Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 10, 2015

Cysteine cathepsins and cystatins: from ancillary tasks to prominent status in lung diseases

  • Gilles Lalmanach EMAIL logo , Ahlame Saidi , Sylvain Marchand-Adam , Fabien Lecaille and Mariana Kasabova
From the journal Biological Chemistry

Abstract

Human cysteine cathepsins (family C1, clan CA) have long been regarded as ubiquitous household enzymes, primarily involved in the recycling and degradation of proteins in lysosomes. This opinion has changed considerably during recent decades, however, with the demonstration of their involvement in various physiological processes. A growing body of evidence supports the theory that cathepsins play specific functions in lung homeostasis and pathophysiological events such as asthma, lung fibrosis (including idiopathic pulmonary fibrosis), chronic obstructive pulmonary disease (embracing emphysema and chronic bronchitis), silicosis, bronchopulmonary dysplasia or tumor invasion. The objective of this review is to provide an update on the current knowledge of the role of these enzymes in the lung. Particular attention has been paid to the understanding of the role of these proteases and their natural inhibitors, cystatins (family I25, clan IH), in TGF-β1-driven fibrotic processes with an emphasis on lung fibrosis.


Corresponding author: Gilles Lalmanach, INSERM U1100 ‘Pathologies Pulmonaires: Protéolyse et Aérosolthérapie’, Equipe Mécanismes Protéolytiques dans l’Inflammation/Centre d’Etude des Pathologies Respiratoires, Université François Rabelais, Faculté de Médecine, 10 Boulevard Tonnellé, F-37032 Tours cedex, France, e-mail:

Acknowledgments

We apologize for any references omitted due to space limitations. We thank la Région Centre for their financial support (FibroCat project). We acknowledge the Institut National de la Santé et de la Recherche Médicale for institutional funding. Dr Mariana Kasabova had former doctoral scholarship from Ministère de l’Education Nationale, de la Recherche et de la Technologie, France. The authors have declared no conflict of interest.

References

Abrahamson, M., Barrett, A.J., Salvesen, G., and Grubb, A. (1986). Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. Chem. 261, 11282–11289.10.1016/S0021-9258(18)67380-6Search in Google Scholar

Abrahamson, M., Alvarez-Fernandez, M., and Nathanson, C-M. (2003). Cystatins. Biochem. Soc. Symp. 70, 179–199.10.1042/bss0700179Search in Google Scholar PubMed

Allen, J.T. and Spiteri, M.A. (2002). Growth factors in idiopathic pulmonary fibrosis: relative roles. Respir. Res. 3, 13.10.1186/rr162Search in Google Scholar PubMed PubMed Central

Altiok, O., Yasumatsu, R., Bingol-Karakoc, G., Riese, R.J., Stahlman, M.T., Dwyer, W., Pierce, R.A., Bromme, D., Weber, E., and Cataltepe, S. (2006). Imbalance between cysteine proteases and inhibitors in a baboon model of bronchopulmonary dysplasia. Am. J. Respir. Crit. Care. Med. 173, 318–326.10.1164/rccm.200503-425OCSearch in Google Scholar PubMed PubMed Central

Alvarez-Fernandez, M., Barrett, A.J., Gerhartz, B., Dando, P.M., Ni, J., and Abrahamson, M. (1999). Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 274, 19195–19203.10.1074/jbc.274.27.19195Search in Google Scholar PubMed

Barrett, A.J. and Starkey, P.M. (1973). The interaction of α2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem. J. 133, 709–724.10.1042/bj1330709Search in Google Scholar PubMed PubMed Central

Barrett, A.J., Fritz, H., Grubb, A., Isemura, S., Järvinen, M., Katunuma, N., Machleidt, W., Müller-Esterl, W., Sasaki, M., and Turk, V. (1986). Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochem. J. 236, 312.10.1042/bj2360312Search in Google Scholar PubMed PubMed Central

Barry, Z.T. and Platt, M.O. (2012). Cathepsin S cannibalism of cathepsin K as a mechanism to reduce type I collagen degradation. J. Biol. Chem. 287, 27723–27730.10.1074/jbc.M111.332684Search in Google Scholar PubMed PubMed Central

Berkebile, A.R. and McCray, P.B. Jr (2014). Effects of airway surface liquid pH on host defense in cystic fibrosis. Int. J. Biochem. Cell Biol. 52C, 124–129.10.1016/j.biocel.2014.02.009Search in Google Scholar PubMed PubMed Central

Bhoola, K.D., Figueroa, C.D., and Worthy, K. (1992). Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol. Rev. 44, 1–80.Search in Google Scholar

Bode, W. and Huber, R. (1992). Natural protein proteinase inhibitors and their interaction with proteinases. Eur. J. Biochem. 204, 433–451.10.1111/j.1432-1033.1992.tb16654.xSearch in Google Scholar PubMed

Brasch, F., Ten Brinke, A., Johnen, G., Ochs, M., Kapp, N., Müller, K.M., Beers, M.F., Fehrenbach, H., Richter, J., Batenburg, J.J., et al. (2002). Involvement of cathepsin H in the processing of the hydrophobic surfactant-associated protein C in type II pneumocytes. Am. J. Respir. Cell Mol. Biol. 26, 659–670.10.1165/ajrcmb.26.6.4744Search in Google Scholar

Brix, K., Dunkhorst, A., Mayer, K., and Jordans, S. (2008). Cysteine cathepsins: cellular roadmap to different functions. Biochimie. 90, 194–207.10.1016/j.biochi.2007.07.024Search in Google Scholar

Brömme, D. and Lecaille, F. (2009). Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert. Opin. Investig. Drugs 18, 585–600.10.1517/13543780902832661Search in Google Scholar

Bruce, M.C., Schuyler, M., Martin, R.J., Starcher, B.C., Tomashefski, J.F., and Wedig, K.E. (1992). Risk factors for the degradation of lung elastic fibers in the ventilated neonate. Implications for impaired lung development in bronchopulmonary dysplasia. Am. Rev. Respir. Dis. 146, 204–212.10.1164/ajrccm/146.1.204Search in Google Scholar

Bühling, F., Röcken, C., Brasch, F., Hartig, R., Yasuda, Y., Saftig, P., Brömme, D., and Welte, T. (2004). Pivotal role of cathepsin K in lung fibrosis. Am. J. Pathol. 164, 2203–2216.10.1016/S0002-9440(10)63777-7Search in Google Scholar

