Skip to main content
Log in

DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis

  • Review
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senescence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and-signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving “sensor” proteins that sense the damage, and transmit signals to “transducer” proteins, which, in turn, convey the signals to numerous “effector” proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J.M., Cory, S., 2001. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci., 26(1):61–66. [doi:10.1016/S0968-0004(00)01740-0]

    PubMed  CAS  Google Scholar 

  • Adams, J.M., Cory, S., 2007. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 26(9): 1324–1337. [doi:10.1038/sj.onc.1210220]

    PubMed  CAS  Google Scholar 

  • Agami, R., Blandino, G., Oren, M., Shaul, Y., 1999. Interaction of c-Abl and p73α and their collaboration to induce apoptosis. Nature, 399(6738):809–813. [doi:10.1038/21697]

    PubMed  CAS  Google Scholar 

  • Aguda, B.D., 1999. A quantitative analysis of the kinetics of the G(2) DNA damage checkpoint system. Proc. Natl. Acad. Sci. (USA), 96(20):11352–11357. [doi:10.1073/pnas.96.20.11352]

    CAS  Google Scholar 

  • Antonsson, B., Conti, F., Ciavatta, A., Montessuit, S., Lewis, S., Martinou, I., Bernasconi, L., Bernard, A., Mermod, J.J., Mazzei, G., et al., 1997. Inhibition of Bax channel-forming activity by Bcl-2. Science, 277(5324): 370–372. [doi:10.1126/science.277.5324.370]

    PubMed  CAS  Google Scholar 

  • Antonsson, B., Montessuit, S., Lauper, S., Eskes, R., Martinou, J.C., 2000. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem. J., 345(2):271–278. [doi:10.1042/0264-6021:3450271]

    PubMed  CAS  Google Scholar 

  • Bae, J., Leo, C.P., Hsu, S.Y., Hsueh, A.J., 2000. Mcl-1S, a splicing variant of the antiapoptotic Bcl-2 family member Mcl-1, encodes a proapoptotic protein possessing only the BH3 domain. J. Biol. Chem., 275(33):25255–25261. [doi:10.1074/jbc.M909826199]

    PubMed  CAS  Google Scholar 

  • Bakkenist, C.J., Kastan, M.B., 2004. Initiating cellular stress responses. Cell, 118(1):9–17. [doi:10.1016/j.cell.2004.06.023]

    PubMed  CAS  Google Scholar 

  • Bartkova, J., Rezaei, N., Liontos, M., Karakaidos, P., Kletsas, D., Issaeva, N., Vassiliou, L.V., Kolettas, E., Niforou, K., Zoumpourlis, V.C., et al., 2006. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature, 444(7119):633–637. [doi:10.1038/nature05268]

    PubMed  CAS  Google Scholar 

  • Basañez, G., Nechushtan, A., Drozhinin, O., Chanturiya, A., Choe, E., Tutt, S., Wood, K.A., Hsu, Y., Zimmerberg, J., Youle, R.J., 1999. Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc. Natl. Acad. Sci. (USA), 96(10):5492–5497. [doi:10.1073/pnas.96.10.5492]

    Google Scholar 

  • Bergamaschi, D., Gasco, M., Hiller, L., Sullivan, A., Syed, N., Trigiante, G., Yulug, I., Merlano, M., Numico, G., Comino, A., et al., 2003. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell, 3(4):387–402. [doi:10.1016/S1535-6108(03)00079-5]

    PubMed  CAS  Google Scholar 

  • Bernardi, P., Scorrano, L., Colonna, R., Petronilli, V., Di Lisa, F., 1999. Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur. J. Biochem., 264(3):687–701. [doi:10.1046/j.1432-1327.1999.00725.x]

    PubMed  CAS  Google Scholar 

  • Bertrand, R., Sarang, M., Jenkin, J., Kerrigan, D., Pommier, Y., 1991. Differential induction of secondary DNA fragmentation by topoisomerase II inhibitors in human tumor cell lines with amplified c-myc expression. Cancer Res., 51:6280–6285.

    PubMed  CAS  Google Scholar 

  • Bertrand, R., Solary, E., Jenkins, J., Pommier, Y., 1993. Apoptosis and its modulation in human promyelocytic HL-60 cells treated with DNA topoisomerase I and II inhibitors. Exp. Cell Res., 207(2):388–397. [doi:10.1006/excr.1993.1206]

    PubMed  CAS  Google Scholar 

  • Bingle, C.D., Craig, R.W., Swales, B.M., Singleton, V., Zhou, P., Whyte, M.K., 2000. Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death. J. Biol. Chem., 275(29):22136–22146. [doi:10.1074/jbc.M909572199]

    PubMed  CAS  Google Scholar 

  • Blagosklonny, M.V., Schulte, T., Nguyen, P., Trepel, J., Neckers, L.M., 1996. Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res., 56:1851–1854.

    PubMed  CAS  Google Scholar 

  • Blagosklonny, M.V., Giannakakou, P., el Deiry, W.S., Kingston, D.G., Higgs, P.I., Neckers, L., Fojo, T., 1997. Raf-1/Bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res., 57:130–135.

    PubMed  CAS  Google Scholar 

  • Boise, L.H., Gonzalez-Garcia, M., Postema, C.E., Ding, L., Lindsten, T., Turka, L.A., Mao, X., Nunez, G., Thompson, C.B., 1993. Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell, 74(4): 597–608. [doi:10.1016/0092-8674(93)90508-N]

    PubMed  CAS  Google Scholar 

  • Booher, R.N., Holman, P.S., Fattaey, A., 1997. Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J. Biol. Chem., 272(35):22300–22306. [doi:10.1074/jbc.272.35.22300]

    PubMed  CAS  Google Scholar 

  • Borgne, A., Meijer, L., 1996. Sequential dephosphorylation of p34cdc2 on Thr-14 and Tyr-15 at the prophase/metaphase transition. J. Biol. Chem., 271(44):27847–27854. [doi:10.1074/jbc.271.44.27847]

    PubMed  CAS  Google Scholar 

  • Borner, C., 1996. Diminished cell proliferation associated with the death-protective activity of Bcl-2. J. Biol. Chem., 271:12695–12698.

    PubMed  CAS  Google Scholar 

  • Borner, C., Martinou, I., Mattmann, C., Irmler, M., Schaerer, E., Martinou, J.C., Tschopp, J., 1994. The protein bcl-2 alpha does not require membrane attachment, but two conserved domains to suppress apoptosis. J. Cell. Biol., 126(4):1059–1068. [doi:10.1083/jcb.126.4.1059]

    PubMed  CAS  Google Scholar 

  • Bossy-Wetzel, E., Newmeyer, D.D., Green, D.R., 1998. Mitochondrial cytochrome C release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J., 17(1):37–49. [doi:10.1093/emboj/17.1.37]

    PubMed  CAS  Google Scholar 

  • Boyd, J., Malstrom, S., Subramanian, T., Venkatesh, L.K., Schaeper, U., Elangovan, B., D’sa-Eipper, C., Chinnadurai, G., 1994. E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell, 79(2):341–351. [doi:10.1016/0092-8674(94)90202-X]

    PubMed  CAS  Google Scholar 

  • Boyd, J.M., Gallo, G.J., Elangovan, B., Houghton, A.B., Malstrom, S., Avery, B.J., Ebb, R.G., Subramanian, T., Chittenden, T., Lutz, R.J., et al., 1995. Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene, 11:1921–1928.

    PubMed  CAS  Google Scholar 

  • Brady, H.J.M., Gil-Gómez, G., Kirberg, J., Berns, A.J.M., 1996. Bax-a perturbs T cell development and affects cell cycle entry of T cells. EMBO J., 15:6991–7001.

    PubMed  CAS  Google Scholar 

  • Brown, A.L., Lee, C.H., Schwarz, J.K., Mitiku, N., Piwnica-Worms, H., Chung, J.H., 1999. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc. Natl. Acad. Sci. (USA), 96(7):3745–3750. [doi:10.1073/pnas.96.7.3745]

    CAS  Google Scholar 

  • Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J.P., Sedivy, J.M., Kinzler, K.W., Vogelstein, B., 1998. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 282(5393):1497–1501. [doi:10.1126/science.282.5393.1497]

    PubMed  CAS  Google Scholar 

  • Campisi, J., 2001. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol., 11(11):S27–S31. [doi:10.1016/S0962-8924(01)02151-1]

    PubMed  CAS  Google Scholar 

  • Cazales, M., Schmitt, E., Montembault, E., Dozier, C., Prigent, C., Ducommun, B., 2005. CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle, 4:1233–1238.

    PubMed  CAS  Google Scholar 

  • Chang, B.S., Minn, A.J., Muchmore, S.W., Fesik, S.W., Thompson, C.B., 1997. Identification of a novel regulatory domain in Bcl-X(L) and Bcl-2. EMBO J., 16(5):968–977. [doi:10.1093/emboj/16.5.968]

    PubMed  CAS  Google Scholar 

  • Chang, B.D., Broude, E.V., Dokmanovic, M., Zhu, H., Ruth, A., Xuan, Y., Kandel, E.S., Lausch, E., Christov, K., Roninson, I.B., 1999a. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res., 59:3761–3767.

    PubMed  CAS  Google Scholar 

  • Chang, B.D., Xuan, Y., Broude, E.V., Zhu, H., Schott, B., Fang, J., Roninson, I.B., 1999b. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene, 18(34):4808–4818. [doi:10.1038/sj.onc.1203078]

    PubMed  CAS  Google Scholar 

  • Chao, D.T., Korsmeyer, S.J., 1998. Bcl-2 family: regulators of cell death. Annu. Rev. Immunol., 16(1):395–419. [doi:10.1146/annurev.immunol.16.1.395]

    PubMed  CAS  Google Scholar 

  • Chautan, M., Chazal, G., Cecconi, F., Gruss, P., Golstein, P., 1999. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr. Biol., 9(17): 967–970. [doi:10.1016/S0960-9822(99)80425-4]

    PubMed  CAS  Google Scholar 

  • Chen, G., Cizeau, J., Vande Velde, C., Park, J.H., Bozek, G., Bolton, J., Shi, L., Dubik, D., Greenberg, A., 1999. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J. Biol. Chem., 274(1):7–10. [doi:10.1074/jbc.274.1.7]

    PubMed  CAS  Google Scholar 

  • Chen, L., Willis, S.N., Wei, A., Smith, B.J., Fletcher, J.I., Hinds, M.G., Colman, P.M., Day, C.L., Adams, J.M., Huang, D.C., 2005. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell, 17(3):393–403. [doi:10.1016/j.molcel.2004.12.030]

    PubMed  CAS  Google Scholar 

  • Chipuk, J.E., Kuwana, T., Bouchier-Hayes, L., Droin, N.M., Newmeyer, D.D., Schuler, M., Green, D.R., 2004. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science, 303(5660): 1010–1014. [doi:10.1126/science.1092734]

    PubMed  CAS  Google Scholar 

  • Chipuk, J.E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D.D., Green, D.R., 2005. Puma couples the nuclear and cytoplasmic proapoptotic function of p53. Science, 309(5741):1732–1735. [doi:10.1126/science.1114297]

    PubMed  CAS  Google Scholar 

  • Chittenden, T., 2002. BH3 domains: intracellular death-ligands critical for initiating apoptosis. Cancer Cell, 2(3):165–166. [doi:10.1016/S1535-6108(02)00128-9]

    PubMed  CAS  Google Scholar 

  • Chittenden, T., Harrington, E.A., O’Connor, R., Flemington, C., Lutz, R.J., Evan, G.I., Guild, B.C., 1995a. Induction of apoptosis by the Bcl-2 homologue Bak. Nature, 374(6524):733–736. [doi:10.1038/374733a0]

    PubMed  CAS  Google Scholar 

  • Chittenden, T., Flemington, C., Houghton, A.B., Ebb, R.G., Gallo, G.J., Elangovan, B., Chinnadurai, G., Lutz, R.J., 1995b. A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J., 14:5589–5596.

