Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2019

TMEM100 expression suppresses metastasis and enhances sensitivity to chemotherapy in gastric cancer

  • Jinfu Zhuang , Yongjian Huang , Wei Zheng , Shugang Yang , Guangwei Zhu , Jinzhou Wang , Xiaohan Lin and Jianxin Ye EMAIL logo
From the journal Biological Chemistry

Abstract

The gene encoding transmembrane protein 100 (TMEM100) was first discovered to be transcribed by the murine genome. It has been recently proven that TMEM100 contributes to hepatocellular carcinoma and non-small-cell lung carcinoma (NSCLC). This study investigates the impact of TMEM100 expression on gastric cancer (GC). TMEM100 expression was remarkably downregulated in GC samples compared to the surrounding non-malignant tissues (p < 0.01). Excessive TMEM100 expression prohibited the migration and invasion of GC cells without influencing their growth. However, TMEM100 knockdown restored their migration and invasion potential. Additionally, TMEM100 expression restored the sensitivity of GC cells to chemotherapeutic drugs such as 5-fluouracil (5-FU) and cisplatin. In terms of TMEM100 modulation, it was revealed that BMP9 rather than BMP10, is the upstream modulator of TM3M100. HIF1α downregulation modulated the impact of TMEM100 on cell migration, chemotherapy sensitivity and invasion in GC cells. Eventually, the in vivo examination of TMEM100 activity revealed that its upregulation prohibits the pulmonary metastasis of GC cells and increases the sensitivity of xenograft tumors to 5-FU treatment. In conclusion, TMEM100 serves as a tumor suppressor in GC and could be used as a promising target for the treatment of GC and as a predictor of GC clinical outcome.

Award Identifier / Grant number: 2018J01165

Funding statement: This work was supported by the Natural Science Foundation of Fujian Province under, Funder Id: http://dx.doi.org/10.13039/501100003392, Grant number: 2018J01165.

  1. Conflict of interest statement: No potential conflict of interest is declared by the authors.

References

Bielenberg, D.R. and Zetter, B.R. (2015). The contribution of angiogenesis to the process of metastasis. Cancer J. 21, 267–273.10.1097/PPO.0000000000000138Search in Google Scholar PubMed PubMed Central

Carty, C.L., Johnson, N.A., Hutter, C.M., Reiner, A.P., Peters, U., Tang, H., and Kooperberg, C. (2012). Genome-wide association study of body height in African Americans: the Women’s Health Initiative SNP Health Association Resource (SHARe). Hum. Mol. Genet. 21, 711–720.10.1093/hmg/ddr489Search in Google Scholar PubMed PubMed Central

Cunha, S.I. and Pietras, K. (2011). ALK1 as an emerging target for antiangiogenic therapy of cancer. Blood 117, 6999–7006.10.1182/blood-2011-01-330142Search in Google Scholar PubMed PubMed Central

Cunha, S.I., Pardali, E., Thorikay, M., Anderberg, C., Hawinkels, L., Goumans, M.J., Seehra, J., Heldin, C.H., ten Dijke, P., and Pietras, K. (2010). Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J. Exp. Med. 207, 85–100.10.1084/jem.20091309Search in Google Scholar PubMed PubMed Central

Cunha, S.I., Bocci, M., Lovrot, J., Eleftheriou, N., Roswall, P., Cordero, E., Lindstrom, L., Bartoschek, M., Haller, B.K., Pearsall, R.S., et al. (2015). Endothelial ALK1 is a therapeutic target to block metastatic dissemination of breast cancer. Cancer Res. 75, 2445–2456.10.1158/0008-5472.CAN-14-3706Search in Google Scholar PubMed

David, L., Mallet, C., Mazerbourg, S., Feige, J.J., and Bailly, S. (2007). Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109, 1953–1961.10.1182/blood-2006-07-034124Search in Google Scholar PubMed

Duan, L., Ye, L., Wu, R., Wang, H., Li, X., Li, H., Yuan, S., Zha, H., Sun, H., Zhang, Y., et al. (2015). Inactivation of the phosphatidylinositol 3-kinase/Akt pathway is involved in BMP9-mediated tumor-suppressive effects in gastric cancer cells. J. Cell. Biochem. 116, 1080–1089.10.1002/jcb.25063Search in Google Scholar PubMed