Bühling, F., Kouadio, M., Chwieralski, C.E., Kern, U., Hohlfeld, J.M., Klemm, N., Friedrichs, N., Roth, W., Deussing, J.M., Peters, C., et al. (2011). Gene targeting of the cysteine peptidase cathepsin H impairs lung surfactant in mice. PLoS One 6, e26247.10.1371/journal.pone.0026247Search in Google Scholar PubMed PubMed Central

Canbay, A., Guicciardi, M.E., Higuchi, H., Feldstein, A., Bronk, S.F., Rydzewski, R., Taniai, M., and Gores, G.J. (2003). Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis. J. Clin. Invest. 112, 152–159.10.1172/JCI200317740Search in Google Scholar

Cassel, S.L., Eisenbarth, S.C., Iyer, S.S., Sadler, J.J., Colegio, O.R., Tephly, L.A., Carter, A.B., Rothman, P.B., Flavell, R.A., and Sutterwala, F.S. (2008). The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl. Acad. Sci. USA 105, 9035–9040.10.1073/pnas.0803933105Search in Google Scholar PubMed PubMed Central

Ceru, S., Konjar, S., Maher, K., Repnik, U., Krizaj, I., Bencina, M., Renko, M., Nepveu, A., Zerovnik, E., Turk, B., et al. (2010). Stefin B interacts with histones and cathepsin L in the nucleus. J. Biol. Chem. 285, 10078–10086.10.1074/jbc.M109.034793Search in Google Scholar PubMed PubMed Central

Chakraborty, S., Chopra, P., Hak, A., Dastidar, S.G., and Ray, A. (2013). Hepatocyte growth factor is an attractive target for the treatment of pulmonary fibrosis. Expert. Opin. Investig. Drugs 22, 499–515.10.1517/13543784.2013.778972Search in Google Scholar PubMed

Chen, H., Wang, J., Xiang, M.-X., Lin, Y., He, A., Jin, C.-N., Guan, J., Sukhova, G.K., Libby, P., Wang, J.-A., et al. (2013). Cathepsin S-mediated fibroblast trans-differentiation contributes to left ventricular remodelling after myocardial infarction. Cardiovasc. Res. 100, 84–94.10.1093/cvr/cvt158Search in Google Scholar

Chilosi, M., Pea, M., Martignoni, G., Brunelli, M., Gobbo, S., Poletti, V., and Bonetti, F. (2009). Cathepsin-k expression in pulmonary lymphangioleiomyomatosis. Mod. Pathol. 22, 161–166.10.1038/modpathol.2008.189Search in Google Scholar

Chu, S.-C., Wang, C.-P., Chang, Y.-H., Hsieh, Y.-S., Yang, S.-F., Su, J.-M., Yang, C.-C., and Chiou, H-L. (2004). Increased cystatin C serum concentrations in patients with hepatic diseases of various severities. Clin. Chim. Acta 341, 133–138.10.1016/j.cccn.2003.11.011Search in Google Scholar

Chung-Hung, T., Shun-Fa, Y., and Yu-Chao, C. (2007). The upregulation of cystatin C in oral submucous fibrosis. Oral. Oncol. 43, 680–685.10.1016/j.oraloncology.2006.08.009Search in Google Scholar

Cimerman, N., Brguljan, P.M., Krasovec, M., Suskovic, S., and Kos, J. (2001). Circadian and concentration profile of cathepsin S in sera from healthy subjects and asthmatic patients. Pflüger’s Arch 442, R204–206.10.1007/s004240100026Search in Google Scholar

Clézardin, P. (2011). Therapeutic targets for bone metastases in breast cancer. Breast Cancer Res. 13, 207.10.1186/bcr2835Search in Google Scholar

Coalson, J.J. (2003). Pathology of new bronchopulmonary dysplasia. Semin. Neonatol. 8, 73–81.10.1016/S1084-2756(02)00193-8Search in Google Scholar

Coulibaly, S., Schwihla, H., Abrahamson, M., Albini, A., Cerni, C., Clark, J.L., Ng, K.M., Katunuma, N., Schlappack, O., Glössl, J., et al. (1999). Modulation of invasive properties of murine squamous carcinoma cells by heterologous expression of cathepsin B and cystatin C. Int. J. Cancer 83, 526–531.10.1002/(SICI)1097-0215(19991112)83:4<526::AID-IJC15>3.0.CO;2-MSearch in Google Scholar

Cygler, M. and Mort, J.S. (1997). Proregion structure of members of the papain superfamily. Mode of inhibition of enzymatic activity. Biochimie. 79, 645–652.10.1016/S0300-9084(97)83497-9Search in Google Scholar

Dahl, S.W., Halkier, T., Lauritzen, C., Dolenc, I., Pedersen, J., Turk, V., and Turk, B. (2001). Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 40, 1671–1678.10.1021/bi001693zSearch in Google Scholar

Demedts, M. and Costabel, U. (2002). ATS/ERS international multidisciplinary consensus classification of the idiopathic interstitial pneumonias. Eur. Respir. J. 19, 794–796.10.1183/09031936.02.00492002Search in Google Scholar

Derynck, R. and Zhang, Y.E. (2003). Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584.10.1038/nature02006Search in Google Scholar

Deschamps, K., Cromlish, W., Weicker, S., Lamontagne, S., Huszar, S.L., Gauthier, J.Y., Mudgett, J.S., Guimond, A., Romand, R., Frossard, N., et al. (2010). Genetic and pharmacological evaluation of cathepsin S in a mouse model of asthma. Am. J. Respir. Cell Mol. Biol. 45, 81–87.10.1165/rcmb.2009-0392OCSearch in Google Scholar

Ding, M., Chen, F., Shi, X., Yucesoy, B., Mossman, B., and Vallyathan, V. (2002). Diseases caused by silica: mechanisms of injury and disease development. Int. Immunopharmacol. 2, 173–182.10.1016/S1567-5769(01)00170-9Search in Google Scholar

Dubois, C.M., Laprise, M.H., Blanchette, F., Gentry, L.E., and Leduc, R. (1995). Processing of transforming growth factor β1 precursor by human furin convertase. J. Biol. Chem. 270, 10618–10624.10.1074/jbc.270.18.10618Search in Google Scholar PubMed

Duncan, E.M., Muratore-Schroeder, T.L., Cook, R.G., Garcia, B.A., Shabanowitz, J., Hunt, D.F., and Allis, C.D. (2008). Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135, 284–294.10.1016/j.cell.2008.09.055Search in Google Scholar PubMed PubMed Central

