Skip to main content

Advertisement

Log in

Induced pluripotent stem cells: origins, applications, and future perspectives

  • Review
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Embryonic stem (ES) cells are widely used for different purposes, including gene targeting, cell therapy, tissue repair, organ regeneration, and so on. However, studies and applications of ES cells are hindered by ethical issues regarding cell sources. To circumvent ethical disputes, great efforts have been taken to generate ES cell-like cells, which are not derived from the inner cell mass of blastocyst-stage embryos. In 2006, Yamanaka et al. first reprogrammed mouse embryonic fibroblasts into ES cell-like cells called induced pluripotent stem (iPS) cells. About one year later, Yamanaka et al. and Thomson et al. independently reprogrammed human somatic cells into iPS cells. Since the first generation of iPS cells, they have now been derived from quite a few different kinds of cell types. In particular, the use of peripheral blood facilitates research on iPS cells because of safety, easy availability, and plenty of cell sources. Now iPS cells have been used for cell therapy, disease modeling, and drug discovery. In this review, we describe the generations, applications, potential issues, and future perspectives of iPS cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilić, J., Pekarik, V., Tiscornia, G., et al., 2008. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol., 26(11):1276–1284. [doi:10.1038/nbt.1503]

    Article  PubMed  CAS  Google Scholar 

  • Anokye-Danso, F., Trivedi, C.M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., Zhang, Y., Yang, W., Gruber, P.J., Epstein, J.A., et al., 2011. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4):376–388. [doi:10.1016/j.stem.2011.03.001]

    Article  PubMed  CAS  Google Scholar 

  • Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., Yamanaka, S., 2008. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 321(5889):699–702. [doi:10.1126/science.1154884]

    Article  PubMed  CAS  Google Scholar 

  • Aoki, T., Ohnishi, H., Oda, Y., Tadokoro, M., Sasao, M., Kato, H., Hattori, K., Ohgushi, H., 2010. Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-Myc. Tissue Eng. Part A, 16(7):2197–2206. [doi:10.1089/ten.tea.2009.0747]

    Article  PubMed  CAS  Google Scholar 

  • Carvajal-Vergara, X., Sevilla, A., D’Souza, S.L., Ang, Y.S., Schaniel, C., Lee, D.F., Yang, L., Kaplan, A.D., Adler, E.D., Rozov, R., et al., 2010. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature, 465(7299):808–812. [doi:10.1038/nature09005]

    Article  PubMed  CAS  Google Scholar 

  • Chang, M.Y., Kim, D., Kim, C.H., Kang, H.C., Yang, E., Moon, J.I., Ko, S., Park, J., Park, K.S., Lee, K.A., et al., 2010. Direct reprogramming of rat neural precursors cells and fibroblasts into pluripotent stem cells. PLoS ONE, 5(3):e9838. [doi:10.1371/journal.pone.0009838]

    Article  PubMed  Google Scholar 

  • Chesné, P., Adenot, P.G., Viglietta, C., Baratte, M., Boulanger, L., Renard, J.P., 2002. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol., 20(4):366–369. [doi:10.1038/nbt0402-366]

    Article  PubMed  Google Scholar 

  • Cho, H.J., Lee, C.S., Kwon, Y.W., Paek, J.S., Lee, S.H., Hur, J., Lee, E.J., Roh, T.Y., Chu, I.S., Leem, S.H., et al., 2010. Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood, 116(3):386–395. [doi:10.1182/blood-2010-02-269589]

    Article  PubMed  CAS  Google Scholar 

  • Chou, B.K., Mali, P., Huang, X., Ye, Z., Dowey, S.N., Resar, L.M., Zou, C., Zhang, Y.A., Tong, J., Cheng, L., 2011. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res., 21(3):518–529. [doi:10.1038/cr.2011.12]

    Article  PubMed  CAS  Google Scholar 

  • Desponts, C., Ding, S., 2010. Using small molecules to improve generation of induced pluripotent stem cells from somatic cells. Methods Mol. Biol., 636:207–218. [doi:10. 1007/978-1-60761-691-7_13]

    Article  PubMed  CAS  Google Scholar 

  • Dimos, J.T., Rodolfa, K.T., Niakan, K.K., Weisenthal, L.M., Mitsumoto, H., Chung, W., Croft, G.F., Saphier, G., Leibel, R., Goland, R., et al., 2008. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893): 1218–1221. [doi:10.1126/science.1158799]