    PubMed  CAS  Google Scholar 

  • Choi, S.S., Park, I.C., Yun, J.W., Sung, Y.C., Hong, S.I., Shin, H.S., 1995. A novel Bcl-2 related gene, Bfl-1, is overexpressed in stomach cancer and preferentially expressed in bone marrow. Oncogene, 11:1693–1698.

    PubMed  CAS  Google Scholar 

  • Chou, J.J., Li, H., Salvesen, G.S., Yuan, J., Wagner, G., 1999. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell, 96(5):615–624. [doi:10.1016/S0092-8674(00)80572-3]

    PubMed  CAS  Google Scholar 

  • Chu, Z.L., McKinsey, T.A., Liu, L., Gentry, J.J., Malim, M.H., Ballard, D.W., 1997. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis C-Iap2 is under NF-kappa-B control. Proc. Natl. Acad. Sci. (USA), 94(19):10057–10062. [doi:10.1073/pnas.94.19.10057]

    CAS  Google Scholar 

  • Cleary, M.L., Smith, S.D., Sklar, J., 1986. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell, 47(1):19–28. [doi:10.1016/0092-8674(86)90362-4]

    PubMed  CAS  Google Scholar 

  • Cliby, W.A., Lewis, K.A., Lilly, K.K., Kaufmann, S.H., 2002. S phase and G2 arrests induced by topoisomerase I poisons are dependent on ATR kinase function. J. Biol. Chem., 277(2):1599–1606. [doi:10.1074/jbc.M106287200]

    PubMed  CAS  Google Scholar 

  • Cory, S., Adams, J.M., 2002. The bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2(9): 647–656. [doi:10.1038/nrc883]

    PubMed  CAS  Google Scholar 

  • Costanzo, A., Merlo, P., Pediconi, N., Fulco, M., Sartorelli, V., Cole, P.A., Fontemaggi, G., Fanciulli, M., Schiltz, L., Blandino, G., Balsano, C., Levrero, M., 2002. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol. Cell, 9(1):175–186. [doi:10.1016/S1097-2765(02)00431-8]

    PubMed  CAS  Google Scholar 

  • Crompton, M., 1999. The mitochondrial permeability transition pore and its role in cell death. Biochem. J., 341(2):233–249. [doi:10.1042/0264-6021:3410233]

    PubMed  CAS  Google Scholar 

  • d’Adda di Fagagna, F., Reaper, P.M., Clay-Farrace, L., Fiegler, H., Carr, P., von Zglinicki, T., Saretzki, G., Carter, N.P., Jackson, S.P., 2003. A DNA damage checkpoint response in telomere-initiated senescence. Nature, 426(6963): 194–198. [doi:10.1038/nature02118]

    Google Scholar 

  • Das, R., Reddy, E.P., Chatterjee, D., Andrews, D.W., 1996. Identification of a novel Bcl-2 related gene, Brag-1, in human glioma. Oncogene, 12:947–951.

    PubMed  CAS  Google Scholar 

  • Desagher, S., Martinou, J.C., 2000. Mitochondria as the central control point of apoptosis. Trends Cell Biol., 10(9): 369–377. [doi:10.1016/S0962-8924(00)01803-1]

    PubMed  CAS  Google Scholar 

  • Di Leonardo, A., Linke, S.P., Clarkin, K., Wahl, G.M., 1994. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes. Dev., 8:2540–2551.

    PubMed  Google Scholar 

  • Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., Schurra, C., Garre, M., Nuciforo, P.G., Bensimon, A., et al., 2006. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature, 444(7119):638–642. [doi:10.1038/nature05327]

    PubMed  Google Scholar 

  • Diaz, J.L., Oltersdorf, T., Horne, W., McConnell, M., Wilson, G., Weeks, S., Garcia, T., Fritz, L.C., 1997. A common binding site mediates heterodimerization and homodimerization of Bcl-2 family members. J. Biol. Chem., 272(17):11350–11355. [doi:10.1074/jbc.272.17.11350]

    PubMed  CAS  Google Scholar 

  • Domen, J., Cheshier, S.H., Weissman, I.L., 2000. The role of apoptosis in the regulation of hematopoietic stem cells. Overexpression of bcl-2 increases both their number and repopulation potential. J. Exp. Med., 191(2):253–264. [doi:10.1084/jem.191.2.253]

    PubMed  CAS  Google Scholar 

  • Domina, A.M., Smith, J.H., Craig, R.W., 2000. Myeloid cell leukemia 1 is phosphorylated through two distinct pathways, one associated with extracellular signal-regulated kinase activation and the other with G2/M accumulation or protein phosphatase 1/2A inhibition. J. Biol. Chem., 275(28):21688–21694. [doi:10.1074/jbc.M000915200]

    PubMed  CAS  Google Scholar 

  • Draetta, G., Beach, D., 1988. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell, 54(1): 17–26. [doi:10.1016/0092-8674(88)90175-4]

    PubMed  CAS  Google Scholar 

  • Draetta, G., Luca, F., Westendorf, J., Brizuela, L., Ruderman, J., Beach, D., 1989. Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell, 56(5):829–838. [doi:10.1016/0092-8674(89)90687-9]

    PubMed  CAS  Google Scholar 

  • Droin, N., Dubrez, L., Eymin, B., Renvoize, C., Breard, J., Dimanche-Boitrel, M.T., Solary, E., 1998. Upregulation of Casp genes in human tumor cells undergoing etoposide-induced apoptosis. Oncogene, 16(22):2885–2894. [doi:10.1038/sj.onc.1201821]

    PubMed  CAS  Google Scholar 

  • Du, C., Fang, M., Li, Y., Li, L., Wang, X., 2000. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102(1):33–42. [doi:10.1016/S0092-8674(00)00008-8]

    PubMed  CAS  Google Scholar 

  • Dubrez, L., Goldwasser, F., Genne, P., Pommier, Y., Solary, E., 1995. The role of cell cycle regulation and apoptosis triggering in determining the sensitivity of leukemic cells to topoisomerase I and II inhibitors. Leukemia, 9: 1013–1024.

    PubMed  CAS  Google Scholar 

  • Dubrez, L., Savoy, I., Hamman, A., Solary, E., 1996. Pivotal role of a DEVD-sensitive step in etoposide-induced and Fas-mediated apoptotic pathways. EMBO J., 15: 5504–5512.

    PubMed  CAS  Google Scholar 

  • Ducommun, B., Brambilla, P., Felix, M.A., Franza, B.R.Jr, Karsenti, E., Draetta, G., 1991. Cdc2 phosphorylation is required for its interaction with cyclin. EMBO J., 10:3311–3319.

    PubMed  CAS  Google Scholar 

  • Dumont, P., Leu, J.I., Della Pietra, A.C., George, D.L., Murphy, M., 2003. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet., 33(3):357–365. [doi:10.1038/ng1093]

    PubMed  CAS  Google Scholar 

  • Epand, R.F., Martinou, J.C., Fornallaz-Mulhauser, M., Hughes, D.W., Epand, R.M., 2002. The apoptotic protein tBid promotes leakage by altering membrane curvature. J. Biol. Chem., 277(36):32632–32639. [doi:10.1074/jbc.M202396200]

    PubMed  CAS  Google Scholar 

  • Falck, J., Mailand, N., Syljuasen, R.G., Bartek, J., Lukas, J., 2001. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature, 410(6830):842–847. [doi:10.1038/35071124]

    PubMed  CAS  Google Scholar 

  • Fan, M., Du, C., Stone, A.A., Gilbert, K.M., Chambers, T.C., 2000a. Modulation of mitogen-activated protein kinases and phosphorylation of Bcl-2 by vinblastine represent persistent forms of normal fluctuations at G2-M. Cancer Res., 60:6403–6407.

    PubMed  CAS  Google Scholar 

  • Fan, M., Goodwin, M., Vu, T., Brantley-Finley, C., Gaarde, W.A., Chambers, T.C., 2000b. Vinblastine-induced phosphorylation of Bcl-2 and Bcl-XL is mediated by JNK and occurs in parallel with inactivation of the Raf-1/MEK/ERK cascade. J. Biol. Chem., 275(39): 29980–29985. [doi:10.1074/jbc.M003776200]

    PubMed  CAS  Google Scholar 

  • Fang, G.F., Chang, B.S., Kim, C.N., Perkins, C., Thompson, C.B., Bhalla, K.N., 1998. Loop domain is necessary for taxol-induced mobility shift and phosphorylation of Bcl-2 as well as for inhibiting taxol-induced cytosolic accumulation of cytochrome c and apoptosis. Cancer Res., 58:3202–3208.

    PubMed  CAS  Google Scholar 

  • Farrow, S.N., White, J.H., Martinou, I., Raven, T., Pun, K.T., Grinham, C.J., Martinou, J.C., Brown, R., 1995. Cloning of a bcl-2 homologue by interaction with adenovirus E1B 19K. Nature, 374(6524):731–733. [doi:10.1038/374731a0]

    PubMed  CAS  Google Scholar 

  • Flatten, K., Dai, N.T., Vroman, B.T., Loegering, D., Erlichman, C., Karnitz, L.M., Kaufmann, S.H., 2005. The role of checkpoint kinase 1 in sensitivity to topoisomerase I poisons. J. Biol. Chem., 280(14):14349–14355. [doi:10. 1074/jbc.M411890200]

    PubMed  CAS  Google Scholar 

  • Flores, E.R., Tsai, K.Y., Crowley, D., Sengupta, S., Yang, A., McKeon, F., Jacks, T., 2002. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature, 416(6880):560–564. [doi:10.1038/416560a]

    PubMed  CAS  Google Scholar 

  • Fontemaggi, G., Kela, I., Amariglio, N., Rechavi, G., Krishnamurthy, J., Strano, S., Sacchi, A., Givol, D., Blandino, G., 2002. Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses. J. Biol. Chem., 277(45):43359–43368. [doi:10.1074/jbc.M205573200]

    PubMed  CAS  Google Scholar 

  • Foo, S.Y., Nolan, G.P., 1999. NF-kappaB to the rescue: RELs, apoptosis and cellular transformation. Trends Genet., 15(6):229–235. [doi:10.1016/S0168-9525(99)01719-9]

    PubMed  CAS  Google Scholar 

  • Freebern, W.J., Smith, J.L., Chaudhry, S.S., Haggerty, C.M., Gardner, K., 2003. Novel cell-specific and dominant negative anti-apoptotic roles of p73 in transformed leukemia cells. J. Biol. Chem., 278(4):2249–2255. [doi:10.1074/jbc.M208517200]

    PubMed  CAS  Google Scholar 

  • Fujise, K., Zhang, D., Liu, J., Yeh, E.T., 2000. Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen. J. Biol. Chem., 275(50):39458–39465. [doi:10.1074/jbc.M006626200]

    PubMed  CAS  Google Scholar 

  • Furnari, B., Rhind, N., Russell, P., 1997. Cdc25 mitotic inducer targeted by Chk1 DNA damage checkpoint kinase. Science, 277(5331):1495–1497. [doi:10.1126/science.277.5331.1495]

    PubMed  CAS  Google Scholar 

  • Furnari, B., Blasina, A., Boddy, M.N., McGowan, C.H., Russell, P., 1999. Cdc25 inhibited in vivo and in vitro by checkpoint kinases Cds1 and Chk1. Mol. Biol. Cell, 10:833–845.