Ekiel, I., Abrahamson, M., Fulton, D.B., Lindahl, P., Storer, A.C., Levadoux, W., Lafrance, M., Labelle, S., Pomerleau, Y., Groleau, D., et al. (1997). NMR structural studies of human cystatin C dimers and monomers. J. Mol. Biol. 271, 266–277.10.1006/jmbi.1997.1150Search in Google Scholar PubMed

Ekström, U., Wallin, H., Lorenzo, J., Holmqvist, B., Abrahamson, M., and Avilés, F.X. (2008). Internalization of cystatin C in human cell lines. FEBS J. 275, 4571–4582.10.1111/j.1742-4658.2008.06600.xSearch in Google Scholar PubMed PubMed Central

El-Kersh, K., Perez, R.L., Smith, J.S., and Fraig, M. (2013). Smoking-related interstitial fibrosis (SRIF) and pulmonary hypertension. BMJ Case Rep. 2013, doi: 10.1136/bcr-2013-008970.10.1136/bcr-2013-008970Search in Google Scholar PubMed PubMed Central

Engelke, K., Nagase, S., Fuerst, T., Small, M., Kuwayama, T., Deacon, S., Eastell, R., and Genant, H.K. (2014). The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study. J. Bone. Miner. Res. 29, 629–638.10.1002/jbmr.2080Search in Google Scholar PubMed

Faiz, A., Tjin, G., Harkness, L., Weckmann, M., Bao, S., Black, J.L., Oliver, B.G.G., and Burgess, J.K. (2013). The expression and activity of cathepsins D, H and K in asthmatic airways. PLoS One 8, e57245.10.1371/journal.pone.0057245Search in Google Scholar

Fajardo, I., Svensson, L., Bucht, A., and Pejler, G. (2004). Increased levels of hypoxia-sensitive proteins in allergic airway inflammation. Am. J. Respir. Crit. Care Med. 170, 477–484.10.1164/rccm.200402-178OCSearch in Google Scholar

Fernandez, I.E. and Eickelberg, O. (2012). New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis. Lancet 380, 680–688.10.1016/S0140-6736(12)61144-1Search in Google Scholar

Figueroa, C.D., Henderson, L.M., Kaufmann, J., De La Cadena, R.A., Colman, R.W., Müller-Esterl, W., and Bhoola, K.D. (1992). Immunovisualization of high (HK) and low (LK) molecular weight kininogens on isolated human neutrophils. Blood 79, 754–759.10.1182/blood.V79.3.754.754Search in Google Scholar

Filler, G., Bökenkamp, A., Hofmann, W., Le Bricon, T., Martínez-Brú, C., and Grubb, A. (2005). Cystatin C as a marker of GFR--history, indications, and future research. Clin. Biochem. 38, 1–8.10.1016/j.clinbiochem.2004.09.025Search in Google Scholar PubMed

Fonović, M. and Turk, B. (2014a). Cysteine cathepsins and extracellular matrix degradation. Biochim. Biophys. Acta 1840, 2560–2570.10.1016/j.bbagen.2014.03.017Search in Google Scholar PubMed

Fonović, M. and Turk, B. (2014b). Cysteine cathepsins and their potential in clinical therapy and biomarker discovery. Proteomics. Clin. Appl. 8, 416–426.10.1002/prca.201300085Search in Google Scholar PubMed

Frerking, I., Günther, A., Seeger, W., and Pison, U. (2001). Pulmonary surfactant: functions, abnormalities and therapeutic options. Intensive. Care. Med. 27, 1699–1717.10.1007/s00134-001-1121-5Search in Google Scholar PubMed

Frick, I-M., Akesson, P., Herwald, H., Mörgelin, M., Malmsten, M., Nägler, D.K., and Björck, L. (2006). The contact system-a novel branch of innate immunity generating antibacterial peptides. EMBO J. 25, 5569–5578.10.1038/sj.emboj.7601422Search in Google Scholar PubMed PubMed Central

Funkelstein, L. and Hook, V. (2011). The novel role of cathepsin L for neuropeptide production illustrated by research strategies in chemical biology with protease gene knockout and expression. Methods Mol. Biol. 768, 107–125.10.1007/978-1-61779-204-5_5Search in Google Scholar PubMed

Garcia-Verdugo, I., Descamps, D., Chignard, M., Touqui, L., and Sallenave, J-M. (2010). Lung protease/anti-protease network and modulation of mucus production and surfactant activity. Biochimie. 92, 1608–1617.10.1016/j.biochi.2010.05.010Search in Google Scholar

Gauldie, J., Kolb, M., Ask, K., Martin, G., Bonniaud, P., and Warburton, D. (2006). Smad3 signaling involved in pulmonary fibrosis and emphysema. Proc. Am. Thorac. Soc. 3, 696–702.10.1513/pats.200605-125SFSearch in Google Scholar

Geraghty, P., Rogan, M.P., Greene, C.M., Brantly, M.L., O’Neill, S.J., Taggart, C.C., and McElvaney, N.G. (2008). Alpha-1-antitrypsin aerosolised augmentation abrogates neutrophil elastase-induced expression of cathepsin B and matrix metalloprotease 2 in vivo and in vitro. Thorax. 63, 621–626.10.1136/thx.2007.088559Search in Google Scholar

Gerber, A., Wille, A., Welte, T., Ansorge, S., and Bühling, F. (2001). Interleukin-6 and transforming growth factor-β 1 control expression of cathepsins B and L in human lung epithelial cells. J. Interferon. Cytokine. Res. 21, 11–19.10.1089/107999001459114Search in Google Scholar

Godat, E., Lecaille, F., Desmazes, C., Duchêne, S., Weidauer, E., Saftig, P., Brömme, D., Vandier, C., and Lalmanach, G. (2004). Cathepsin K: a cysteine protease with unique kinin-degrading properties. Biochem. J. 383, 501–506.10.1042/BJ20040864Search in Google Scholar

Golovatch, P., Mercer, B.A., Lemaître, V., Wallace, A., Foronjy, R.F., and D’Armiento, J. (2009). Role for cathepsin K in emphysema in smoke-exposed guinea pigs. Exp. Lung. Res. 35, 631–645.10.3109/01902140902822304Search in Google Scholar

Goulet, B., Baruch, A., Moon, N-S., Poirier, M., Sansregret, L.L., Erickson, A., Bogyo, M., and Nepveu, A. (2004). A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol. Cell. 14, 207–219.10.1016/S1097-2765(04)00209-6Search in Google Scholar