    Article  PubMed  CAS  Google Scholar 

  • Easley, C.A.4th, Phillips, B.T., McGuire, M.M., Barringer, J.M., Valli, H., Hermann, B.P., Simerly, C.R., Rajkovic, A., Miki, T., Orwig, K.E., et al., 2012. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep., 2(3):440–446. [doi:10.1016/j.celrep.2012.07.015]

    Article  PubMed  CAS  Google Scholar 

  • Ebert, A.D., Yu, J.Y., Rose, F.F., Mattis, V.B., Lorson, C.L., Thomson, J.A., Svendsen, C.N., 2009. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227):277–280. [doi:10.1038/nature07677]

    Article  PubMed  CAS  Google Scholar 

  • Ebihara, Y., Ma, F., Tsuji, K., 2012. Generation of red blood cells from human embryonic/induced pluripotent stem cells for blood transfusion. Int. J. Hematol., 95(6): 610–616. [doi:10.1007/s12185-012-1107-9]

    Article  PubMed  Google Scholar 

  • Eminli, S., Foudi, A., Stadtfeld, M., Maherali, N., Ahfeldt, T., Mostoslavsky, G., Hock, H., Hochedlinger, K., 2009. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat. Genet., 41(9):968–976. [doi:10.1038/ng.428]

    Article  PubMed  CAS  Google Scholar 

  • Evans, M.J., Kaufman, M.H., 1981. Establishment in culture of pluripotent cells from mouse embryos. Nature, 292(5819):154–156. [doi:10.1038/292154a0]

    Article  PubMed  CAS  Google Scholar 

  • Feng, B., Jiang, J., Kraus, P., Ng, J.H., Heng, J.C., Chan, Y.S., Yaw, L.P., Zhang, W., Loh, Y.H., Han, J., et al., 2009. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat. Cell Biol., 11(2):197–203. [doi:10.1038/ncb1827]

    Article  PubMed  CAS  Google Scholar 

  • Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., Hasegawa, M., 2009. Efficient induction of transgene free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 85(8):348–362. [doi:10.2183/pjab.85.348]

    Article  PubMed  CAS  Google Scholar 

  • Giorgetti, A., Montserrat, N., Aasen, T., Gonzalez, F., Rodríguez-Pizà, I., Vassena, R., Raya, A., Boué, S., Barrero, M.J., Corbella, B.A., et al., 2009. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell, 5(4):353–357. [doi:10.1016/j.stem.2009.09.008]

    Article  PubMed  CAS  Google Scholar 

  • Gore, A., Li, A., Fung, H.L., Young, J.E., Agarwal, S., Antosiewicz-Bourget, J., Canto, I., Giorgetti, A., Israel, M.A., Kiskinis, E., et al., 2011. Somatic coding mutations in human induced pluripotent stem cells. Nature, 471(7336):63–67. [doi:10.1038/nature09805]

    Article  PubMed  CAS  Google Scholar 

  • Gurdon, J.B., 1962. The development capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Embryol. Exp. Morphol., 10(4):622–640.

    CAS  Google Scholar 

  • Haase, A., Olmer, R., Schwanke, K., Wunderlich, S., Merkert, S., Hess, C., Zweigerdt, R., Gruh, I., Meyer, J., Wagner, S., et al., 2009. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell, 5(4): 434–441. [doi:10.1016/j.stem.2009.08.021]

    Article  PubMed  CAS  Google Scholar 

  • Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.C., Townes, T.M., et al., 2007. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858):1920–1923. [doi:10.1126/science.1152092]

    Article  PubMed  CAS  Google Scholar 

  • Hanna, J., Markoulaki, S., Schorderet, P., Carey, B.W., Beard, C., Wernig, M., Creyghton, M.P., Steine, E.J., Cassady, J.P., Foreman, R., et al., 2008. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 133(2):250–264. [doi:10.1016/j.cell.2008.03.028]

    Article  PubMed  CAS  Google Scholar 

  • Heng, J.C., Feng, B., Han, J., Jiang, J., Kraus, P., Ng, J.H., Orlov, Y.L., Huss, M., Yang, L., Lufkin, T., et al., 2010. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell, 6(2):167–174. [doi:10.1016/j.stem.2009.12.009]

    Article  PubMed  CAS  Google Scholar 

  • Honda, A., Hirose, M., Hatori, M., Matoba, S., Miyoshi, H., Inoue, K., Ogura, A., 2010. Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. J. Biol. Chem., 285(41):31362–31369. [doi:10.1074/jbc.M110.150540]