    PubMed  CAS  Google Scholar 

  • Gibson, L., Holmgreen, S.P., Huang, D.C.S., Bernard, O., Copeland, N.G., Jenkins, N.A., Sutherland, G.R., Baker, E., Adams, J.M., Cory, S., 1996. Bcl-W, a novel member of the Bcl-2 family, promotes cell survival. Oncogene, 13:665–675.

    PubMed  CAS  Google Scholar 

  • Gillardon, F., Moll, I., Meyer, M., Michaelidis, T.M., 1999. Alterations in cell death and cell cycle progression in the UV-irradiated epidermis of bcl-2-deficient mice. Cell Death Differ., 6(1):55–60. [doi:10.1038/sj.cdd.4400455]

    PubMed  CAS  Google Scholar 

  • Gong, J.G., Costanzo, A., Yang, H.Q., Melino, G., Kaelin, W.G.Jr, Levrero, M., Wang, J.Y., 1999. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature, 399(6738): 806–809. [doi:10.1038/21690]

    PubMed  CAS  Google Scholar 

  • Gottlieb, T.M., Oren, M., 1998. p53 and apoptosis. Semin. Cancer Biol., 8(5):359–368. [doi:10.1006/scbi.1998.0098]

    PubMed  CAS  Google Scholar 

  • Gottlieb, R.A., Nordberg, J., Skowronski, E., Babior, B.M., 1996. Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc. Natl. Acad. Sci. (USA), 93(2):654–658. [doi:10.1073/pnas.93.2.654]

    CAS  Google Scholar 

  • Gross, A., Jockel, J., Wei, M.C., Korsmeyer, S.J., 1998. Enforced dimerization of Bax results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J., 17(14):3878–3885. [doi:10.1093/emboj/17.14.3878]

    PubMed  CAS  Google Scholar 

  • Grumont, R.J., Rourke, I.J., O’Reilly, L.A., Strasser, A., Miyake, K., Sha, W., Gerondakis, S., 1998. B lymphocytes differentially use the Rel and nuclear factor kappa-B1 (NF-kappa-B1) transcription factors to regulate cell cycle progression and apoptosis in quiescent and mitogen-activated cells. J. Exp. Med., 187(5):663–674. [doi:10.1084/jem.187.5.663]

    PubMed  CAS  Google Scholar 

  • Guney, I., Sedivy, J.M., 2006. Cellular senescence, epigenetic switches and c-Myc. Cell Cycle, 5:2319–2323.

    PubMed  CAS  Google Scholar 

  • Guo, B., Godzik, A., Reed, J.C., 2001. Bcl-G, a novel pro-apoptotic member of the bcl-2 family. J. Biol. Chem., 276(4):2780–2785. [doi:10.1074/jbc.M005889200]

    PubMed  CAS  Google Scholar 

  • Gupta, M., Fan, S.J., Zhan, Q.M., Kohn, K.W., O’Connor, P.M., Pommier, Y., 1997. Inactivation of p53 increases the cytotoxicity of camptothecin in human colon HCT116 and breast MCF-7 cancer cells. Clin. Cancer Res., 3:1653–1660.

    PubMed  CAS  Google Scholar 

  • Haldar, S., Jena, N., Croce, C.M., 1995. Inactivation of Bcl-2 by phosphorylation. Proc. Natl. Acad. Sci. (USA), 92(10): 4507–4511. [doi:10.1073/pnas.92.10.4507]

    CAS  Google Scholar 

  • Haldar, S., Chintapalli, J., Croce, C.M., 1996. Taxol induces Bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res., 56:1253–1255.

    PubMed  CAS  Google Scholar 

  • Haldar, S., Basu, A., Croce, C.M., 1998. Serine-70 is one of the critical sites for drug-induced Bcl2 phosphorylation in cancer cells. Cancer Res., 58:1609–1615.

    PubMed  CAS  Google Scholar 

  • Han, J., Sabbatini, P., White, E., 1996. Induction of apoptosis by human Nbk/Bik, a BH3-containing protein that interacts with E1b 19k. Mol. Cell Biol., 16:5857–5864.

    PubMed  CAS  Google Scholar 

  • Han, J., Flemington, C., Houghton, A.B., Gu, Z., Zambetti, G.P., Lutz, R.J., Zhu, L., Chittenden, T., 2001. Expression of Bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc. Natl. Acad. Sci. (USA), 98(20):11318–11323. [doi:10.1073/pnas.201208798]

    CAS  Google Scholar 

  • Han, Z., Wei, W., Dunaway, S., Darnowski, J.W., Calabresi, P., Sedivy, J., Hendrickson, E.A., Balan, K.V., Pantazis, P., Wyche, J.H., 2002. Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J. Biol. Chem., 277(19):17154–17160. [doi:10.1074/jbc.M112401200]

    PubMed  CAS  Google Scholar 

  • Harris, M.H., Thompson, C.B., 2000. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ., 7(12):1182–1191. [doi:10.1038/sj.cdd.4400781]

    PubMed  CAS  Google Scholar 

  • Hegde, R., Srinivasula, S.M., Ahmad, M., Fernandes-Alnemri, T., Alnemri, E.S., 1998. Blk, a BH3-containing mouse protein that interacts with Bcl-2 and Bcl-xL, is a potent death agonist. J. Biol. Chem., 273(14):7783–7786. [doi:10.1074/jbc.273.14.7783]

    PubMed  CAS  Google Scholar 

  • Hemann, M.T., Narita, M., 2007. Oncogenes and senescence: breaking down in the fast line. Genes Dev., 21(1):1–5. [doi:10.1101/gad.1514207]

    PubMed  CAS  Google Scholar 

  • Herbig, U., Jobling, W.A., Chen, B.P., Chen, D.J., Sedrivy, J.M., 2004. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(Cip1), but not p16(INK4a). Mol. Cell, 14(4):501–513. [doi:10.1016/S1097-2765(04)00256-4]

    PubMed  CAS  Google Scholar 

  • Hermeking, H., Lengauer, C., Polyak, K., He, T., Zhang, L., Thiagalingam, S., 1997. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol. Cell, 1(1):3–11. [doi:10.1016/S1097-2765(00)80002-7]

    PubMed  CAS  Google Scholar 

  • Hershko, T., Ginsberg, D., 2004. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J. Biol. Chem., 279(10):8627–8634. [doi:10.1074/jbc.M312866200]

    PubMed  CAS  Google Scholar 

  • Hirota, T., Kunitoku, N., Sasayama, T., Marumoto, T., Zhang, D., Nitta, M., Hatakeyama, K., Saya, H., 2003. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell, 114(5):585–598. [doi:10.1016/S0092-8674(03)00642-1]

    PubMed  CAS  Google Scholar 

  • Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R.D., Korsmeyer, S.J., 1990. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature, 348(6299):334–336. [doi:10.1038/348334a0]

    PubMed  CAS  Google Scholar 

  • Hockenbery, D.M., Oltvai, Z.N., Yin, X.M., Milliman, C.L., Korsmeyer, S.J., 1993. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 75(2):241–251. [doi:10.1016/0092-8674(93)80066-N]

    PubMed  CAS  Google Scholar 

  • Hofmann, K., Bucher, P., Kajava, A.V., 1998. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain. J. Mol. Biol., 282(1):195–208. [doi:10.1006/jmbi.1998.1998]

    PubMed  CAS  Google Scholar 

  • Holliday, R., Tarrant, G.M., 1972. Altered enzymes in ageing human fibroblasts. Nature, 238(5358):26–30. [doi:10.1038/238026a0]

    PubMed  CAS  Google Scholar 

  • Holmberg, C., Helin, K., Sehested, M., Karlstrom, O., 1998. E2F-1-induced p53-independent apoptosis in transgenic mice. Oncogene, 17(2):143–155. [doi:10.1038/sj.onc.1201915]

    PubMed  CAS  Google Scholar 

  • Hsu, S.Y., Kaipia, A., McGee, E., Lomeli, M., Hsueh, A.J.W., 1997a. Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc. Natl. Acad. Sci. (USA), 94(23): 12401–12406. [doi:10.1073/pnas.94.23.12401]

    CAS  Google Scholar 

  • Hsu, Y.T., Wolter, K.G., Youle, R.J., 1997b. Cytosol-to-membrane redistribution of Bax and Bcl-X-L during apoptosis. Proc. Natl. Acad. Sci. (USA), 94(8): 3668–3672. [doi:10.1073/pnas.94.8.3668]

    CAS  Google Scholar 

  • Hsu, S.Y., Lin, P., Hsueh, A.J.W., 1998. Bod (Bcl-2-related ovarian death gene) is an ovarian BH3 domain-containing proapoptotic Bcl-2 protein capable of dimerization with diverse antiapoptotic Bcl-2 members. Mol. Endocrinol., 12(9):1432–1440. [doi:10.1210/me.12.9.1432]

    PubMed  CAS  Google Scholar 

  • Huang, D.C.S., Oreilly, L.A., Strasser, A., Cory, S., 1997. The anti-apoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. EMBO J., 16(15):4628–4638. [doi:10.1093/emboj/16.15.4628]

    PubMed  CAS  Google Scholar 

  • Hunt, K.K., Deng, J., Liu, T.J., Wilson-Heiner, M., Swisher, S.G., Clayman, G., Hung, M.C., 1997. Adenovirus-mediated overexpression of the transcription factor E2F-1 induces apoptosis in human breast and ovarian carcinoma cell lines and does not require p53. Cancer Res., 57:4722–4726.