Gressner, A.M., Lahme, B., Meurer, S.K., Gressner, O., and Weiskirchen, R. (2006). Variable expression of cystatin C in cultured trans-differentiating rat hepatic stellate cells. World. J. Gastroenterol. 12, 731–738.10.3748/wjg.v12.i5.731Search in Google Scholar PubMed PubMed Central

Grubb, A. (2010). Non-invasive estimation of glomerular filtration rate (GFR). The Lund model: Simultaneous use of cystatin C- and creatinine-based GFR-prediction equations, clinical data and an internal quality check. Scand. J. Clin. Lab. Invest. 70, 65–70.10.3109/00365511003642535Search in Google Scholar PubMed PubMed Central

Guicciardi, M.E., Deussing, J., Miyoshi, H., Bronk, S.F., Svingen, P.A., Peters, C., Kaufmann, S.H., and Gores, G.J. (2000). Cathepsin B contributes to TNFα-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J. Clin. Invest. 106, 1127–1137.10.1172/JCI9914Search in Google Scholar PubMed PubMed Central

Guo, M., Mathieu, P.A., Linebaugh, B., Sloane, B.F., and Reiners, J.J. Jr (2002). Phorbol ester activation of a proteolytic cascade capable of activating latent transforming growth factor-betaL a process initiated by the exocytosis of cathepsin B. J. Biol. Chem. 277, 14829–14837.10.1074/jbc.M108180200Search in Google Scholar PubMed

Guo, Y-L. and Colman, R.W. (2005). Two faces of high-molecular-weight kininogen (HK) in angiogenesis: bradykinin turns it on and cleaved HK (HKa) turns it off. J. Thromb. Haemost. 3, 670–676.10.1111/j.1538-7836.2005.01218.xSearch in Google Scholar PubMed

Gurujeyalakshmi, G., Hollinger, M.A., and Giri, S.N. (1999). Pirfenidone inhibits PDGF isoforms in bleomycin hamster model of lung fibrosis at the translational level. Am. J. Physiol. 276, L311–318.10.1152/ajplung.1999.276.2.L311Search in Google Scholar PubMed

Hamid, Q. and Tulic, M. (2009). Immunobiology of asthma. Annu. Rev. Physiol. 71, 489–507.10.1146/annurev.physiol.010908.163200Search in Google Scholar PubMed

Hannothiaux, M.H., Scharfman, A., Wastiaux, A., Cornu, L., van Brussel, E., Lafitte, J.J., Sebastien, P., and Roussel, P. (1991). An attempt to evaluate lung aggression in monkey silicosis: hydrolases, peroxidase and antiproteases activities in serial bronchoalveolar lavages. Eur. Respir. J. 4, 191–204.10.1183/09031936.93.04020191Search in Google Scholar

Haves-Zburof, D., Paperna, T., Gour-Lavie, A., Mandel, I., Glass-Marmor, L., and Miller, A. (2011). Cathepsins and their endogenous inhibitors cystatins: expression and modulation in multiple sclerosis. J. Cell Mol. Med. 15, 2421–2429.10.1111/j.1582-4934.2010.01229.xSearch in Google Scholar PubMed PubMed Central

Henskens, Y.M., Veerman, E.C., and Nieuw Amerongen, A.V. (1996). Cystatins in health and disease. Biol. Chem. Hoppe-Seyler 377, 71–86.Search in Google Scholar

Hinz, B., Phan, S.H., Thannickal, V.J., Galli, A., Bochaton-Piallat, M-L., and Gabbiani, G. (2007). The myofibroblast: one function, multiple origins. Am. J. Pathol. 170, 1807–1816.10.2353/ajpath.2007.070112Search in Google Scholar PubMed PubMed Central

Hirakawa, H., Pierce, R.A., Bingol-Karakoc, G., Karaaslan, C., Weng, M., Shi, G.-P., Saad, A., Weber, E., Mariani, T.J., et al. (2007). Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury. Am. J. Respir. Crit. Care. Med. 176, 778–785.10.1164/rccm.200704-519OCSearch in Google Scholar PubMed PubMed Central

Honey, K. and Rudensky, A.Y. (2003). Lysosomal cysteine proteases regulate antigen presentation. Nat. Rev. Immunol. 3, 472–482.10.1038/nri1110Search in Google Scholar PubMed

Horbelt, D., Denkis, A., and Knaus, P. (2012). A portrait of Transforming Growth Factor β superfamily signalling: Background matters. Int. J. Biochem. Cell Biol. 44, 469–474.10.1016/j.biocel.2011.12.013Search in Google Scholar PubMed

Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., and Jaskolski, M. (2001). Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat. Struct. Mol. Biol. 8, 316–320.10.1038/86188Search in Google Scholar PubMed

Jensson, O., Gudmundsson, G., Arnason, A., Blöndal, H., Petursdottir, I., Thorsteinsson, L., Grubb, A., Löfberg, H., Cohen, D., and Frangione, B. (1987). Hereditary cystatin C (gamma-trace) amyloid angiopathy of the CNS causing cerebral hemorrhage. Acta. Neurol. Scand. 76, 102–114.10.1111/j.1600-0404.1987.tb03553.xSearch in Google Scholar

Johnson, D.A., Barrett, A.J., and Mason, R.W. (1986). Cathepsin L inactivates alpha 1-proteinase inhibitor by cleavage in the reactive site region. J Biol Chem 261, 14748–14751.10.1016/S0021-9258(18)66935-2Search in Google Scholar

Johnston, I.D., Prescott, R.J., Chalmers, J.C., and Rudd, R.M. (1997). British Thoracic Society study of cryptogenic fibrosing alveolitis: current presentation and initial management. Fibrosing Alveolitis Subcommittee of the Research Committee of the British Thoracic Society. Thorax. 52, 38–44.10.1136/thx.52.1.38Search in Google Scholar PubMed PubMed Central

Jordans, S., Jenko-Kokalj, S., Kühl, N.M., Tedelind, S., Sendt, W., Brömme, D., Turk, D, and Brix, K. (2009). Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem. 10, 23.10.1186/1471-2091-10-23Search in Google Scholar PubMed PubMed Central

Kang, M.-J., Homer, R.J., Gallo, A., Lee, C.G., Crothers, K.A., Cho, S.J., Rochester, C., Cain, H., Chupp, G., Yoon, H.J., et al. (2007). IL-18 is induced and IL-18 receptor alpha plays a critical role in the pathogenesis of cigarette smoke-induced pulmonary emphysema and inflammation. J. Immunol. 178, 1948–1959.10.4049/jimmunol.178.3.1948Search in Google Scholar PubMed