    Article  PubMed  CAS  Google Scholar 

  • Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K., Yamanaka, S., 2009. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 460(7259):1132–1135. [doi:10.1038/nature08235]

    Article  PubMed  CAS  Google Scholar 

  • Hotta, A., Cheung, A.Y., Farra, N., Vijayaragavan, K., Séguin, C.A., Draper, J.S., Pasceri, P., Maksakova, I.A., Mager, D.L., Rossant, J., et al., 2009. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat. Methods, 6(5):370–376. [doi:10.1038/nmeth.1325]

    Article  PubMed  CAS  Google Scholar 

  • Hou, P.P., Li, Y.Q., Zhang, X., Liu, C., Guan, J.Y., Li, H.G., Zhao, T., Ye, J.Q., Zhao, Y., Deng, H.K., 2013. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341(6146):651–654. [doi:10.1126/science.1239278]

    Article  PubMed  CAS  Google Scholar 

  • Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., Melton, D.A., 2008. Melton induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol., 26(11):1269–1275. [doi:10.1038/nbt.1502]

    Article  PubMed  CAS  Google Scholar 

  • Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., Woltjen, K., 2009. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239):771–775. [doi:10.1038/nature07864]

    Article  PubMed  CAS  Google Scholar 

  • Kang, L., Wang, J., Zhang, Y., Kou, Z., Gao, S., 2009. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 5(2): 135–138. [doi:10.1016/j.stem.2009.07.001]

    Article  PubMed  CAS  Google Scholar 

  • Kim, D., Kim, C.H., Moon, J.I., Chung, Y.G., Chang, M.Y., Han, B.S., Yang, E., Cha, K.Y., Lanza, R., Kim, K.S., 2009. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4(6):472–476. [doi:10.1016/j.stem.2009.05.005]

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.B., Zaehres, H., Wu, G., Gentile, L., Ko, K., Sebastiano, V., Araúzo-Bravo, M.J., Ruau, D., Han, D.W., Zenke, M., et al., 2008. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 454(7204):646–650. [doi:10.1038/nature07061]

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.B., Greber, B., Araúzo-Bravo, M.J., Meyer, J., Park, K.I., Zaehres, H., Schöler, H.R., 2009a. Direct reprogramming of human neural stem cells by OCT4. Nature, 461(7264):649–653. [doi:10.1038/nature08436]

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.B., Sebastiano, V., Wu, G., Araúzo-Bravo, M.J., Sasse, P., Gentile, L., Ko, K., Ruau, D., Ehrich, M., van den Boom, D., et al., 2009b. Oct4-induced pluripotency in adult neural stem cells. Cell, 136(3):411–419. [doi:10. 1016/j.cell.2009.01.023]

    Article  PubMed  CAS  Google Scholar 

  • Lacoste, A., Berenshteyn, F., Brivanlou, A.H., 2009. An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell, 5(3):332–342. [doi:10.1016/j.stem.2009.07.011]

    Article  PubMed  CAS  Google Scholar 

  • Lagarkova, M.A., Shutova, M.V., Bogomazova, A.N., Vassina, E.M., Glazov, E.A., Zhang, P., Rizvanov, A.A., Chestkov, I.V., Kiselev, S.L., 2010. Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale. Cell Cycle, 9(5):937–946. [doi:10.4161/cc.9.5.10869]

    Article  PubMed  CAS  Google Scholar 

  • Lee, G., Papapetrou, E.P., Kim, H., Chambers, S.M., Tomishima, M.J., Fasano, C.A., Ganat, Y.M., Menon, J., Shimizu, F., Viale, A., et al., 2009. Modelling pathogenesis and treatment of familial dysautonomia using patientspecific iPS cells. Nature, 461(7262):402–406. [doi:10. 1038/nature08320]

    Article  PubMed  CAS  Google Scholar 

  • Lei, F., Haque, R., Xiong, X., Song, J., 2012. Directed differentiation of induced pluripotent stem cells towards T lymphocytes. J. Vis. Exp., 63:e3986. [doi:10.3791/3986]

    PubMed  Google Scholar 

  • Li, C., Zhou, J., Shi, G., Ma, Y., Yang, Y., Gu, J., Yu, H., Jin, S., Wei, Z., Chen, F., et al., 2009. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum. Mol. Genet., 18(22):4340–4349. [doi:10.1093/hmg/ddp386]

