Skip to main content
Log in

Molecular Mechanism of High Hemoglobin F Production in Southeast Asian-Type Hereditary Persistence of Fetal Hemoglobin

  • Review Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Hereditary persistence of fetal hemoglobin (HPFH) is associated with a high level of hemoglobin F (HbF) synthesis in adult heterozygotes. In this study, 2 of 6 unrelated HPFH Thai families were found to be Southeast Asian-type HPFH (SEA-HPFH) by analyses of the hematologic data and Southern blot hybridization with polymerase chain reaction-amplified DNA probes. DNA mapping with a probe for a δ-globin fragment showed a 27-kb deletion of DNA that included the β-globin gene and the 3′ deoxyribonuclease I hypersensitive site 1 (3′HS1) sequence downstream. Deletion of the insulator, 3′HS1, and the juxtaposition of the HPFH-3 core enhancer downstream to the 3′ breakpoint have been postulated to be the cause of high HbF production in these individuals. To test this hypothesis, we transfected K562 cells with 4 different bacterial artificial chromosome constructs containing the enhanced green fluorescent protein (EGFP) gene at the position of the Aγ-globin gene (pEBAC/148β:EGFP). Flow cytometry was used to compare EGFP expression from the pEBAC/148β:EGFP construct with the HPFH-3 core enhancer immediately 5′ to the SEA-HPFH breakpoint (pEnH), from the pEBAC/148β:EGFP construct with 8 kb of the breakpoint sequence and the HPFH-3 core enhancer (pSEA-HPFH), and from the construct with 3′HS1 followed by the pSEA-HPFH sequence (pSEA-HPFH_3pHS1). The results show that high HbF production in SEA-HPFH occurs from a deletion of the 3′HS1 sequence and the juxtaposition of the HPFH-3 enhancer downstream to the γ-globin gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wood WG. Hereditary persistence of fetal hemoglobin and δβ°-thalassemia. In: Steinberg MH, Forget BG, Higgs DR, et al, eds. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge, UK: Cambridge University Press; 2001: 356–388.

    Google Scholar 

  2. Forget BG. Molecular basis of hereditary persistence of fetal hemoglobin. Ann N Y Acad Sci. 1998;850:38–44.

    Article  PubMed  CAS  Google Scholar 

  3. Vitale M, Di Marzo R, Calzolari R, et al. Evidence for a globin promoter-specific silencer element located upstream of the human δ-globin gene. Biochem Biophys Res Commun. 1994;204:413–418.

    Article  PubMed  CAS  Google Scholar 

  4. Vitale M, Calzolari R, Di Marzo R, Acuto S, Maggio A. A region upstream of the human δ-globin gene shows a stage-specific interaction with globin promoters in erythroid cell lines. Blood Cells Mol Dis. 2001;27:874–881.

    Article  PubMed  CAS  Google Scholar 

  5. Anagnou NP, Perez-Stable C, Gelinas R, et al. Sequences located 3′ to the breakpoint of the hereditary persistence of fetal hemoglobin-3 deletion exhibit enhancer activity and can modify the developmental expression of the human fetal Aγ-globin gene in transgenic mice. J Biol Chem. 1995;270:10256–10263.

    Article  PubMed  CAS  Google Scholar 

  6. Arcasoy MO, Romana M, Fabry ME, Skarpidi E, Nagel RL, Forget BG. High levels of human γ-globin gene expression in adult mice carrying a transgene of deletion-type hereditary persistence of fetal hemoglobin. Mol Cell Biol. 1997;17:2076–2089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Camaschella C, Serra A, Saglio G, et al. The 3′ ends of the deletions of Spanish δβ°-thalassemia and black HPFH 1 and 2 lie within 17 kilobases. Blood. 1987;70:593–596.

    PubMed  CAS  Google Scholar 

  8. Camaschella C, Serra A, Gottardi E, et al. A new hereditary persistence of fetal hemoglobin deletion has the breakpoint within the 3′ β-globin gene enhancer. Blood. 1990;75:1000–1005.

    PubMed  CAS  Google Scholar 

  9. Feingold EA, Forget BG. The breakpoint of a large deletion causing hereditary persistence of fetal hemoglobin occurs within an erythroid DNA domain remote from the β-globin gene cluster. Blood. 1989;74:2178–2186.

    PubMed  CAS  Google Scholar 

  10. Kosteas T, Palena A, Anagnou NP. Molecular cloning of the breakpoints of the hereditary persistence of fetal hemoglobin type-6 (HPFH-6) deletion and sequence analysis of the novel juxtaposed region from the 3′ end of the β-globin gene cluster. Hum Genet. 1997;100:441–445.