Kapanci, Y., Desmouliere, A., Pache, J.C., Redard, M., and Gabbiani, G. (1995). Cytoskeletal protein modulation in pulmonary alveolar myofibroblasts during idiopathic pulmonary fibrosis. Possible role of transforming growth factor β and tumor necrosis factor α. Am. J. Respir. Crit. Care. Med. 152, 2163–2169.10.1164/ajrccm.152.6.8520791Search in Google Scholar PubMed

Karrer, K.M., Peiffer, S.L., and DiTomas, M.E. (1993). Two distinct gene subfamilies within the family of cysteine protease genes. Proc. Natl. Acad. Sci. USA 90, 3063–3067.10.1073/pnas.90.7.3063Search in Google Scholar PubMed PubMed Central

Kasabova, M., Saidi, A., Naudin, C., Sage, J., Lecaille, F., and Lalmanach, G. (2011). Cysteine cathepsins: markers and therapy targets in lung disorders. Clin. Rev. Bone. Miner. Metab. 9, 148–161.10.1007/s12018-011-9094-6Search in Google Scholar

Kasabova, M., Joulin-Giet, A., Lecaille, F., Gilmore, B.F., Marchand-Adam, S., Saidi, A., and Lalmanach, G. (2014a). Regulation of TGF-β1-driven differentiation of human lung fibroblasts: emerging roles of cathepsin B and cystatin C. J. Biol. Chem. 289, 16239–16251.10.1074/jbc.M113.542407Search in Google Scholar PubMed PubMed Central

Kasabova, M., Joulin-Giet, A., Lecaille, F., Saidi, A., Marchand-Adam, S., and Lalmanach, G. (2014b). Human cystatin C: a new biomarker of idiopathic pulmonary fibrosis? Proteomics Clin. Appl. 8, 447–453.10.1002/prca.201300047Search in Google Scholar PubMed

Katunuma, N., Matsunaga, Y., Matsui, A., Kakegawa, H., Endo, K., Inubushi, T., Saibara, T., Ohba, Y., and Kakiuchi, T. (1998). Novel physiological functions of cathepsins B and L on antigen processing and osteoclastic bone resorption. Adv. Enzyme. Regul. 38, 235–251.10.1016/S0065-2571(97)00021-6Search in Google Scholar

Khalil, N., O’Connor, R.N., Flanders, K.C., and Unruh, H. (1996). TGF-beta 1, but not TGF-beta 2 or TGFβ 3, is differentially present in epithelial cells of advanced pulmonary fibrosis: an immunohistochemical study. Am. J. Respir. Cell Mol. Biol. 14, 131–138.10.1165/ajrcmb.14.2.8630262Search in Google Scholar

Kitamura, N., Kitagawa, H., Fukushima, D., Takagaki, Y., Miyata, T., and Nakanishi, S. (1985). Structural organization of the human kininogen gene and a model for its evolution. J. Biol. Chem. 260, 8610–8617.10.1016/S0021-9258(17)39516-9Search in Google Scholar

Knaapi, J., Lukkarinen, H., Kiviranta, R., Steiner, A., Lassus, P., Andersson, S., and Kääpä, P. (2006). Cathepsin K expression is diminished in infants with bronchopulmonary dysplasia. Acta. Paediatr. 95, 1298–1300.10.1080/08035250600586492Search in Google Scholar

Knaapi, J., Lukkarinen, H., Kiviranta, R., Vuorio, E., and Kääpä, P. (2011). Cathepsin K deficiency aggravates lung injury in hyperoxia-exposed newborn mice. Exp. Lung Res. 37, 408–418.10.3109/01902148.2011.581738Search in Google Scholar

Knaapi, J., Kiviranta, R., Laine, J., Kääpä, P., and Lukkarinen, H. (2014). Cathepsin K overexpression modifies lung development in newborn mice. Pediatr. Pulmonol. doi: 10.1002/ppul.23011.10.1002/ppul.23011Search in Google Scholar

Kopitar-Jerala, N. (2006). The role of cystatins in cells of the immune system. FEBS Lett. 580, 6295–6301.10.1016/j.febslet.2006.10.055Search in Google Scholar

Kos, J., Werle, B., Lah, T., and Brunner, N. (2000). Cysteine proteinases and their inhibitors in extracellular fluids: markers for diagnosis and prognosis in cancer. Int. J. Biol. Markers 15, 84–89.10.1177/172460080001500116Search in Google Scholar

Koslowski, R., Knoch, K., Kuhlisch, E., Seidel, D., and Kasper, M. (2003). Cathepsins in bleomycin-induced lung injury in rat. Eur. Respir. J 22, 427–435.10.1183/09031936.03.00112903Search in Google Scholar

Ladero, J.M., Cárdenas, M.C., Ortega, L., González-Pino, A., Cuenca, F., Morales, C., and Lee-Brunner, A. (2012). Serum cystatin C: a non-invasive marker of liver fibrosis or of current liver fibrogenesis in chronic hepatitis C? Ann. Hepatol. 11, 648–651.10.1016/S1665-2681(19)31437-1Search in Google Scholar

Lalmanach, G., Diot, E., Godat, E., Lecaille, F., and Hervé-Grépinet, V. (2006). Cysteine cathepsins and caspases in silicosis. Biol. Chem. 387, 863–870.10.1515/BC.2006.109Search in Google Scholar PubMed

Lalmanach, G., Naudin, C., Lecaille, F., and Fritz, H. (2010). Kininogens: more than cysteine protease inhibitors and kinin precursors. Biochimie 92, 1568–1579.10.1016/j.biochi.2010.03.011Search in Google Scholar PubMed

Laurent-Matha, V., Huesgen, P.F., Masson, O., Derocq, D., Prébois, C., Gary-Bobo, M., Lecaille, F., Rebière, B., Meurice, G., Oréar, C., et al. (2012). Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. FASEB J. 26, 5172–5181.10.1096/fj.12-205229Search in Google Scholar PubMed

Layton, G.T., Harris, S.J., Bland, F.A., Lee, S.R., Fearn, S., Kaleta, J., Wood, M.L., Bond, A., and Ward, G. (2001). Therapeutic effects of cysteine protease inhibition in allergic lung inflammation: inhibition of allergen-specific T lymphocyte migration. Inflamm. Res. 50, 400–408.10.1007/PL00000262Search in Google Scholar PubMed