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Ding, S., 2010. Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol. Sci., 31(1):36–45. [doi:10.1016/j.tips.2009.10.002]

    Article  PubMed  Google Scholar 

  • Li, W., Wei, W., Zhu, S., Zhu, J., Shi, Y., Lin, T., Hao, E., Hayek, A., Deng, H., Ding, S., 2009. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell, 4(1):16–19. [doi:10.1016/j.stem.2008.11.014]

    Article  PubMed  Google Scholar 

  • Liao, J., Cui, C., Chen, S., Ren, J., Chen, J., Gao, Y., Li, H., Jia, N., Cheng, L., Xiao, H., et al., 2009. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell, 4(1):11–15. [doi:10.1016/j.stem.2008.11.013]

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Zhu, F., Yong, J., Zhang, P., Hou, P., Li, H., Jiang, W., Cai, J., Liu, M., Cui, K., et al., 2008. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell, 3(6):587–590. [doi:10.1016/j.stem.2008.10.014]

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Ye, Z., Sharkis, S., Jang, Y.Y., 2010. Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology, 51(5):1810–1819. [doi:10.1002/hep.23626]

    Article  PubMed  CAS  Google Scholar 

  • Loh, Y.H., Hartung, O., Li, H., Guo, C., Sahalie, J.M., Manos, P.D., Urbach, A., Heffner, G.C., Grskovic, M., Vigneault, F., et al., 2010. Reprogramming of T cells from human peripheral blood. Cell Stem Cell, 7(1):15–19. [doi:10.1016/j.stem.2010.06.004]

    Article  PubMed  Google Scholar 

  • Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland, R., Leibel, R.L., Melton, D.A., 2009. Generation of pluripotent stem cells from patients with type 1 diabetes. PNAS, 106(37):15768–15773. [doi:10.1073/pnas.0906894106]

    Article  PubMed  CAS  Google Scholar 

  • Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., Stadtfeld, M., Yachechko, R., Tchieu, J., Jaenisch, R., et al., 2007. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1(1):55–70. [doi:10.1016/j.stem.2007.05.014]

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., Yamanaka, S., 2008. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol., 26(1):101–106. [doi:10.1038/nbt1374]

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, K., Sano, M., Ohtaka, M., Furuta, B., Umemura, Y., Nakajima, Y., Ikehara, Y., Kobayashi, T., Segawa, H., Takayasu, S., et al., 2010. Development of defective and persistent sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J. Biol. Chem., 286(6):4760–4771. [doi:10.1074/jbc.M110.183780]

    Article  PubMed  Google Scholar 

  • Okita, K., Ichisaka, T., Yamanaka, S., 2007. Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151):313–317. [doi:10.1038/nature05934]

    Article  PubMed  CAS  Google Scholar 

  • Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., Yamanaka, S., 2008. Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903):949–953. [doi:10.1126/science.1164270]

    Article  PubMed  CAS  Google Scholar 

  • Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K., et al., 2011. A more efficient method to generate integration-free human iPS cells. Nat. Methods, 8(5): 409–412. [doi:10.1038/nmeth.1591]

    Article  PubMed  CAS  Google Scholar 

  • Park, I.H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M.W., Cowan, C., Hochedlinger, K., Daley, G.Q., 2008. Disease-specific induced pluripotent stem cells. Cell, 134(5):877–886. [doi:10.1016/j.cell.2008.07.041]

    Article  PubMed  CAS  Google Scholar 

  • Ruiz, S., Brennand, K., Panopoulos, A.D., Herrerías, A., Gage, F.H., Izpisua-Belmonte, J.C., 2010. High-efficient generation of induced pluripotent stem cells from human astrocytes. PLoS ONE, 5(12):e15526. [doi:10.1371/journal.pone.0015526]

    Article  PubMed  Google Scholar 

  • Seki, T., Yuasa, S., Oda, M., Eqashira, T., Yae, K., Kusumoto, D., Nakata, H., Tohyama, S., Hashimoto, H., Kodaira, M., et al., 2010. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell, 7(1):11–14. [doi:10.1016/j.stem.2010.06.003]

    Article  PubMed  CAS  Google Scholar 

  • Si-Tayeb, K., Noto, F.K., Sepac, A., Sedlic, F., Bosnjak, Z.J., Lough, J.W., Duncan, S.A., 2010. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev. Biol., 10(1):81. [doi:10.1186/1471-213X-10-81]