Frullanti, E., Colombo, F., Falvella, F.S., Galvan, A., Noci, S., De Cecco, L., Incarbone, M., Alloisio, M., Santambrogio, L., Nosotti, M., et al. (2012). Association of lung adenocarcinoma clinical stage with gene expression pattern in noninvolved lung tissue. Int. J. Cancer 131, E643–E648.10.1002/ijc.27426Search in Google Scholar PubMed

Giordano, A.I., Domenech, I., Torres, A., Skufca, J., Callejo, A., Palomino, L., Aparicio, A., Junyent, J., and Mañós, M. (2012). [Results in the surgical treatment of giant acoustic neuromas.] Acta Otorrinolaringol. Esp. 63, 194–199.10.1016/j.otorri.2011.11.003Search in Google Scholar PubMed

Han, Z., Wang, T., Han, S., Chen, Y., Chen, T., Jia, Q., Li, B., Li, B., Wang, J., Chen, G., et al. (2017). Low-expression of TMEM100 is associated with poor prognosis in non-small-cell lung cancer. Am. J. Transl. Res. 9, 2567–2578.Search in Google Scholar

Kawai, J., Shinagawa, A., Shibata, K., Yoshino, M., Itoh, M., Ishii, Y., Arakawa, T., Hara, A., Fukunishi, Y., Konno, H., et al. (2001). Functional annotation of a full-length mouse cDNA collection. Nature 409, 685–690.10.1038/35055500Search in Google Scholar PubMed

Kitajima, Y. and Miyazaki, K. (2013). The critical impact of HIF-1a on gastric cancer biology. Cancers (Basel) 5, 15–26.10.3390/cancers5010015Search in Google Scholar PubMed PubMed Central

Kondo, Y., Arii, S., Mori, A., Furutani, M., Chiba, T., and Imamura, M. (2000). Enhancement of angiogenesis, tumor growth, and metastasis by transfection of vascular endothelial growth factor into LoVo human colon cancer cell line. Clin. Cancer Res. 6, 622–630.Search in Google Scholar

Lei, H., Wang, J., Lu, P., Si, X., Han, K., Ruan, T., and Lu, J. (2016). BMP10 inhibited the growth and migration of gastric cancer cells. Tumour Biol. 37, 3025–3031.10.1007/s13277-015-4116-5Search in Google Scholar PubMed

Liu, N., Peng, S.M., Zhan, G.X., Yu, J., Wu, W.M., Gao, H., Li, X.F., and Guo, X.Q. (2017). Human chorionic gonadotropin beta regulates epithelial-mesenchymal transition and metastasis in human ovarian cancer. Oncol. Rep. 38, 1464–1472.10.3892/or.2017.5818Search in Google Scholar PubMed PubMed Central

Mizuta, K., Sakabe, M., Somekawa, S., Saito, Y., and Nakagawa, O. (2016). TMEM100: a novel intracellular transmembrane protein essential for vascular development and cardiac morphogenesis. In: Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology, T. Nakanishi, R.R. Markwald, H.S. Baldwin, B.B. Keller, D. Srivastava, H. Yamagishi, eds. (Berlin, Heidelberg, Germany: Springer), pp. 169–170.10.1007/978-4-431-54628-3_21Search in Google Scholar PubMed

Moon, E.H., Kim, M.J., Ko, K.S., Kim, Y.S., Seo, J., Oh, S.P., and Lee, Y.J. (2010). Generation of mice with a conditional and reporter allele for Tmem100. Genesis 48, 673–678.10.1002/dvg.20674Search in Google Scholar PubMed

Moon, E.H., Kim, Y.S., Seo, J., Lee, S., Lee, Y.J., and Oh, S.P. (2015). Essential role for TMEM100 in vascular integrity but limited contributions to the pathogenesis of hereditary haemorrhagic telangiectasia. Cardiovasc. Res. 105, 353–360.10.1093/cvr/cvu260Search in Google Scholar PubMed PubMed Central

Oh, S.P., Seki, T., Goss, K.A., Imamura, T., Yi, Y., Donahoe, P.K., Li, L., Miyazono, K., ten Dijke, P., Kim, S., et al. (2000). Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc. Natl. Acad. Sci. U.S.A. 97, 2626–2631.10.1073/pnas.97.6.2626Search in Google Scholar PubMed PubMed Central