    PubMed  CAS  Google Scholar 

  • Hunter, T., Pines, J., 1994. Cyclins and cancer. 2: Cyclin D and CDK inhibitors come of age. Cell, 79(4):573–582. [doi:10.1016/0092-8674(94)90543-6]

    PubMed  CAS  Google Scholar 

  • Imaizumi, K., Morihara, T., Mori, Y., Katayama, T., Tsuda, M., Furuyama, T., Wanaka, A., Takeda, M., Tohyama, M., 1999. The cell death-promoting gene DP5, which interacts with the BCL2 family, is induced during neuronal apoptosis following exposure to amyloid beta protein. J. Biol. Chem., 274(12):7975–7981. [doi:10.1074/jbc.274.12.7975]

    PubMed  CAS  Google Scholar 

  • Innocente, S.A., Abrahamson, J.L., Cogswell, J.P., Lee, J.M., 1999. p53 regulates a G2 checkpoint through cyclin B1. Proc. Natl. Acad. Sci. (USA), 96(5):2147–2152. [doi:10.1073/pnas.96.5.2147]

    CAS  Google Scholar 

  • Inohara, N., Ding, L.Y., Chen, S., Nunez, G., 1997. Harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X-L. EMBO J., 16(7):1686–1694. [doi:10.1093/emboj/16.7.1686]

    PubMed  CAS  Google Scholar 

  • Inohara, N., Gourley, T.S., Carrio, R., Muniz, M., Merino, J., Garcia, I., Koseki, T., Hu, Y., Chen, S., Nunez, G., 1998a. Diva, a Bcl-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death. J. Biol. Chem., 273(49):32479–32486. [doi:10.1074/jbc.273.49.32479]

    PubMed  CAS  Google Scholar 

  • Inohara, N., Ekhterae, D., Garcia, I., Carrio, R., Merino, J., Merry, A., Chen, S., Núñez, G., 1998b. Mtd, a novel Bcl-2 family member activates apoptosis in the absence of heterodimerization with Bcl-2 and Bcl-X-L. J. Biol. Chem., 273(15):8705–8710. [doi:10.1074/jbc.273.15.8705]

    PubMed  CAS  Google Scholar 

  • Jacks, T., 1996. Tumor suppressor gene mutations in mice. Ann. Rev. Genet., 30(1):603–636. [doi:10.1146/annurev.genet.30.1.603]

    PubMed  CAS  Google Scholar 

  • Jackson, J.P., Lindroth, A.M., Cao, X., Jacobsen, S.E., 2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature, 416(6880):556–560. [doi:10.1038/nature731]

    PubMed  CAS  Google Scholar 

  • Jamil, S., Sobouti, R., Hojabrpour, P., Raj, M., Kast, J., Duronio, V., 2005. A proteolytic fragment of Mcl-1 exhibits nuclear localization and regulates cell growth via interaction with Cdk1. Biochem. J., 387(3):659–667. [doi:10.1042/BJ20041596]

    PubMed  CAS  Google Scholar 

  • Johnstone, R.W., Ruefli, A.A., Lowe, S.W., 2002. Apoptosis. A link between cancer genetics and chemotherapy. Cell, 108(2):153–164. [doi:10.1016/S0092-8674(02)00625-6]

    PubMed  CAS  Google Scholar 

  • Jost, C.A., Marin, M.C., Kaelin, W.G., 1997. p73 is a human p53-related protein that can induce apoptosis. Nature, 389(6647):191–194. [doi:10.1038/38298]

    PubMed  CAS  Google Scholar 

  • Kamer, I., Sarig, R., Zaltsman, Y., Niv, H., Oberkovitz, G., Regev, L., Haimovich, G., Lerenthal, Y., Marcellus, R., Gross, A., 2005. Proapoptotic Bid is an ATM effector in the DNA-damage response. Cell, 122(4):593–603. [doi:10.1016/j.cell.2005.06.014]

    PubMed  CAS  Google Scholar 

  • Kane, D.J., Sarafian, T.A., Anton, R., Hahn, H., Gralla, E.B., Valentine, J.S., Ord, T., Bredesen, D.E., 1993. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science, 262(5137):1274–1277. [doi:10.1126/science.8235659]

    PubMed  CAS  Google Scholar 

  • Kang, Y.K., Koo, D.B., Park, J.S., Choi, Y.H., Lee, K.K., Han, Y.M., 2001. Differential inheritance modes of DNA methylation between euchromatic and heterochromatic DNA sequences in ageing fetal bovine fibroblasts. FEBS Lett., 498(1):1–5. [doi:10.1016/S0014-5793(01)02472-3]

    PubMed  CAS  Google Scholar 

  • Kastan, M.B., Canman, C.E., Leonard, C.J., 1995. p53, cell cycle control and apoptosis: implications for cancer. Cancer Metast. Rev., 14(1):3–15. [doi:10.1007/BF00690207]

    CAS  Google Scholar 

  • Kataoka, T., Holler, N., Micheau, O., Martinon, F., Tinel, A., Hofmann, K., Tschopp, J., 2001. Bcl-rambo, a novel Bcl-2 homologue that induces apoptosis via its unique C-terminal extension. J. Biol. Chem., 276(22): 19548–19554. [doi:10.1074/jbc.M010520200]

    PubMed  CAS  Google Scholar 

  • Kaufmann, S.H., 1989. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res., 49:5870–5878.

    PubMed  CAS  Google Scholar 

  • Kaufmann, S.H., 1998. Cell death induced by topoisomerase-targeted drugs: more questions than answers. Biochim. Biophys. Acta, 1400:195–211.

    PubMed  CAS  Google Scholar 

  • Kaufmann, W.K., Paules, R.S., 1996. DNA damage and cell cycle checkpoints. FASEB J., 10:238–247.

    PubMed  CAS  Google Scholar 

  • Kaufmann, S.H., Earnshaw, W.C., 2000. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res., 256(1):42–49. [doi:10.1006/excr.2000.4838]

    PubMed  CAS  Google Scholar 

  • Ke, N., Godzik, A., Reed, J.C., 2001. Bcl-B, a novel Bcl-2 family member that differentially binds and regulates Bax and Bak. J. Biol. Chem., 276(16):12481–12484. [doi:10.1074/jbc.C000871200]

    PubMed  CAS  Google Scholar 

  • Kelekar, A., Thompson, C.B., 1998. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol., 8(8):324–330. [doi:10.1016/S0962-8924(98)01321-X]

    PubMed  CAS  Google Scholar 

  • Kharbanda, S., Saxena, S., Yoshida, K., Pandey, P., Kaneki, M., Wang, Q., Cheng, K., Chen, Y.N., Campbell, A., Sudha, T., et al., 2000. Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J. Biol. Chem., 275(1):322–327. [doi:10.1074/jbc.275.1.322]

    PubMed  CAS  Google Scholar 

  • Kiefer, M.C., Brauer, M.J., Powers, V.C., Wu, J.J., Umansky, S.R., Tomei, L.D., Barr, P.J., 1995. Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature, 374(6524):736–739. [doi:10.1038/374736a0]

    PubMed  CAS  Google Scholar 

  • Kim, H., Rafiuddin-Shah, M., Tu, H.C., Jeffers, J.R., Zambetti, G.P., Hsieh, J.J.D., Cheng, E.H.Y., 2006. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat. Cell Biol., 8(12):1348–1358. [doi:10.1038/ncb1499]

    PubMed  CAS  Google Scholar 

  • King, R.W., Jackson, P.K., Kirschner, M.W., 1994. Mitosis in transition. Cell, 79(4):563–571. [doi:10.1016/0092-8674(94)90542-8]

    PubMed  CAS  Google Scholar 

  • Kluck, R.M., Bossy-Wetzel, E., Green, D.R., Newmeyer, D.D., 1997. The release of cytochrome C from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 275(5303):1132–1136. [doi:10.1126/science.275.5303.1132]

    PubMed  CAS  Google Scholar 

  • Knowlton, K., Mancini, M., Creason, S., Morales, C., Hockenbery, D., Anderson, B.O., 1998. Bcl-2 slows in vitro breast cancer growth despite its antiapoptotic effect. J. Surg. Res., 76(1):22–26. [doi:10.1006/jsre.1998.5277]

    PubMed  CAS  Google Scholar 

  • Koff, A., Giordano, A., Desai, D., Yamashita, K., Harper, J.W., Elledge, S., Nishimoto, T., Morgan, D.O., Franza, B.R., Roberts, J.M., 1992. Formation and activation of a cyclinE-cdk2 complex during the G1 phase of the human cell cycle. Science, 257(5077):1689–1694. [doi:10.1126/science.1388288]

    PubMed  CAS  Google Scholar 

  • Kohn, K.W., 1996. Regulatory genes and drug sensitivity. J. Natl. Cancer Inst., 88(18):1255–1256. [doi:10.1093/jnci/88.18.1255]

    PubMed  CAS  Google Scholar 

  • Kohn, K.W., Jackman, J., O’Connor, P.M., 1994. Cell cycle control and cancer chemotherapy. J. Cell. Biochem., 54(4):440–452. [doi:10.1002/jcb.240540411]

    PubMed  CAS  Google Scholar 

  • Korsmeyer, S.J., 1992. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood, 80:879–886.

    PubMed  CAS  Google Scholar 

  • Korsmeyer, S.J., Wei, M.C., Saito, M., Weiler, S., Oh, K.J., Schlesinger, P.H., 2000. Pro-apoptotic cascade activates Bid, which oligomerizes Bak or Bax into pores that result in the release of cytochrome c. Cell Death Differ., 7(12):1166–1173. [doi:10.1038/sj.cdd.4400783]

    PubMed  CAS  Google Scholar 

  • Kozopas, K.M., Yang, T., Buchan, H.L., Zhou, P., Craig, R.W., 1993. Mcl1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to Bcl-2. Proc. Natl. Acad. Sci. (USA), 90(8):3516–3520. [doi:10.1073/pnas.90.8.3516]

    CAS  Google Scholar 

  • Krajewski, S., Tanaka, S., Takayama, S., Schibler, M.J., Fenton, W., Reed, J.C., 1993. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res., 53:4701–4714.

    PubMed  CAS  Google Scholar 

  • Krajewski, S., Krajewska, M., Ellerby, L.M., Welsh, K., Xie, Z.H., Deveraux, Q.L., Salvesen, G.S., Bredesen, D.E., Rosenthal, R.E., Fiskum, G., Reed, J.C., 1999. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Natl. Acad. Sci. (USA), 96(10):5752–5757. [doi:10.1073/pnas.96.10.5752]

    CAS  Google Scholar 

  • Kudla, G., Montessuit, S., Eskes, R., Berrier, C., Martinou, J.C., Ghazi, A., Antonsson, B., 2000. The destabilization of lipid membranes induced by the C-terminal fragment of caspase 8-cleaved bid is inhibited by the N-terminal fragment. J. Biol. Chem., 275(30):22713–22718. [doi:10.1074/jbc.M003807200]

    PubMed  CAS  Google Scholar 

  • Kung, A.L., Zetterberg, A., Sherwood, S.W., Schimke, R.T., 1990. Cytotoxic effects of cell cycle phase specific agents: result of cell cycle perturbation. Cancer Res., 50:7307–7317.

    PubMed  CAS  Google Scholar 

  • Kuwana, T., Mackey, M.R., Perkins, G., Ellisman, M., Latterich, M., Schneiter, R., Green, D., Newmeyer, D., 2002. Bid, bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell, 111(3):331–342. [doi:10.1016/S0092-8674(02)01036-X]

    PubMed  CAS  Google Scholar 

  • Kuwana, T., Bouchier-Hayes, L., Chipuk, J.E., Bonzon, C., Sullivan, B.A., Green, D.R., Newmeyer, D.D., 2005. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell, 17(4):525–535. [doi:10.1016/j.molcel.2005.02.003]

    PubMed  CAS  Google Scholar 

  • Labib, K., Craven, R.A., Crawford, K., Nurse, P., 1995. Dominant mutants identify new roles for p34cdc2 in mitosis. EMBO J., 14:2155–2165.

    PubMed  CAS  Google Scholar 

  • Lammer, C., Wagerer, S., Saffrich, R., Mertens, D., Ansorge, W., Hoffmann, I., 1998. The cdc25B phosphatase is essential for the G2/M phase transition in human cells. J. Cell Sci., 111:2445–2453.