Lecaille, F., Kaleta, J., and Brömme, D. (2002). Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem. Rev. 102, 4459–4488.10.1021/cr0101656Search in Google Scholar PubMed

Lecaille, F., Vandier, C., Godat, E., Hervé-Grépinet, V., Brömme, D., and Lalmanach, G. (2007). Modulation of hypotensive effects of kinins by cathepsin K. Arch. Biochem. Biophys. 459, 129–136.10.1016/j.abb.2006.10.033Search in Google Scholar PubMed

Lecaille, F., Naudin, C., Sage, J., Joulin-Giet, A., Courty, A., Andrault, P-M., Veldhuizen, R.A.W., Possmayer, F., and Lalmanach, G. (2013). Specific cleavage of the lung surfactant protein A by human cathepsin S may impair its antibacterial properties. Int. J. Biochem. Cell Biol. 45, 1701–1709.10.1016/j.biocel.2013.05.018Search in Google Scholar PubMed

Lee-Dutra, A., Wiener, D.K., and Sun, S. (2011). Cathepsin S inhibitors: 2004–2010. Expert Opin. Ther. Pat. 21, 311–337.10.1517/13543776.2011.553800Search in Google Scholar PubMed

Lenarcic, B. and Turk, V. (1999). Thyroglobulin type-1 domains in equistatin inhibit both papain-like cysteine proteinases and cathepsin D. J. Biol. Chem. 274, 563–566.10.1074/jbc.274.2.563Search in Google Scholar PubMed

Leto, G., Tumminello, F.M., Pizzolanti, G., Montalto, G., Soresi, M., and Gebbia, N. (1997). Lysosomal cathepsins B and L and Stefin A blood levels in patients with hepatocellular carcinoma and/or liver cirrhosis: potential clinical implications. Oncology 54, 79–83.10.1159/000227666Search in Google Scholar PubMed

Levey, A.S., Fan, L., Eckfeldt, J.H., and Inker, L.A. (2014). Cystatin C for glomerular filtration rate estimation: coming of age. Clin. Chem. 60, 916–919.10.1373/clinchem.2014.225383Search in Google Scholar

Linke, M., Herzog, V., and Brix, K. (2002). Trafficking of lysosomal cathepsin B-green fluorescent protein to the surface of thyroid epithelial cells involves the endosomal/lysosomal compartment. J. Cell Sci. 115, 4877–4889.10.1242/jcs.00184Search in Google Scholar

Liu, A., Gao, X., Zhang, Q., and Cui, L. (2013). Cathepsin B inhibition attenuates cardiac dysfunction and remodeling following myocardial infarction by inhibiting the NLRP3 pathway. Mol. Med. Rep. 8, 361–366.10.3892/mmr.2013.1507Search in Google Scholar

Lockwood, T.D. (2013). Lysosomal metal, redox and proton cycles influencing the CysHis cathepsin reaction. Metallomics. 5, 110–124.10.1039/c2mt20156aSearch in Google Scholar

López-Otín, C., and Bond, J.S. (2008). Proteases: multifunctional enzymes in life and disease. J. Biol. Chem. 283, 30433–30437.10.1074/jbc.R800035200Search in Google Scholar

Lyons, R.M., Gentry, L.E., Purchio, A.F., and Moses, H.L. (1990). Mechanism of activation of latent recombinant transforming growth factor β1 by plasmin. J. Cell. Biol. 110, 1361–1367.10.1083/jcb.110.4.1361Search in Google Scholar

Mach, L., Mort, J.S., and Glössl, J. (1994). Maturation of human procathepsin B. Proenzyme activation and proteolytic processing of the precursor to the mature proteinase, in vitro, are primarily unimolecular processes. J. Biol. Chem. 269, 13030–13035.10.1016/S0021-9258(18)99979-5Search in Google Scholar

Madurga, A., Mizíková, I., Ruiz-Camp, J., and Morty, R.E. (2013). Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia. Am. J. Physiol. Lung. Cell Mol. Physiol. 305, L893–905.10.1152/ajplung.00267.2013Search in Google Scholar PubMed

Maher, T.M., Wells, A.U., and Laurent G.J. (2007). Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms? Eur. Respir. J. 30, 835–839.10.1183/09031936.00069307Search in Google Scholar PubMed

Martin, S.L., Moffitt, K.L., McDowell, A., Greenan, C., Bright-Thomas, R.J., Jones, A.M., Webb, A.K., and Elborn, J.S. (2010). Association of airway cathepsin B and S with inflammation in cystic fibrosis. Pediatr. Pulmonol. 45, 860–868.10.1002/ppul.21274Search in Google Scholar PubMed

Massagué, J. (1998). TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753–791.10.1146/annurev.biochem.67.1.753Search in Google Scholar

Maubach, G., Lim, M.C.C., and Zhuo, L. (2008). Nuclear cathepsin F regulates activation markers in rat hepatic stellate cells. Mol. Biol. Cell 19, 4238–4248.10.1091/mbc.e08-03-0291Search in Google Scholar

Miyazono, K., Hellman, U., Wernstedt, C., and Heldin, C.H. (1988). Latent high molecular weight complex of transforming growth factor β1. Purification from human platelets and structural characterization. J. Biol. Chem. 263, 6407–6415.10.1016/S0021-9258(18)68800-3Search in Google Scholar

Mohamed, M.M. and Sloane, B.F. (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer. 6, 764–775.10.1038/nrc1949Search in Google Scholar PubMed

Moles, A., Tarrats, N., Fernández-Checa, J.C., and Marí, M. (2009). Cathepsins B and D drive hepatic stellate cell proliferation and promote their fibrogenic potential. Hepatol. 49, 1297–1307.10.1002/hep.22753Search in Google Scholar PubMed PubMed Central

Moles, A., Tarrats, N., Morales, A., Domínguez, M., Bataller, R., Caballería, J., García-Ruiz, C., Fernández-Checa, J.C., and Marí, M. (2010). Acidic sphingomyelinase controls hepatic stellate cell activation and in vivo liver fibrogenesis. Am. J. Pathol. 177, 1214–1224.10.2353/ajpath.2010.091257Search in Google Scholar PubMed PubMed Central

Moles, A., Tarrats, N., Fernández-Checa, J.C., and Marí, M. (2012). Cathepsin B overexpression due to acid sphingomyelinase ablation promotes liver fibrosis in Niemann-Pick disease. J. Biol. Chem. 287, 1178–1188.10.1074/jbc.M111.272393Search in Google Scholar PubMed PubMed Central