    Article  PubMed  Google Scholar 

  • Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G.W., Cook, E.G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., et al., 2009. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5):964–977. [doi:10.1016/j.cell.2009.02.013]

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld, M., Hochedlinger, K., 2010. Induced pluripotency: history, mechanisms, and applications. Genes Dev., 24(20): 2239–2263. [doi:10.1101/gad.1963910]

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., Hochedlinger, K., 2008a. Induced pluripotent stem cells generated without viral integration. Science, 322(5903):945–949. [doi:10.1126/science.1162494]

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld, M., Brennand, K., Hochedlinger, K., 2008b. Reprogramming of pancreatic β cells into induced pluripotent stem cells. Curr. Biol., 18(12):890–894. [doi:10.1016/j.cub.2008.05.010]

    Article  PubMed  CAS  Google Scholar 

  • Staerk, J., Dawlaty, M.M., Gao, Q., Maetzel, D., Hanna, J., Sommer, C.A., Mostoslavsky, G., Jaenisch, R., 2010. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell, 7(1):20–24. [doi:10.1016/j.stem.2010.06.002]

    Article  PubMed  CAS  Google Scholar 

  • Sugii, S., Kida, Y., Kawamura, T., Suzuki, J., Vassena, R., Yin, Y.Q., Lutz, M.K., Berggren, W.T., Izpisúa Belmonte, J.C., Evans, R.M., 2010. Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. PNAS, 107(8):3558–3563. [doi:10.1073/pnas.0910172106]

    Article  PubMed  CAS  Google Scholar 

  • Sun, N., Panetta, N.J., Gupta, D.M., Wilson, K.D., Lee, A., Jia, F., Hu, S., Cherry, A.M., Robbins, R.C., Longaker, M.T., et al., 2009. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. PNAS, 106(37):15720–15725. [doi:10.1073/pnas.0908450106]

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Yamanaka, S., 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4):663–676. [doi:10.1016/j.cell.2006.07.024]

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S., 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5):861–872. [doi:10.1016/j.cell.2007.11.019]

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swierqiel, J.J., Marshall, V.S., Jones, J.M., 1998. Embryonic stem cell lines derived from human blastocysts. Science, 282(5391):1145–1147. [doi:10.1126/science.282.5391.1145]

    Article  PubMed  CAS  Google Scholar 

  • Tsai, S.Y., Clavel, C., Kim, S., Ang, Y.S., Grisanti, L., Lee, D.F., Kelley, K., Rendl, M., 2010. Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells, 28(2):221–228. [doi:10.1002/stem.281]

    PubMed  CAS  Google Scholar 

  • Utikal, J., Maherali, N., Kulalert, W., Hochedlinger, K., 2009. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J. Cell Sci., 122(19):3502–3510. [doi:10.1242/jcs.054783]

    Article  PubMed  CAS  Google Scholar 

  • Warren, L., Manos, P.D., Ahfeldt, T., Loh, Y.H., Li, H., Lau, F., Ebina, W., Mandal, P.K., Smith, Z.D., Meissner, A., et al., 2010. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5):618–630. [doi:10. 1016/j.stem.2010.08.012]

    Article  PubMed  CAS  Google Scholar 

  • Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B.E., Jaenisch, R., 2007. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151):318–324. [doi:10.1038/nature05944]

    Article  PubMed  CAS  Google Scholar 

  • Wernig, M., Lengner, C.J., Hanna, J., Lodato, M.A., Steine, E., Foreman, R., Staerk, J., Markoulaki, S., Jaenisch, R., 2008. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat. Biotechnol., 26(8):916–924. [doi:10.1038/nbt1483]

    Article  PubMed  CAS  Google Scholar 

  • Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., Campbell, K.H., 1997. Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619):810–813. [doi:10. 1038/385810a0]

    Article  PubMed  CAS  Google Scholar 

  • Woltjen, K., Michael, I.P., Mohseni, P., Desai, R., Mileikovsky, M., Hämäläinen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., et al., 2009. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458(7239):766–770. [doi:10.1038/nature07863]

    Article  PubMed  CAS  Google Scholar 

  • Wu, Y., Zhang, Y., Mishra, A., Tardif, S.D., Hornsby, P.J., 2010. Generation of induced pluripotent stem cells from newborn marmoset skin fibroblasts. Stem Cell Res., 4(3): 180–188. [doi:10.1016/j.scr.2010.02.003]