    PubMed  CAS  Google Scholar 

  • Lee, S., Schmitt, C.A., 2003. Chemotherapy response and resistance. Curr. Opin. Genet. Dev., 13(1):90–96. [doi:10.1016/S0959-437X(02)00014-X]

    PubMed  CAS  Google Scholar 

  • Letai, A., Bassik, M., Walensky, L., Sorcinelli, M., Weiler, S., Korsmeyer, S., 2002. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2(3):183–192. [doi:10.1016/S1535-6108(02)00127-7]

    PubMed  CAS  Google Scholar 

  • Leu, J.I.J., Dumont, P., Hafey, M., Murphy, M.E., George, D.L., 2004. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat. Cell Biol., 6(5):443–450. [doi:10.1038/ncb1123]

    PubMed  CAS  Google Scholar 

  • Levine, A.J., 1997. p53, the cellular gatekeeper for growth and division. Cell, 88(3):323–331. [doi:10.1016/S0092-8674(00)81871-1]

    PubMed  CAS  Google Scholar 

  • Li, L.Y., Luo, X., Wang, X., 2001. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature, 412(6842):95–99. [doi:10.1038/35083620]

    PubMed  CAS  Google Scholar 

  • Lin, E.Y., Orlofsky, A., Berger, M.S., Prystowsky, M.B., 1993. Characterization of A1, a novel hemopoietic-specific early-response gene with sequence similarity to bcl-2. J. Immunol., 151:1979–1988.

    PubMed  CAS  Google Scholar 

  • Linette, G.P., Li, Y., Roth, K., Korsmeyer, S.J., 1996. Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation. Proc. Natl. Acad. Sci. (USA), 93(18):9545–9552. [doi:10.1073/pnas.93.18.9545]

    CAS  Google Scholar 

  • Ling, Y.H., Tornos, C., Perez-Soler, R., 1998. Phosphorylation of Bcl-2 is a marker of M phase events and not a determinant of apoptosis. J. Biol. Chem., 273(30):18984–18991. [doi:10.1074/jbc.273.30.18984]

    PubMed  CAS  Google Scholar 

  • Linke, S.P., Clarkin, K.C., Wahl, G.M., 1997. p53 mediates permanent arrest over multiple cell cycles in response to gamma-irradiation. Cancer Res., 57:1171–1179.

    PubMed  CAS  Google Scholar 

  • Liu, F., Stanton, J.J., Wu, Z., Piwnica-Worms, H., 1997. The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol. Cell Biol., 17:571–583.

    PubMed  CAS  Google Scholar 

  • Liu, Q., Guntuku, S., Cui, X.S., Matsuoka, S., Cortez, D., Tamai, K., Luo, G., Carattini-Rivera, S., DeMayo, F., Bradley, A., Donehower, L.A., Elledge, S.J., 2000. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev., 14(12):1448–1459.

    PubMed  CAS  Google Scholar 

  • Liu, Z., Lu, H., Jiang, Z.H., Pastuszyn, A., Hu, C.A., 2005. Apolipoprotein L6, a novel proapoptotic Bcl-2 homology 3-only protein, induces mitochondria-mediated apoptosis in cancer cells. Mol. Cancer Res., 3:21–31.

    PubMed  CAS  Google Scholar 

  • Lopatina, N., Haskell, J.F., Andrews, L.G., Poole, J.C., Saldanha, S., Tollefsbol, T., 2002. Differential maintenance and de novo methylating activity by three DNA methyltransferases in aging and immortalized fibroblasts. J. Cell. Biochem., 84(2):324–334. [doi:10.1002/jcb.10015]

    PubMed  Google Scholar 

  • Lowe, S.W., Ruley, H.E., Jacks, T., Housman, D.E., 1993. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell, 74(6):957–967. [doi:10.1016/0092-8674(93)90719-7]

    PubMed  CAS  Google Scholar 

  • Lowe, S.W., Bodis, S., McClatchey, A., Remington, L., Ruley, H.E., Fisher, D.E., Housman, D.E., Jacks, T., 1994. p53 status and the efficacy of cancer therapy in vivo. Science, 266(5186):807–810. [doi:10.1126/science.7973635]

    PubMed  CAS  Google Scholar 

  • Lukas, J., Lukas, C., Bartek, J., 2004. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst.), 3(8–9):997–1007. [doi:10.1016/j.dnarep.2004.03.006]

    CAS  Google Scholar 

  • Machwe, A., Orren, D.K., Bohr, V.A., 2000. Accelerated methylation of ribosomal RNA genes during the cellular senescence of Werner syndrome fibroblasts. FASEB J., 14(12):1715–1724. [doi:10.1096/fj.99-0926com]

    PubMed  CAS  Google Scholar 

  • Mallette, F.A., Gaumont-Leclerc, M.F., Ferbeyre, G., 2007. The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev., 21(1):43–48. [doi:10.1101/gad.1487307]

    PubMed  CAS  Google Scholar 

  • Mancini, M., Nicholson, D.W., Roy, S., Thornberry, N.A., Peterson, E.P., Casciola-Rosen, L.A., Rosen, A., 1998. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J. Cell Biol., 140(6):1485–1495. [doi:10.1083/jcb.140.6.1485]

    PubMed  CAS  Google Scholar 

  • Marumoto, T., Hirota, T., Morisaki, T., Kunitoku, N., Zhang, D., Ichikawa, Y., Sasayama, T., Kuninaka, S., Mimori, T., Tamaki, N., Kimura, M., Okano, Y., Saya, H., 2002. Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells, 7(11):1173–1182. [doi:10.1046/j.1365-2443.2002.00592.x]

    PubMed  CAS  Google Scholar 

  • Marzo, I., Brenner, C., Zamzami, N., Jurgensmeier, J.M., Susin, S.A., Vieira, H.L., Prevost, M.C., Xie, Z., Matsuyama, S., Reed, J.C., Kroemer, G., 1998. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science, 281(5385):2027–2031. [doi:10.1126/science.281.5385.2027]

    PubMed  CAS  Google Scholar 

  • Matsuoka, S., Huang, M., Elledge, S.J., 1998. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science, 282(5395):1893–1897. [doi:10.1126/science.282.5395.1893]

    PubMed  CAS  Google Scholar 

  • Matsushima, M., Fujiwara, T., Takahashi, E., Minaguchi, T., Eguchi, Y., Tsujimoto, Y., Suzumori, K., Nakamura, Y., 1998. Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3. Genes. Chromos. Cancer, 21(3):230–235. [doi:10.1002/(SICI)1098-2264(199803)21:3〈230::AID-GCC7〉3.3.CO;2-G]

    PubMed  CAS  Google Scholar 

  • Maundrell, K., Antonsson, B., Magnenat, E., Camps, M., Muda, M., Chabert, C., Gillieron, C., Boschert, U., Vial-Knecht, E., Martinou, J.C., Arkinstall, S., 1997. Bcl-2 undergoes phosphorylation by C-Jun N-terminal kinase stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J. Biol. Chem., 272(40):25238–25242. [doi:10.1074/jbc.272.40.25238]

    PubMed  CAS  Google Scholar 

  • Mazel, S., Burtrum, D., Petrie, H.T., 1996. Regulation of cell division cycle progression by bcl-2 expression: a potential mechanism for inhibition of programmed cell death. J. Exp. Med., 183(5):2219–2226. [doi:10.1084/jem.183.5.2219]

    PubMed  CAS  Google Scholar 

  • McDonnell, T.J., Marin, M.C., Hsu, B., Brisbay, S.M., McConnell, K., Tu, S.M., Campbell, M.L., Rodriguez-Villanueva, J., 1993. The Bcl-2 oncogene: apoptosis and neoplasia. Radiation Res., 136(3):307–312. [doi:10.2307/3578541]

    PubMed  CAS  Google Scholar 

  • McDonnell, J.M., Fushman, D., Milliman, C.L., Korsmeyer, S.J., Cowburn, D., 1999. Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell, 96(5):625–634. [doi:10.1016/S0092-8674(00)80573-5]

    PubMed  CAS  Google Scholar 

  • McGowan, C.H., Russell, P., 1995. Cell cycle regulation of human Wee1. EMBO J., 14:2166–2175.

    PubMed  CAS  Google Scholar 

  • Melino, G., Bernassola, F., Ranalli, M., Yee, K., Zong, W.X., Corazzari, M., Knight, R.A., Green, D.R., Thompson, C., Vousden, K.H., 2004. p73 induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J. Biol. Chem., 279(9):8076–8083. [doi:10.1074/jbc.M307469200]

    PubMed  CAS  Google Scholar 

  • Mercurio, F., Manning, A.M., 1999. NF-κB as a primary regulator of the stress response. Oncogene, 18(45):6163–6171. [doi:10.1038/sj.onc.1203174]

    PubMed  CAS  Google Scholar 

  • Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., Moll, U.M., 2003. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell, 11(3):577–590. [doi:10.1016/S1097-2765(03)00050-9]

    PubMed  CAS  Google Scholar 

  • Minn, A.J., Velez, P., Schendel, S.L., Liang, H., Muchmore, S.W., Fesik, S.W., Fill, M., Thompson, C.B., 1997. Bcl-xL forms an ion channel in synthetic lipid membranes. Nature, 385(6614):353–357. [doi:10.1038/385353a0]

    PubMed  CAS  Google Scholar 

  • Miyashita, T., Reed, J.C., 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 80(2):293–299. [doi:10.1016/0092-8674(95)90412-3]

    PubMed  CAS  Google Scholar 

  • Miyashita, T., Krajewski, S., Krajewska, M., Wang, H.G., Lin, H.K., Liebermann, D.A., Hoffman, B., Reed, J.C., 1994. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 9:1799–1805.

    PubMed  CAS  Google Scholar 

  • Muchmore, S.W., Sattler, M., Liang, H., Meadows, R.P., Harlan, J.E., Yoon, H.S., Nettesheim, D., Chang, B.S., Thompson, C.B., Wong, S.L., Ng, S.C., Fesik, S.W., 1996. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature, 381(6580):335–341. [doi:10.1038/381335a0]

    PubMed  CAS  Google Scholar 

  • Mueller, P.R., Coleman, T.R., Kumagai, A., Dunphy, W.G., 1995. Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science, 270(5233):86–90. [doi:10.1126/science.270.5233.86]

    PubMed  CAS  Google Scholar 

  • Muller, H., Bracken, A.P., Vernell, R., Moroni, M.C., Christians, F., Grassilli, E., Prosperini, E., Vigo, E., Oliner, J.D., Helin, K., 2001. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev., 15(3):267–285. [doi:10.1101/gad.864201]

    PubMed  CAS  Google Scholar 

  • Nakano, K., Vousden, K.H., 2001. Puma, a novel proapoptotic gene, is induced by p53. Mol. Cell, 7(3):683–694. [doi:10.1016/S1097-2765(01)00214-3]

    PubMed  CAS  Google Scholar 

  • Neumeister, P., Albanese, C., Balent, B., Greally, J., Pestell, R.G., 2002. Senescence and epigenetic dysregulation in cancer. Int. J. Biochem. Cell Biol., 34(11):1475–1490. [doi:10.1016/S1357-2725(02)00079-1]

    PubMed  CAS  Google Scholar 

  • Nguyen, M., Branton, P.E., Walton, P.A., Oltvai, Z.N., Korsmeyer, S.J., Shore, G.C., 1994. Role of membrane anchor domain of Bcl-2 in suppression of apoptosis caused by E1B-defective adenovirus. J. Biol. Chem., 269: 16521–16524.