Moore, B.B. and Hogaboam, C.M. (2008). Murine models of pulmonary fibrosis. Am. J. Physiol. Lung. Cell Mol. Physiol. 294, L152–L160.10.1152/ajplung.00313.2007Search in Google Scholar PubMed

Müntener, K., Zwicky, R., Csucs, G., Rohrer, J., and Baici, A. (2004). Exon skipping of cathepsin B: mitochondrial targeting of a lysosomal peptidase provokes cell death. J. Biol. Chem. 279, 41012–41017.10.1074/jbc.M405333200Search in Google Scholar PubMed

Nägler, D.K., Zhang, R., Tam, W., Sulea, T., Purisima, E.O., and Ménard, R. (1999). Human cathepsin X: a cysteine protease with unique carboxypeptidase activity. Biochemistry 38, 12648–12654.10.1021/bi991371zSearch in Google Scholar PubMed

Nakagawa, T.Y., Brissette, W.H., Lira, P.D., Griffiths, R.J., Petrushova, N., Stock, J., McNeish, J.D., Eastman, S.E., Howard, E.D., Clarke, S.R., et al. (1999) Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity. 10, 207–217.10.1016/S1074-7613(00)80021-7Search in Google Scholar

Naudin, C., Lecaille, F., Chowdhury, S., Krupa, J.C., Purisima, E., Mort, J.S., and Lalmanach, G. (2010). The occluding loop of cathepsin B prevents its effective inhibition by human kininogens. J. Mol. Biol. 400, 1022–1035.10.1016/j.jmb.2010.06.006Search in Google Scholar PubMed

Naudin, C., Joulin-Giet, A., Couetdic, G., Plésiat, P., Szymanska, A., Gorna, E., Gauthier, F., Kasprzykowski, F., Lecaille, F., and Lalmanach, G. (2011). Human cysteine cathepsins are not reliable markers of infection by Pseudomonas aeruginosa in cystic fibrosis. PloS One 6, e25577.10.1371/journal.pone.0025577Search in Google Scholar PubMed PubMed Central

Ni, J., Abrahamson, M., Zhang, M., Fernandez, M.A., Grubb, A., Su, J., Yu, G.L., Li, Y., Parmelee, D., Xing, L., et al. (1997). Cystatin E is a novel human cysteine proteinase inhibitor with structural resemblance to family 2 cystatins. J. Biol. Chem. 272, 10853–10858.10.1074/jbc.272.16.10853Search in Google Scholar PubMed

Ni, J., Fernandez, M.A., Danielsson, L., Chillakuru, R.A., Zhang, J., Grubb, A., Su, J., Gentz, R., and Abrahamson, M. (1998). Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor. J. Biol. Chem. 273, 24797–24804.10.1074/jbc.273.38.24797Search in Google Scholar PubMed

Noble, P.W., Barkauskas, C.E., and Jiang, D. (2012). Pulmonary fibrosis: patterns and perpetrators. J. Clin. Invest. 122, 2756–2762.10.1172/JCI60323Search in Google Scholar PubMed PubMed Central

Noda, S., Asano, Y., Akamata, K., Aozasa, N., Taniguchi, T., Takahashi, T., Ichimura, Y., Toyama, T., Sumida, H., Yanaba, K., et al. (2012). A possible contribution of altered cathepsin B expression to the development of skin sclerosis and vasculopathy in systemic sclerosis. PLoS One 7, e32272.10.1371/journal.pone.0032272Search in Google Scholar PubMed PubMed Central

Noda, S., Asano, Y., Takahashi, T., Akamata, K., Aozasa, N., Taniguchi, T., Ichimura, Y., Toyama, T., Sumida, H., Kuwano, Y., et al. (2013). Decreased cathepsin V expression due to Fli1 deficiency contributes to the development of dermal fibrosis and proliferative vasculopathy in systemic sclerosis. Rheumatol. 52, 790–799.10.1093/rheumatology/kes379Search in Google Scholar PubMed

Novinec, M., Korenč, M., Caflisch, A., Ranganathan, R., Lenarčič, B., and Baici, A. (2014). A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods. Nat. Commun. 5, 3287 doi:10.1038.Search in Google Scholar

Obermajer, N., Repnik, U., Jevnikar, Z., Turk, B., Kreft, M., and Kos, J. (2008). Cysteine protease cathepsin X modulates immune response via activation of β2 integrins. Immunology 124, 76–88.10.1111/j.1365-2567.2007.02740.xSearch in Google Scholar PubMed PubMed Central

Oehmcke, S., Shannon, O., von Köckritz-Blickwede, M., Mörgelin, M., Linder, A., Olin, A.I., Björck, L., and Herwald, H. (2009). Treatment of invasive streptococcal infection with a peptide derived from human high-molecular weight kininogen. Blood 114, 444–451.10.1182/blood-2008-10-182527Search in Google Scholar PubMed

Ojo, O., Lagan, A.L., Rajendran, V., Spanjer, A., Chen, L., Sohal, S.S., Heijink, I., Jones, R., Maarsingh, H., and Hackett, T.L. (2014). Pathological changes in the COPD lung mesenchyme-Novel lessons learned from in vitro and in vivo studies. Pulm. Pharmacol. Ther. doi: 10.1016/j.pupt.2014.04.004.10.1016/j.pupt.2014.04.004Search in Google Scholar

Palermo, C. and Joyce, J.A. (2008). Cysteine cathepsin proteases as pharmacological targets in cancer. Trends. Pharmacol. Sci. 29, 22–28.10.1016/j.tips.2007.10.011Search in Google Scholar

Palsdottir, A., Abrahamson, M., Thorsteinsson, L., Arnason, A., Olafsson, I., Grubb, A., and Jensson, O. (1988). Mutation in cystatin C gene causes hereditary brain haemorrhage. Lancet 2, 603–604.10.1016/S0140-6736(88)90641-1Search in Google Scholar

Palungwachira, P., Kakuta, M., Yamazaki, M., Yaguchi, H., Tsuboi, R., Takamori, K., and Ogawa, H. (2002). Immunohistochemical localization of cathepsin L and cystatin A in normal skin and skin tumors. J. Dermatol. 29, 573–579.10.1111/j.1346-8138.2002.tb00182.xSearch in Google Scholar