    Article  PubMed  CAS  Google Scholar 

  11. Stolle CA, Penny LA, Ivory S, Forget BG, Benz EJ Jr. Sequence analysis of the γ-globin gene locus from a patient with the deletion form of hereditary persistence of fetal hemoglobin. Blood. 1990;75:499–504.

    PubMed  CAS  Google Scholar 

  12. Fucharoen S, Shimizu K, Fukumaki Y. A novel C-T transition within the distal CCAAT motif of the Gγ-globin gene in the Japanese HPFH: implication of factor binding in elevated fetal globin expression. Nucleic Acids Res. 1990;18:5245–5253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Nicolis S, Ronchi A, Malgaretti N, Mantovani R, Giglioni B, Ottolenghi S. Increased erythroid-specific expression of a mutated HPFH γ-globin promoter requires the erythroid factor NFE-1. Nucleic Acids Res. 1989;17:5509–5516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Liu LR, Du ZW, Zhao HL, et al. T to C substitution at -175 or -173 of the γ-globin promoter affects GATA-1 and Oct-1 binding in vitro differently, but can independently reproduce HPFH phenotype in transgenic mice. J Biol Chem. 2005;280:7452–7459.

    Article  PubMed  CAS  Google Scholar 

  15. Jane SM, Gumucio DL, Ney PA, Cunningham JM, Nienhuis AW. Methylation-enhanced binding of Sp1 to the stage selector element of the human γ-globin gene promoter may regulate development specificity of expression. Mol Cell Biol. 1993;13:3272–3281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lloyd JA, Lee RF, Lingrel JB. Mutations in two regions upstream of the Aγ globin gene canonical promoter affect gene expression. Nucleic Acids Res. 1989;17:4339–4352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhou W, Clouston DR, Wang X, Cerruti L, Cunningham JM, Jane SM. Induction of human fetal globin gene expression by a novel erythroid factor, NF-E4. Mol Cell Biol. 2000;20:7662–7672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mantovani R, Malgaretti N, Nicolis S, Ronchi A, Giglioni B, Ottolenghi S. The effects of HPFH mutations in the human γ-globin promoter on binding of ubiquitous and erythroid specific nuclear factors. Nucleic Acids Res. 1988;16:7783–7797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mantovani R, Superti-Furga G, Gilman J, Ottolenghi S. The deletion of the distal CCAAT box region of the Aγ-globin gene in black HPFH abolishes the binding of the erythroid specific protein NFE3 and of the CCAAT displacement protein. Nucleic Acids Res. 1989;17:6681–6691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Stamatoyannopoulos G, Grosveld F. Hemoglobin switching. In: Varmus H, ed. The Molecular Basis of Blood Diseases. Philadelphia, Pa: WB. Saunders; 2001:135–182.

    Google Scholar 

  21. Elder JT, Forrester WC, Thomson C, et al. Translocation of an erythroid-specific hypersensitive site in deletion-type hereditary persistence of fetal hemoglobin. Mol Cell Biol. 1990;10:1382–1389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kosteas T, Pavlou O, Palina A. Complete sequencing and functional analysis of the HPFH-6 enhancer: detection of multiple motifs for transcription factors and identification of an open reading frame [abstract]. Blood. 1996;88:150a.

    Google Scholar 

  23. Fleenor DE, Kaufman RE. Characterization of the DNase I hypersensitive site 3′ of the human β-globin gene domain. Blood. 1993;81:2781–2790.

    PubMed  CAS  Google Scholar 

  24. Farrell CM, West AG, Felsenfeld G. Conserved CTCF insulator elements flank the mouse and human β-globin loci. Mol Cell Biol. 2002;22:3820–3831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Winichagoon P, Saechan V, Sripanich R, et al. Prenatal diagnosis of β-thalassaemia by reverse dot-blot hybridization. Prenat Diagn. 1999;19:428–435.

    Article  PubMed  CAS  Google Scholar 

  26. Craig JE, Barnetson RA, Prior J, Raven JL, Thein SL. Rapid detection of deletions causing δβ-thalassemia and hereditary persistence of fetal hemoglobin by enzymatic amplification. Blood. 1994;83:1673–1682.

    PubMed  CAS  Google Scholar 

  27. Sutton M, Bouhassira EE, Nagel RL. Polymerase chain reaction amplification applied to the determination of β-like globin gene cluster haplotypes. Am J Hematol. 1989;32:66–69.