    PubMed  CAS  Google Scholar 

  • Nicotera, P., Leist, M., Ferrando-May, E., 1999. Apoptosis and necrosis: different execution of the same death. Biochem. Soc. Symp., 66:69–73.

    PubMed  CAS  Google Scholar 

  • Nigg, E.A., 2001. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol., 2(1):21–32. [doi:10.1038/35048096]

    PubMed  CAS  Google Scholar 

  • Nozell, S., Wu, Y., McNaughton, K., Liu, G., Willis, A., Paik, J.C., Chen, X., 2003. Characterization of p73 functional domains necessary for transactivation and growth suppression. Oncogene, 22(28):4333–4347. [doi:10.1038/sj.onc.1206470]

    PubMed  CAS  Google Scholar 

  • O’Connell, M.J., Raleigh, J.M., Verkade, H.M., Nurse, P., 1997. Chk 1 is a wee 1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J., 16(3):545–554. [doi:10.1093/emboj/16.3.545]

    PubMed  CAS  Google Scholar 

  • O’Connor, P.M., 1997. Mammalian G1 and G2 phase checkpoints. Cancer Surv., 29:151–182.

    PubMed  CAS  Google Scholar 

  • O’Connor, P.M., Jackman, J., Bae, I., Myers, T.G., Fan, S., Mutoh, M., Scudiero, D.A., Monks, A., Sausville, E.A., Weinstein, J.N., et al., 1997. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res., 57:4285–4300.

    PubMed  CAS  Google Scholar 

  • O’Connor, L., Strasser, A., O’Reilly, L.A., Hausmann, G., Adams, J.M., Cory, S., Huang, D.C., 1998. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J., 17(2):384–395. [doi:10.1093/emboj/17.2.384]

    PubMed  CAS  Google Scholar 

  • Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, Y., Tokino, T., Taniguchi, T., Tanaka, N., 2000. Noxa, a BH3-only member of the bcl-2 family and candidate mediator of p53-induced apoptosis. Science, 288(5468):1053–1058. [doi:10.1126/science.288.5468.1053]

    PubMed  CAS  Google Scholar 

  • Ogilvy, S., Metcalf, D., Print, C.G., Bath, M.L., Harris, A.W., Adams, J.M., 1999. Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc. Natl. Acad. Sci. (USA), 96(26):14943–14948. [doi:10.1073/pnas.96.26.14943]

    CAS  Google Scholar 

  • Oltvai, Z.N., Milliman, C.L., Korsmeyer, S.J., 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74(4):609–619. [doi:10.1016/0092-8674(93)90509-O]

    PubMed  CAS  Google Scholar 

  • O’Reilly, L.A., Huang, D.C.S., Strasser, A., 1996. The death inhibitor Bcl-2 and its homologues influence control of cell cycle. EMBO J., 15:6979–6990.

    PubMed  CAS  Google Scholar 

  • O’Reilly, L.A., Harris, A.W., Strasser, A., 1997a. Bcl-2 transgene expression promotes survival and reduces proliferation of CD3-CD4-CD8-T cell progenitors. Int. Immunol., 9(9):1291–1301. [doi:10.1093/intimm/9.9.1291]

    PubMed  CAS  Google Scholar 

  • O’Reilly, L.A., Harris, A.W., Tarlinton, D.M., Corcoran, L.M., Strasser, A., 1997b. Expression of a Bcl-2 transgene reduces proliferation and slows turnover of developing B lymphocytes in vivo. J. Immunol., 159:2301–2311.

    PubMed  CAS  Google Scholar 

  • Parrish, J., Li, L., Klotz, K., Ledwich, D., Wang, X., Xue, D., 2001. Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature, 412(6842):90–94. [doi:10.1038/35083608]

    PubMed  CAS  Google Scholar 

  • Passalaris, T.M., Benanti, J.A., Gewin, L., Kiyono, T., Galloway, D.A., 1999. The G(2) checkpoint is maintained by redundant pathways. Mol. Cell Biol., 19:5872–5881.

    PubMed  CAS  Google Scholar 

  • Pavlov, E.V., Priault, M., Pietkiewicz, D., Cheng, E.H.Y., Antonsson, B., Manon, S., Korsmeyer, S.J., Mannella, C.A., Kinnally, K.W., 2001. A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J. Cell Biol., 155(5):725–732. [doi:10.1083/jcb.200107057]

    PubMed  CAS  Google Scholar 

  • Pediconi, N., Ianari, A., Costanzo, A., Belloni, L., Gallo, R., Cimino, L., Porcellini, A., Screpanti, I., Balsano, C., Alesse, E., Gulino, A., Massimo Levrero, M., 2003. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat. Cell Biol., 5(6):552–558. [doi:10.1038/ncb998]

    PubMed  CAS  Google Scholar 

  • Peng, C.Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S., Piwnica-Worms, H., 1997. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science, 277(5331):1501–1505. [doi:10.1126/science.277.5331.1501]

    PubMed  CAS  Google Scholar 

  • Perfettini, J.L., Kroemer, R.T., Kroemer, G., 2004. Fatal liaisons of p53 with bax and Bak. Nat. Cell Biol., 6(5):386–387. [doi:10.1038/ncb0504-386]

    PubMed  CAS  Google Scholar 

  • Phillips, A.C., Bates, S., Ryan, K.M., Helin, K., Vousden, K.H., 1997. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev, 11:1853–1863.

    PubMed  CAS  Google Scholar 

  • Piret, B., Schoonbroodt, S., Piette, J., 1999. The ATM protein is required for sustained activation of NF-kappa B following DNA damage. Oncogene, 18(13):2261–2271. [doi:10.1038/sj.onc.1202541]

    PubMed  CAS  Google Scholar 

  • Polster, B.M., Kinnally, K.W., Fiskum, G., 2001. BH3 death domain peptide induces cell type-selective mitochondrial outer membrane permeability. J. Biol. Chem., 276:37887–37894.

    PubMed  CAS  Google Scholar 

  • Poruchynsky, M.S., Wang, E.E., Rudin, C.M., Blagosklonny, M.V., Fojo, T., 1998. Bcl-X(L) is phosphorylated in malignant cells following microtubule disruption. Cancer Res., 58:3331–3338.

    PubMed  CAS  Google Scholar 

  • Puthalakath, H., Huang, D.C.S., O’Reilly, L.A., King, S.M., Strasser, A., 1999. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell, 3(3):287–296. [doi:10.1016/S1097-2765(00)80456-6]

    PubMed  CAS  Google Scholar 

  • Puthalakath, H., Villunger, A., O’Reilly, L.A., Beaumont, J.G., Coultas, L., Cheney, R.E., Huang, D.C., Strasser, A., 2001. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science, 293(5536):1829–1832. [doi:10.1126/science.1062257]

    PubMed  CAS  Google Scholar 

  • Qin, Z.H., Wang, Y., Kikly, K.K., Sapp, E., Kegel, K.B., Aronin, N., DiFiglia, M., 2001. Pro-caspase-8 is predominantly localized in mitochondria and released into cytoplasm upon apoptotic stimulation. J. Biol. Chem., 276(11):8079–8086. [doi:10.1074/jbc.M007028200]

    PubMed  CAS  Google Scholar 

  • Reed, J.C., 1997. Double identity for proteins of the Bcl-2 family. Nature, 387(6635):773–776. [doi:10.1038/42867]

    PubMed  CAS  Google Scholar 

  • Reed, J.C., 1998. Bcl-2 family proteins. Oncogene, 17(25):3225–3236. [doi:10.1038/sj.onc.1202591]

    PubMed  Google Scholar 

  • Reed, J.C., 2006. Drug insight: cancer therapy strategies based on restoration of endogenous cell death mechanisms. Nat. Clin. Pract. Oncol., 3(7):388–398. [doi:10.1038/ncponc0538]

    PubMed  CAS  Google Scholar 

  • Riabowol, K., Draetta, G., Brizuela, L., Vandre, D., Beach, D., 1989. The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell, 57(3):393–401. [doi:10.1016/0092-8674(89)90914-8]

    PubMed  CAS  Google Scholar 

  • Robles, S.J., Adami, G.R., 1998. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene, 16(9):1113–1123. [doi:10.1038/sj.onc.1201862]

    PubMed  CAS  Google Scholar 

  • Ruvolo, P.P., Deng, X.M., Carr, B.H., May, W.S., 1998. A functional role for mitochondrial protein kinase C-alpha in Bcl2 phosphorylation and suppression of apoptosis. J. Biol. Chem., 273(39):25436–25442. [doi:10.1074/jbc.273.39.25436]

    PubMed  CAS  Google Scholar 

  • Ryan, K.M., Ernst, M.K., Rice, N.R., Vousden, K.H., 2000. Role of NFκB in p53-mediated programmed cell death. Nature, 404(6780):892–896. [doi:10.1038/35009130]

    PubMed  CAS  Google Scholar 

  • Saito, M., Korsmeyer, S.J., Schlesinger, P.H., 2000. Bax-dependent transport of cytochrome c reconstituted in pure liposomes. Nat. Cell. Biol., 2(8):553–555. [doi:10.1038/35019596]

    PubMed  CAS  Google Scholar 

  • Sanchez, Y., Wong, C., Thoma, R.S., Richman, R., Wu, Z., Piwnica-Worms, H., Elledge, S.J., 1997. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science, 277(5331):1497–1501. [doi:10.1126/science.277.5331.1497]

    PubMed  CAS  Google Scholar 

  • Sattler, M., Liang, H., Nettesheim, D., Meadows, R.P., Harlan, J.E., Eberstadt, M., Yoon, H.S., Shuker, S.B., Chang, B.S., Minn, A.J., et al., 1997. Structure of Bcl-x(L)-Bak peptide complex: recognition between regulators of apoptosis. Science, 275(5302):983–986. [doi:10.1126/science.275.5302.983]

    PubMed  CAS  Google Scholar 

  • Sax, J.K., Fei, P., Murphy, M.E., Bernhard, E., Korsmeyer, S.J., El-Deiry, W.S., 2002. BID regulation by p53 contributes to chemosensitivity. Nat. Cell Biol., 4(11):842–849. [doi:10.1038/ncb866]

    PubMed  CAS  Google Scholar 

  • Scatena, C.D., Stewart, Z.A., Mays, D., Tang, L.J., Keefer, C.J., Leach, S.D., Pietenpol, J.A., 1998. Mitotic phosphorylation of Bcl-2 during normal cell cycle progression and Taxol-induced growth arrest. J. Biol. Chem., 273(46):30777–30784. [doi:10.1074/jbc.273.46.30777]

    PubMed  CAS  Google Scholar 

  • Schendel, S.L., Montal, M., Reed, J.C., 1998. Bcl-2 family proteins as ion-channels. Cell Death Differ., 5(5):372–380. [doi:10.1038/sj.cdd.4400365]

    PubMed  CAS  Google Scholar 

  • Schlesinger, P.H., Gross, A., Yin, X.M., Yamamoto, K., Saito, M., Waksman, G., Korsmeyer, S.J., 1997. Comparison of the ion channel characteristics of proapoptotic Bax and antiapoptotic Bcl-2. Proc. Natl. Acad. Sci. (USA), 94(21):11357–11362. [doi:10.1073/pnas.94.21.11357]

    CAS  Google Scholar 

  • Schmitt, C.A., 2007. Cellular senescence and cancer treatment. Biochim. Biophys. Acta, 1775:5–20.

