhanced MR imaging, long noncoding RNA, and metastasis. Radiology, 275(2): 384–392. https://doi.org/10.1148/radiol.15142698

    Article  PubMed  Google Scholar 

  • Yan J, Chu-Shern JL, Loi HY, et al., 2015. Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med, 56(11): 1667–1673. https://doi.org/10.2967/jnumed.115.156927

    Article  CAS  PubMed  Google Scholar 

  • Yang JZ, Zhang LF, Fave XJ, et al., 2016. Uncertainty analysis of quantitative imaging features extracted from contrastenhanced CT in lung tumors. Comput Med Imaging Graph, 48: 1–8. https://doi.org/10.1016/j.compmedimag.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  • Yip SSF, Aerts HJWL, 2016. Applications and limitations of radiomics. Phys Med Biol, 61(13): R150–R166. https://doi.org/10.1088/0031-9155/61/13/R150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon HJ, Sohn I, Cho JH, et al., 2015. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach. Medicine, 94(41): e1753. https://doi.org/10.1097/MD.0000000000001753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ypsilantis PP, Siddique M, Sohn H, et al., 2015. Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS ONE, 10(9): e0137036. https://doi.org/10.1371/journal.pone.0137036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao BS, Tan YQ, Tsai WY, et al., 2016. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep, 6: 23428. https://doi.org/10.1038/srep23428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Hall LO, Goldgof DB, 2014. Exploring brain tumor heterogeneity for survival time prediction. 2014 22nd International Conference on Pattern Recognition (ICPR), Stockholm, Sweden. IEEE, p.580–585. https://doi.org/10.1109/ICPR.2014.110

    Google Scholar 

  • Zinn PO, Majadan B, Sathyan P, et al., 2011. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS ONE, 6(10): e25451. https://doi.org/10.1371/journal.pone.0025451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwan Hoong Ng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, U.R., Hagiwara, Y., Sudarshan, V.K. et al. Towards precision medicine: from quantitative imaging to radiomics. J. Zhejiang Univ. Sci. B 19, 6–24 (2018). https://doi.org/10.1631/jzus.B1700260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1700260

Keywords

关键词

CLC number

Navigation