    Article  PubMed  CAS  Google Scholar 

  • Wu, Z., Chen, J., Ren, J., Bao, L., Liao, J., Cui, C., Rao, L., Li, H., Gu, Y., Dai, H., et al., 2009. Generation of pig induced pluripotent stem cells with a drug-inducible system. J. Mol. Cell Biol., 1(1):46–54. [doi:10.1093/jmcb/mjp003]

    Article  PubMed  CAS  Google Scholar 

  • Yakubov, E., Rechavi, G., Rozenblatt, S., Givol, D., 2010. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem. Biophys. Res. Commun., 394(1):189–193. [doi:10.1016/j.bbrc.2010.02.150]

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka, S., 2012. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell, 10(6):678–684. [doi:10.1016/j.stem.2012.05.005]

    Article  PubMed  CAS  Google Scholar 

  • Ye, L., Chang, J.C., Lin, C., Sun, X., Yu, J., Kan, Y.W., 2009. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. PNAS, 106(24): 9826–9830. [doi:10.1073/pnas.0904689106]

    Article  PubMed  CAS  Google Scholar 

  • Ye, Z., Zhan, H., Mali, P., Dowey, S., Williams, D.M., Jang, Y.Y., Dang, V.L., Spivak, J.L., Moliterno, A.R., Cheng, L., 2009. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood, 114(27):5473–5480. [doi:10.1182/blood-2009-04-217406]

    Article  PubMed  CAS  Google Scholar 

  • Ying, Q.L., Nichols, J., Evans, E.P., Smith, A.G., 2002. Changing potency by spontaneous fusion. Nature, 416(6880):545–548. [doi:10.1038/nature729]

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Vodyanik, M.K., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al., 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858):1917–1920. [doi:10.1126/science.1151526]

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I.I., Thomson, J.A., 2009. Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324(5928):797–801. [doi:10.1126/science.1172482]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Zhao, J., Jiang, W.J., Shan, X.W., Yang, X.M., Gao, J.G., 2012. Conditional gene manipulation: Cre-ating a new biological ear. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 13(7):511–524. [dio:10.1631/jzus.B1200042]

    Article  Google Scholar 

  • Zhao, H.X., Li, Y., Jin, H.F., Xie, L., Liu, C., Jiang, F., Luo, Y.N., Yin, G.W., Li, Y., Wang, J., et al., 2010. Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG. Differentiation, 80(2–3):123–129. [doi:10.1016/j.diff.2010.03.002]

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X.Y., Li, W., Lv, Z., Liu, L., Tong, M., Hai, T., Hao, J., Guo, C.L., Ma, Q.W., Wang, L., et al., 2009. iPS cells produce viable mice through tetraploid complementation. Nature, 461(7260):86–90. [doi:10.1038/nature08267]

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H., Wu, S., Joo, J.Y., Zhu, S., Han, D.W., Lin, T., Trauger, S., Bien, G., Yao, S., Zhu, Y., et al., 2009. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4(5):381–384. [doi:10.1016/j.stem.2009.04.005]

    Article  PubMed  CAS  Google Scholar 

  • Zhou, W., Freed, C.R., 2009. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 27(11):2667–2674. [doi:10.1002/stem.201]

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Hu, H.L., Li, P., Yang, S., Zhang, W., Ding, H., Tian, R.H., Ning, Y., Zhang, L.L., Guo, X.Z., et al., 2012. Generation of male germ cells from induced pluripotent stem cells (iPS cells): an in vitro and in vivo study. Asian J. Androl., 14(4):574–579. [doi:10.1038/aja.2012.3]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-mei Yang or Jian-gang Gao.

Additional information

The two authors contributed equally to this work

Project supported by the National Natural Science Foundation of China (Nos. 30871436, 30973297, 31171194, and 31271534), the National Basic Research Program (973) of China (Nos. 2010CB945002 and 2014CB541703), the Shandong Provincial Science and Technology Key Program (No. 2009GG10003039), and the Independent Development Foundation of Shandong University (Nos. 2012JC019 and 2012ZD030), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Jiang, Wj., Sun, C. et al. Induced pluripotent stem cells: origins, applications, and future perspectives. J. Zhejiang Univ. Sci. B 14, 1059–1069 (2013). https://doi.org/10.1631/jzus.B1300215

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1300215

Key words

CLC number

Navigation