    PubMed  CAS  Google Scholar 

  • Schmitt, C.A., Fridman, J.S., Yang, M., Lee, S., Baranov, E., Hoffman, R.M., Lowe, S.W., 2002. A senescence program controlled by p53 and p16(INK4a) contributes to the outcome of cancer therapy. Cell, 109(3):335–346. [doi:10.1016/S0092-8674(02)00734-1]

    PubMed  CAS  Google Scholar 

  • Schmitt, E., Paquet, C., Beauchemin, M., Bertrand, R., 2004. Bcl-xES, a BH4-and BH2-containing antiapoptotic protein, delays Bax oligomer formation and binds Apaf-1, blocking procaspase 9 activation. Oncogene, 23(22): 3915–3931. [doi:10.1038/sj.onc.1207554]

    PubMed  CAS  Google Scholar 

  • Schmitt, E., Boutros, R., Froment, C., Monsarrat, B., Ducommun, B., Dozier, C., 2006. CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J. Cell Sci., 119(20):4269–4275. [doi:10.1242/jcs.03200]

    PubMed  CAS  Google Scholar 

  • Schmitt, E., Beauchemin, M., Bertrand, R., 2007. Nuclear co-localization and interaction between bcl-xL and cdk1(cdc2) during G2/M cell cycle checkpoint. Oncogene, in press. [doi:10.1038/sj.onc.1210396]

  • Sedlak, T.W., Oltvai, Z.N., Yang, E., Wang, K., Boise, L.H., Thompson, C.B., Korsmeyer, S.J., 1995. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. Sci. (USA), 92(17):7834–7838. [doi:10.1073/pnas.92.17.7834]

    CAS  Google Scholar 

  • Sherr, C.J., Roberts, J.M., 1995. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes. Dev., 9:1149–1163.

    PubMed  CAS  Google Scholar 

  • Shibue, T., Takeda, K., Oda, E., Tanaka, H., Murasawa, H., Takaoka, A., Morishita, Y., Akira, S., Taniguchi, T., Tanaka, N., 2003. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev., 17(18):2233–2238. [doi:10.1101/gad.1103603]

    PubMed  CAS  Google Scholar 

  • Shiloh, Y., 2001. ATM and ATR: networking cellular responses to DNA damage. Curr. Opin. Genet. Dev., 11(1):71–77. [doi:10.1016/S0959-437X(00)00159-3]

    PubMed  CAS  Google Scholar 

  • Shiloh, Y., 2006. The ATM-mediated DNA-damage response: taking shape. Trends Biochem. Sci., 31(7):402–410. [doi:10.1016/j.tibs.2006.05.004]

    PubMed  CAS  Google Scholar 

  • Shimizu, T., Pommier, Y., 1997. Camptothecin-induced apoptosis in p53-null human leukemia Hl60 cells and their isolated nuclei; Effects of the protease inhibitors z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and serine proteases. Leukemia, 11(8):1238–1244. [doi:10.1038/sj.leu.2400734]

    PubMed  CAS  Google Scholar 

  • Shimizu, S., Tsujimoto, Y., 2000. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc. Natl. Acad. Sci. (USA), 97(2):577–582. [doi:10.1073/pnas.97.2.577]

    CAS  Google Scholar 

  • Shimizu, S., Eguchi, Y., Kamiike, W., Funahashi, Y., Mignon, A., Lacronique, V., Matsuda, H., Tsujimoto, Y., 1998. Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc. Natl. Acad. Sci. (USA), 95(4):1455–1459. [doi:10.1073/pnas.95.4.1455]

    CAS  Google Scholar 

  • Shimizu, S., Narita, M., Tsujimoto, Y., 1999. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature, 399(6735):483–487. [doi:10.1038/20959]

    PubMed  CAS  Google Scholar 

  • Shimizu, S., Konishi, A., Kodama, T., Tsujimoto, Y., 2000. BH4 domain of antiapoptotic bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci. (USA), 97(7):3100–3105. [doi:10.1073/pnas.97.7.3100]

    CAS  Google Scholar 

  • Slichenmyer, W.J., Nelson, W.G., Slebos, R.J., Kastan, M.B., 1993. Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res., 53:4164–4168.

    PubMed  CAS  Google Scholar 

  • Smits, V.A.J., Klompmaker, R., Arnaud, L., Rijksen, G., Nigg, E.A., Medema, R.H., 2000. Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat. Cell Biol., 2(9):672–676. [doi:10.1038/35023629]

    PubMed  CAS  Google Scholar 

  • Solary, E., Bertrand, R., Jenkins, J., Pommier, Y., 1992. Radiolabeling of DNA can induce its fragmentation in HL-60 promyelocytic leukemic cells. Exp. Cell Res., 203(2):495–498. [doi:10.1016/0014-4827(92)90027-6]

    PubMed  CAS  Google Scholar 

  • Song, Q.Z., Kuang, Y.P., Dixit, V.M., Vincenz, C., 1999. Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO J., 18(1):167–178. [doi:10.1093/emboj/18.1.167]

    PubMed  CAS  Google Scholar 

  • Srivastava, R.K., Srivastava, A.R., Korsmeyer, S.J., Nesterova, M., Chochung, Y.S., Longo, D.L., 1998. Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol. Cell Biol., 18:3509–3517.

    PubMed  CAS  Google Scholar 

  • Srivastava, R.K., Mi, Q.S., Hardwick, J.M., Longo, D.L., 1999. Deletion of the loop region of Bcl-2 completely blocks paclitaxel-induced apoptosis. Proc. Natl. Acad. Sci. (USA), 96(7):3775–3780. [doi:10.1073/pnas.96.7.3775]

    CAS  Google Scholar 

  • Stanelle, J., Stiewe, T., Theseling, C.C., Peter, M., Pützer, B.M., 2002. Gene expression changes in response to E2F1 activation. Nucleic. Acids Res., 30(8):1859–1867. [doi:10.1093/nar/30.8.1859]

    PubMed  CAS  Google Scholar 

  • Stehlik, C., Demartin, R., Kumabashiri, I., Schmid, J.A., Binder, B.R., Lipp, J., 1998. Nuclear factor (NF)-kappaB-regulated X-chromosome-linked Iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J. Exp. Med., 188(1):211–216. [doi:10.1084/jem.188.1.211]

    PubMed  CAS  Google Scholar 

  • Stiewe, T., Pützer, B.M., 2000. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat. Genet., 26(4):464–469. [doi:10.1038/82617]

    PubMed  CAS  Google Scholar 

  • Stroka, D.M., Badrichani, A.Z., Bach, F.H., Ferran, C., 1999. Overexpression of A1, an NF-kappaB-inducible anti-apoptotic Bcl gene, inhibits endothelial cell activation. Blood, 93:3803–3810.

    PubMed  CAS  Google Scholar 

  • Strunnikova, M., Schagdarsurengin, U., Kehlen, A., Garbe, J.C., Stampfer, M.R., Dammann, R., 2005. Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter. Mol. Cell. Biol., 25(10):3923–3933. [doi:10.1128/MCB.25.10.3923-3933.2005]

    PubMed  CAS  Google Scholar 

  • Sugiyama, T., Shimizu, S., Matsuoka, Y., Yoneda, Y., Tsujimoto, Y., 2002. Activation of mitochondrial voltage-dependent anion channel by apro-apoptotic BH3-only protein Bim. Oncogene, 21(32):4944–4956. [doi:10.1038/sj.onc.1205621]

    PubMed  CAS  Google Scholar 

  • Sun, L.Q., Arceci, R.J., 2005. Altered epigenetic patterning leading to replicative senescence and reduced longevity. A role of a novel SNF2 factor, PASG. Cell Cycle, 4:3–5.

    PubMed  CAS  Google Scholar 

  • Susin, S.A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M., Kroemer, G., 1996. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J. Exp. Med., 184(4):1331–1341. [doi:10.1084/jem.184.4.1331]

    PubMed  CAS  Google Scholar 

  • Susin, S.A., Lorenzo, H.K., Zamzami, N., Isabel Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., et al., 1999a. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397(6718):441–446. [doi:10.1038/17135]

    PubMed  CAS  Google Scholar 

  • Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prevost, M.C., Alzari, P.M., Kroemer, G., 1999b. Mitochondrial release of caspase-2 and-9 during the apoptotic process. J. Exp. Med., 189(2):381–393. [doi:10.1084/jem.189.2.381]

    PubMed  CAS  Google Scholar 

  • Suzuki, K., Mori, I., Nakayama, Y., Miyakoda, M., Komada, S., Watanabe, M., 2001a. Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening. Radiat. Res., 155(1):248–253. [doi:10.1667/0033-7587(2001)155[0248:RISLGA]2.0.CO;2]

    PubMed  CAS  Google Scholar 

  • Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K., Takahashi, R., 2001b. A serine protease, Htra2, is released from the mitochondria and interacts with Xiap, inducing cell death. Mol. Cell, 8(3):613–621. [doi:10.1016/S1097-2765(01)00341-0]

    PubMed  CAS  Google Scholar 

  • Takahashi, A., Ohtani, N., Yamakoshi, K., Iida, S., Tahara, H., Nakayama, K., Nakayama, K.I., Ide, T., Saya, H., Hara, E., 2006. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol., 8(11):1291–1297. [doi:10.1038/ncb1491]

    PubMed  CAS  Google Scholar 

  • Tamaru, H., Selker, E.U., 2001. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature, 414(6861):277–283. [doi:10.1038/35104508]

    PubMed  CAS  Google Scholar 

  • Tamaru, H., Zhang, X., McMillen, D., Singh, P.B., Nakayama, J., Grewal, S.I., Allis, C.D., Cheng, X., Selker, E.U., 2003. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat. Genet., 34(1): 75–79. [doi:10.1038/ng1143]

    PubMed  CAS  Google Scholar 

  • Tamatani, M., Che, Y.H., Matsuzaki, H., Ogawa, S., Okado, H., Miyake, S., Mizuno, T., Tohyama, M., 1999. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NF kappa B activation in primary hippocampal neurons. J. Biol. Chem., 274(13):8531–8538. [doi:10.1074/jbc.274.13.8531]

    PubMed  CAS  Google Scholar 

  • Tan, K.O., Tan, K.M.L., Chan, S.L., Yee, K.S.Y., Bevort, M., Ang, K.C., Yu, V.C., 2001. MAP-1, a novel proapototic protein containing a BH3-like motif that associates with Bax through its Bcl-2 homology domains. J. Biol. Chem., 276(4):2802–2807. [doi:10.1074/jbc.M008955200]

    PubMed  CAS  Google Scholar 

  • Tanaka, N., Ishihara, M., Lamphier, M.S., Nozawa, H., Matsuyama, T., Mak, T.W., Aizawa, S., Tokino, T., Oren, M., Taniguchi, T., 1996. Cooperation of the tumour suppressors Irf-1 and p53 in response to DNA damage. Nature, 382(6594):816–818. [doi:10.1038/382816a0]

    PubMed  CAS  Google Scholar 

  • Thomas, A., Elrouby, S., Reed, J.C., Krajewski, S., Silber, R., Potmseil, M., Newcomb, E.W., 1996. Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: relationship between p53 gene mutation and Bcl-2/Bax proteins in drug resistance. Oncogene, 12:1055–1062.