Ou, D., Yang, H., Hua, D., Xiao, S., and Yang, L. (2015). Novel roles of TMEM100: inhibition metastasis and proliferation of hepatocellular carcinoma. Oncotarget 6, 17379–17390.10.18632/oncotarget.3954Search in Google Scholar PubMed PubMed Central

Ouarne, M., Bouvard, C., Boneva, G., Mallet, C., Ribeiro, J., Desroches-Castan, A., Soleilhac, E., Tillet, E., Peyruchaud, O., and Bailly, S. (2018). BMP9, but not BMP10, acts as a quiescence factor on tumor growth, vessel normalization and metastasis in a mouse model of breast cancer. J. Exp. Clin. Cancer Res. 37, 209.10.37247/IMCAC.1.2021.20Search in Google Scholar

Ren, D., Ju, P., Liu, J., Ni, D., Gu, Y., Long, Y., Zhou, Q., and Xie, Y. (2018). BMP7 plays a critical role in TMEM100-inhibited cell proliferation and apoptosis in mouse metanephric mesenchymal cells in vitro. In Vitro Cell. Dev. Biol. Anim. 54, 111–119.10.1007/s11626-017-0211-9Search in Google Scholar PubMed

Rohwer, N., Dame, C., Haugstetter, A., Wiedenmann, B., Detjen, K., Schmitt, C.A., and Cramer, T. (2010). Hypoxia-inducible factor 1alpha determines gastric cancer chemosensitivity via modulation of p53 and NF-kappaB. PLoS One 5, e12038.10.1371/journal.pone.0012038Search in Google Scholar PubMed PubMed Central

Somekawa, S., Imagawa, K., Hayashi, H., Sakabe, M., Ioka, T., Sato, G.E., Inada, K., Iwamoto, T., Mori, T., Uemura, S., et al. (2012). Tmem100, an ALK1 receptor signaling-dependent gene essential for arterial endothelium differentiation and vascular morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 109, 12064–12069.10.1073/pnas.1207210109Search in Google Scholar PubMed PubMed Central

Stoeltzing, O., McCarty, M.F., Wey, J.S., Fan, F., Liu, W., Belcheva, A., Bucana, C.D., Semenza, G.L., and Ellis, L.M. (2004). Role of hypoxia-inducible factor 1alpha in gastric cancer cell growth, angiogenesis, and vessel maturation. J. Natl. Cancer Inst. 96, 946–956.10.1093/jnci/djh168Search in Google Scholar PubMed

Tachida, Y., Izumi, N., Sakurai, T., and Kobayashi, H. (2017). Mutual interaction between endothelial cells and mural cells enhances BMP9 signaling in endothelial cells. Biol. Open 6, 370–380.10.1242/bio.020503Search in Google Scholar PubMed PubMed Central

Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A. (2015). Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108.10.3322/caac.21262Search in Google Scholar PubMed

Wang, K., Feng, H., Ren, W., Sun, X., Luo, J., Tang, M., Zhou, L., Weng, Y., He, T.C., and Zhang, Y. (2011). BMP9 inhibits the proliferation and invasiveness of breast cancer cells MDA-MB-231. J. Cancer Res. Clin. Oncol. 137, 1687–1696.10.1007/s00432-011-1047-4Search in Google Scholar PubMed

Ye, L., Bokobza, S., Li, J., Moazzam, M., Chen, J., Mansel, R.E., and Jiang, W.G. (2010). Bone morphogenetic protein-10 (BMP-10) inhibits aggressiveness of breast cancer cells and correlates with poor prognosis in breast cancer. Cancer Sci. 101, 2137–2144.10.1111/j.1349-7006.2010.01648.xSearch in Google Scholar PubMed

Zhu, G., Zhou, L., Liu, H., Shan, Y., and Zhang, X. (2018). MicroRNA-224 promotes pancreatic cancer cell proliferation and migration by targeting the TXNIP-mediated HIF1α pathway. Cell. Physiol. Biochem. 48, 1735–1746.10.1159/000492309Search in Google Scholar PubMed

Received: 2019-02-16
Accepted: 2019-06-01
Published Online: 2019-06-11
Published in Print: 2020-02-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2019-0161/html
Scroll to top button