    Article  PubMed  CAS  Google Scholar 

  28. Xu XM, Li ZQ, Liu ZY, Zhong XL, Zhao YZ, Mo QH. Molecular characterization and PCR detection of a deletional HPFH: application to rapid prenatal diagnosis for compound heterozygotes of this defect with β-thalassemia in a Chinese family. Am J Hematol. 2000;65:183–188.

    Article  PubMed  CAS  Google Scholar 

  29. Narayanan K, Williamson R, Zhang Y, Stewart AF, Ioannou PA. Efficient and precise engineering of a 200 kb β-globin human/ bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system. Gene Ther. 1999;6:442–447.

    Article  PubMed  CAS  Google Scholar 

  30. Orford M, Nefedov M, Vadolas J, Zaibak F, Williamson R, Ioannou PA. Engineering EGFP reporter constructs into a 200 kb human β-globin BAC clone using GET recombination. Nucleic Acids Res. 2000;28:E84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Vadolas J, Wardan H, Orford M, et al. Development of sensitive fluorescent assays for embryonic and fetal hemoglobin inducers using the human β-globin locus in erythropoietic cells. Blood. 2002;100:4209–4216.

    Article  PubMed  CAS  Google Scholar 

  32. Lee CH, Yu D, Martinez de Velasco J, et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics. 2001;73:56–65.

    Article  PubMed  CAS  Google Scholar 

  33. Dimovski AJ, Divoky V, Adekile AD, et al. A novel deletion of -27 kb including the β-globin gene and the locus control region 3′HS-1 regulatory sequence: β°-thalassemia or hereditary persistence of fetal hemoglobin? Blood. 1994;83:822–827.

    PubMed  CAS  Google Scholar 

  34. Fucharoen S, Winichagoon P, Chaicharoen S, Wasi P. Different molecular defects of Gγ(Aγδβ)°-thalassaemia in Thailand. Eur J Haematol. 1987;39:154–160.

    Article  PubMed  CAS  Google Scholar 

  35. Winichagoon P, Fucharoen S, Thonglairoam V, Wasi P. Thai Gγ(Aγδβ)°-thalassemia and its interaction with a single γ-globin gene on a chromosome carrying β°-thalassemia. Hemoglobin. 1990;14:185–197.

    Article  PubMed  CAS  Google Scholar 

  36. Trachoo O, Sura T, Sakuntabhai A, et al. Molecular characterization of hereditary persistence of fetal hemoglobin in the Karen people of Thailand. Hemoglobin. 2003;27:97–104.

    Article  PubMed  CAS  Google Scholar 

  37. Motum PI, Hamilton TJ, Lindeman R, Le H, Trent RJ. Molecular characterisation of Vietnamese HPFH. Hum Mutat. 1993;2:179–184.

    Article  PubMed  CAS  Google Scholar 

  38. Fucharoen S, Pengjam Y, Surapot S, Fucharoen G, Sanchaisuriya K. Molecular characterization of (δβ)°/β°-thalassemia and (δβ)°-thalassemia/hemoglobin E in Thai patients. Eur J Haematol. 2001;67:258–262.

    Article  PubMed  CAS  Google Scholar 

  39. Fucharoen S, Pengjam Y, Surapot S, Fucharoen G, Sanchaisuriya K. Molecular and hematological characterization of HPFH-6/Indian deletion-inversion Gγ(Aγδβ)°-thalassemia/HbE in Thai patients. Am J Hematol. 2002;71:109–113.

    Article  PubMed  CAS  Google Scholar 

  40. Fucharoen S, Fucharoen G, Sanchaisuriya K, Surapot S. Molecular characterization of thalassemia intermedia associated with HPFH-6/β-thalassemia and HPFH-6/Hb E in Thai patients. Acta Haematol. 2002;108:157–161.

    Article  PubMed  Google Scholar 

  41. Haley JD, Smith DE, Schwedes J, et al. Identification and characterization of mechanistically distinct inducers of γ-globin transcription. Biochem Pharmacol. 2003;66:1755–1768.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suthat Fucharoena.

About this article

Cite this article

Changsri, K., Akkarapathumwong, V., Jamsai, D. et al. Molecular Mechanism of High Hemoglobin F Production in Southeast Asian-Type Hereditary Persistence of Fetal Hemoglobin. Int J Hematol 83, 229–237 (2006). https://doi.org/10.1532/IJH97.E0509

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.E0509

Key words

Navigation