    PubMed  CAS  Google Scholar 

  • Tollefsbol, T.O., Andrews, L.G., 1993. Mechanisms for methylation-mediated gene silencing and aging. Med. Hypotheses, 41(1):83–92. [doi:10.1016/0306-9877(93)90040-W]

    PubMed  CAS  Google Scholar 

  • Tsujimoto, Y., Finger, L.R., Yunis, J., Nowell, P.C., Croce, C.M., 1984. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14:18) chromosome translocation. Science, 226(4678):1097–1099. [doi:10.1126/science.6093263]

    PubMed  CAS  Google Scholar 

  • Vail, M.E., Chaisson, M.L., Thompson, J., Fausto, N., 2002. Bcl-2 expression delays hepatocyte cell cycle progression during liver regeneration. Oncogene, 21(10):1548–1555. [doi:10.1038/sj.onc.1205212]

    PubMed  CAS  Google Scholar 

  • Vairo, G., Innes, K.M., Adams, J.M., 1996. Bcl-2 has a cell cycle inhibitory function separable from its enhancement of cell survival. Oncogene, 13:1511–1519.

    PubMed  CAS  Google Scholar 

  • van Vugt, M.A., Smits, V.A., Klompmaker, R., Medema, R.H., 2001. Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM-or ATR-dependent fashion. J. Biol. Chem., 276(45):41656–41660. [doi:10.1074/jbc.M101831200]

    PubMed  Google Scholar 

  • Vander Heiden, M.G., Thompson, C.B., 1999. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat. Cell Biol., 1(8):E209–E216. [doi:10.1038/70237]

    Google Scholar 

  • Vander Heiden, M.G., Chandel, N.S., Williamson, E.K., Schumacker, P.T., Thompson, C.B., 1997. Bcl-X(L) regulates the membrane potential and volume homeostasis of mitochondria. Cell, 91(5):627–637. [doi:10.1016/S0092-8674(00)80450-X]

    Google Scholar 

  • Vaux, D.L., Cory, S., Adams, J.M., 1988. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature, 335(6189):440–442. [doi:10.1038/335440a0]

    PubMed  CAS  Google Scholar 

  • Verhagen, A.M., Ekert, P.G., Pakusch, M., Silke, J., Connolly, L.M., Reid, G.E., Moritz, R.L., Simpson, R.J., Vaux, D.L., 2000. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 102(1):43–53. [doi:10.1016/S0092-8674(00)00009-X]

    PubMed  CAS  Google Scholar 

  • Villunger, A., Michalak, E.M., Coultas, L., Müllauer, F., Böck, G., Ausserlechner, M.J., Adams, J.M., Strasser, A., 2003. p53-and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science, 302(5647): 1036–1038. [doi:10.1126/science.1090072]

    PubMed  CAS  Google Scholar 

  • Waldman, T., Lengauer, C., Kinzler, K.W., Vogelstein, B., 1996. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature, 381(6584):713–716. [doi:10.1038/381713a0]

    PubMed  CAS  Google Scholar 

  • Wang, K., Yin, X.M., Chao, D.T., Milliman, C.L., Korsmeyer, S.J., 1996. BID: a novel BH3 domain-only death agonist. Genes. Dev., 10:2859–2869.

    PubMed  CAS  Google Scholar 

  • Wang, C.Y., Mayo, M.W., Korneluk, R.G., Goeddel, D.V., Baldwin, A.S., 1998. NF-kappa-B antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science, 281(5383):1680–1683. [doi:10.1126/science.281.5383.1680]

    PubMed  CAS  Google Scholar 

  • Wang, X.W., Zhan, Q.M., Coursen, J.D., Khan, M.A., Kontny, H.U., Yu, L., M. Hollander, M.C., O’Connor, P.M., Fornace, A.J.Jr, Harris, C.C., 1999a. GADD45 induction of a G(2)/M cell cycle checkpoint. Proc. Natl. Acad. Sci. (USA), 96(7):3706–3711. [doi:10.1073/pnas.96.7.3706]

    CAS  Google Scholar 

  • Wang, C.Y., Guttridge, D.C., Mayo, M.W., Baldwin, A.S.Jr, 1999b. NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol. Cell Biol., 19:5923–5929.

    PubMed  CAS  Google Scholar 

  • Willis, S.N., Chen, L., Dewson, G., Wei, A., Naik, E., Fletcher, J.I., Adams, J.M., Huang, D.C.S., 2005. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev., 19(11):1294–1305. [doi:10.1101/gad.1304105]

    PubMed  CAS  Google Scholar 

  • Willis, S.N., Fletcher, J.I., Kaufmann, T., van Delft, M.F., Chen, L., Czabotar, P.E., Ierino, H., Lee, E.H., Fairlie, W.D., Bouillet, P., et al., 2007. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science, 315(5813):856–859. [doi:10.1126/science.1133289]

    PubMed  CAS  Google Scholar 

  • Xie, S., Wu, H., Wang, Q., Cogswell, J.P., Husain, I., Conn, C., Stambrook, P., Jhanwar-Uniyal, M., Dai, W., 2001. Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J. Biol. Chem., 276(46):43305–43312. [doi:10.1074/jbc.M106050200]

    PubMed  CAS  Google Scholar 

  • Yamamoto, K., Ichijo, H., Korsmeyer, S.J., 1999. Bcl-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol. Cell Biol., 19:8469–8478.

    PubMed  CAS  Google Scholar 

  • Yang, E., Zha, J., Jockel, J., Boise, L.H., Thompson, C.B., Korsmeyer, S.J., 1995. Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces Bax and promotes cell death. Cell, 80(2):285–291. [doi:10.1016/0092-8674(95)90411-5]

    PubMed  CAS  Google Scholar 

  • Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J., Peng, T.I., Jones, D.P., Wang. X., 1997. Prevention of apoptosis by Bcl-2: release of cytochrome C from mitochondria blocked. Science, 275(5303):1129–1132. [doi:10.1126/science.275.5303.1129]

    PubMed  CAS  Google Scholar 

  • Yang, A.N., Kaghad, M., Wang, Y.M., Gillett, E., Fleming, M.D., Dotsch, V., Andrews, N.C., Caput, D., McKeon, F., 1998. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell, 2(3):305–316. [doi:10.1016/S1097-2765(00)80275-0]

    PubMed  CAS  Google Scholar 

  • Yasuda, M., Han, J.W., Dionne, C.A., Boyd, J.M., Chinnadurai, G., 1999. BNIP3 alpha: a human homolog of mitochondrial proapoptotic protein BNIP3. Cancer Res., 59:533–537.

    PubMed  CAS  Google Scholar 

  • Yin, X.M., Oltvai, Z.N., Korsmeyer, S.J., 1994. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature, 369(6478):321–323. [doi:10.1038/369321a0]

    PubMed  CAS  Google Scholar 

  • Yu, J., Zhang, L., Hwang, P.M., Kinzler, K.W., Vogelstein, B., 2001. Puma induces the rapid apoptosis of colorectal cancer cells. Mol. Cell, 7(3):673–682. [doi:10.1016/S1097-2765(01)00213-1]

    PubMed  CAS  Google Scholar 

  • Yuan, Z.M., Shioya, H., Ishiko, T., Sun, X., Gu, J., Huang, Y.Y., Lu, H., Kharbanda, S., Weichselbaum, R., Kufe, D., 1999. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature, 399(6738):814–817. [doi:10.1038/21704]

    PubMed  CAS  Google Scholar 

  • Zamzami, N., Kroemer, G., 2001. The mitochondrion in apoptosis: how Pandora’s box opens. Nat. Rev. Mol. Cell Biol., 2(1):67–71. [doi:10.1038/35048073]

    PubMed  CAS  Google Scholar 

  • Zamzami, N., Marchetti, P., Castedo, M., Decaudin, D., Macho, A., Hirsch, T., Susin, S.A., Petit, P.X., Mignotte, B., Kroemer, G., 1995. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J. Exp. Med., 182(2):367–377. [doi:10.1084/jem.182.2.367]

    PubMed  CAS  Google Scholar 

  • Zamzami, N., Susin, S.A., Marchetti, P., Hirsch, T., Gomez-Monterrey, I., Castedo, M., Kroemer, G., 1996. Mitochondrial control of nuclear apoptosis. J. Exp. Med., 183(4):1533–1544. [doi:10.1084/jem.183.4.1533]

    PubMed  CAS  Google Scholar 

  • Zamzami, N., Brenner, C., Marzo, I., Susin, S.A., Kroemer, G., 1998. Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene, 16(17):2265–2282. [doi:10.1038/sj.onc.1201989]

    PubMed  CAS  Google Scholar 

  • Zeng, Y., Forbes, K.C., Wu, Z., Moreno, S., Piwnica-Worms, H., Enoch, T., 1998. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature, 395(6701):507–510. [doi:10.1038/26766]

    PubMed  CAS  Google Scholar 

  • Zhan, Q., Antinore, M.J., Wang, X.W., Carrier, F., Smith, M.L., Harris, C.C., Fornace, A.J.Jr, 1999. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene, 18(18):2892–2900. [doi:10.1038/sj.onc.1202667]

    PubMed  CAS  Google Scholar 

  • Zhang, H., Holzgreve, W., de Geyter, C., 2001. Bcl2-L-10, a novel anti-apoptotic member of the Bcl-2 family, blocks apoptosis in the mitochondria death pathway but not in the death receptor pathway. Hum. Mol. Genet., 10(21):2329–2339. [doi:10.1093/hmg/10.21.2329]

    PubMed  CAS  Google Scholar 

  • Zhang, R., Chen, W., Adams, P.D., 2007. Molecular dissection of formation of senescent associated heterochromatin foci. Mol. Cell. Biol., 27(6):2343–2358. [doi:10.1128/MCB.02019-06]

    PubMed  Google Scholar 

  • Zinkel, S.S., Hurov, K.E., Ong, C., Abtahi, F.M., Gross, A., Korsmeyer, S.J., 2005. A role for proapoptotic BID in the DNA-damage response. Cell, 122(4):579–591. [doi:10.1016/j.cell.2005.06.022]

    PubMed  CAS  Google Scholar 

  • Zong, W.X., Edelstein, L.C., Chen, C.L., Bash, J., Gelinas, C., 1999. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNF alpha-induced apoptosis. Genes. Dev., 13:382–387.

    PubMed  CAS  Google Scholar 

  • Zoratti, M., Szabo, I., 1995. The mitochondrial permeability transition. Biochim. Biophys. Acta, 1241:139–176.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Richard.

Additional information

Project supported by the Canadian Institutes of Health Research and the Cancer Research Society, and fellowships by the Health Research Funds of Quebec, Canada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, E., Paquet, C., Beauchemin, M. et al. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J. Zhejiang Univ. - Sci. B 8, 377–397 (2007). https://doi.org/10.1631/jzus.2007.B0377

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.B0377

Key words

CLC number

Navigation