Pan, L., Li, Y., Jia, L., Qin, Y., Qi, G., Cheng, J., Qi, Y., Li, H., and Du, J. (2012). Cathepsin S deficiency results in abnormal accumulation of autophagosomes in macrophages and enhances Ang II-induced cardiac inflammation. PLoS One 7, e35315.10.1371/journal.pone.0035315Search in Google Scholar

Pauwels, R.A., Buist, A.S., Calverley, P.M., Jenkins, C.R., and Hurd, S.S., GOLD Scientific Committee. (2001). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am. J. Respir. Crit. Care Med. 163, 1256–1276.10.1164/ajrccm.163.5.2101039Search in Google Scholar

Pennacchio, L.A., Bouley, D.M., Higgins, K.M., Scott, M.P., Noebels, J.L., and Myers, R.M. (1998). Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat. Genet. 20, 251–258.10.1038/3059Search in Google Scholar

Perdereau, C., Godat, E., Maurel, M-C., Hazouard, E., Diot, E., and Lalmanach, G. (2006). Cysteine cathepsins in human silicotic bronchoalveolar lavage fluids. Biochim. Biophys. Acta 1762, 351–356.10.1016/j.bbadis.2005.10.005Search in Google Scholar

Pham, C.T. and Ley, T.J. (1999). Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl. Acad. Sci. USA 96, 8627–8632.10.1073/pnas.96.15.8627Search in Google Scholar

Purchio, A.F., Cooper, J.A., Brunner, A.M., Lioubin, M.N., Gentry, L.E., Kovacina, K.S., Roth, R.A., and Marquardt, H. (1988). Identification of mannose 6-phosphate in two asparagine-linked sugar chains of recombinant transforming growth factor-β 1 precursor. J. Biol. Chem. 263, 14211–14215.10.1016/S0021-9258(18)68207-9Search in Google Scholar

Qin, Y., Ye, P., He, J., Sheng, L., Wang, L., and Du, J. (2010). Simvastatin inhibited cardiac hypertrophy and fibrosis in apolipoprotein E-deficient mice fed a ‘Western-style diet’ by increasing PPAR α and γ expression and reducing TC, MMP-9, and Cat S levels. Acta Pharmacol. Sin. 31, 1350–1358.10.1038/aps.2010.109Search in Google Scholar

Rachner, T.D., Khosla, S., and Hofbauer, L.C. (2011). Osteoporosis: now and the future. Lancet 377, 1276–1287.10.1016/S0140-6736(10)62349-5Search in Google Scholar

Raghu, G., Collard, H.R., Egan, J.J., Martinez, F.J., Behr, J., Brown, K.K., Colby, T.V., Cordier, J-F., Flaherty, K.R., Lasky, J.A., et al. ATS/ERS/JRS/ALAT Committee on Idiopathic Pulmonary Fibrosis (2011). An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care. Med. 183, 788–824.10.1164/rccm.2009-040GLSearch in Google Scholar PubMed PubMed Central

Rawlings, N.D., Barrett, A.J., and Bateman, A. (2012). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic. Acids. Res. 40, D343–350.10.1093/nar/gkr987Search in Google Scholar PubMed PubMed Central

Reddy, V.Y., Zhang, Q.Y., and Weiss, S.J. (1995). Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages. Proc. Natl. Acad. Sci. USA 92, 3849–3853.10.1073/pnas.92.9.3849Search in Google Scholar PubMed PubMed Central

Reghellin, D., Poletti, V., Tomassett, S., Dubini, A., Cavazza, A., Rossi, G., Lestani, M., Pedron, S., Daniele, I., Montagna, L., et al. (2010). Cathepsin-K is a sensitive immunohistochemical marker for detection of micro-granulomas in hypersensitivity pneumonitis. Sarcoidosis Vasc. Diffuse. Lung Dis. 27, 57–63.Search in Google Scholar

Reichenberger, F., Schauer, J., Kellner, K., Sack, U., Stiehl, P., and Winkler, J. (2001). Different expression of endothelin in the bronchoalveolar lavage in patients with pulmonary diseases. Lung 179, 163–174.10.1007/s004080000058Search in Google Scholar PubMed

Reiser, J., Adair, B., and Reinheckel, T. (2010). Specialized roles for cysteine cathepsins in health and disease. J. Clin. Invest. 120, 3421–3431.10.1172/JCI42918Search in Google Scholar PubMed PubMed Central

Repnik, U., Stoka, V., Turk, V., and Turk, B. (2012). Lysosomes and lysosomal cathepsins in cell death. Biochim. Biophys. Acta 1824, 22–33.10.1016/j.bbapap.2011.08.016Search in Google Scholar PubMed

Rogan, M.P., Taggart, C.C., Greene, C.M., Murphy, P.G., O’Neill, S.J., and McElvaney, N.G. (2004). Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J. Infect. Dis. 190, 1245–1253.10.1086/423821Search in Google Scholar PubMed

Rognant, N. and Lemoine, S. (2014). Evaluation of renal function in patients with cirrhosis: where are we now? World. J. Gastroenterol. 20, 2533–2541.10.3748/wjg.v20.i10.2533Search in Google Scholar PubMed PubMed Central

Rünger, T.M., Quintanilla-Dieck, M.J., and Bhawan, J. (2007). Role of cathepsin K in the turnover of the dermal extracellular matrix during scar formation. J. Invest. Dermatol. 127, 293–297.10.1038/sj.jid.5700535Search in Google Scholar

Salvesen, G., Parkes, C., Abrahamson, M., Grubb, A., and Barrett, A.J. (1986). Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases. Biochem. J. 234, 429–434.10.1042/bj2340429Search in Google Scholar

Samokhin, A.O., Gauthier, J.Y., Percival, M.D., and Brömme, D. (2011). Lack of cathepsin activities alter or prevent the development of lung granulomas in a mouse model of sarcoidosis. Respir. Res. 12, 13.10.1186/1465-9921-12-13Search in Google Scholar

Sanders, A., Jeremy Craven, C., Higgins, L.D., Giannini, S., Conroy, M.J., Hounslow, A.M., Waltho, J.P., and Staniforth, R.A. (2004). Cystatin forms a tetramer through structural rearrangement of domain-swapped dimers prior to amyloidogenesis. J. Mol. Biol. 336, 165–178.10.1016/j.jmb.2003.12.011Search in Google Scholar

Scabilloni, J.F., Wang, L., Antonini, J.M., Roberts, J.R., Castranova, V., and Mercer, R.R. (2005). Matrix metalloproteinase induction in fibrosis and fibrotic nodule formation due to silica inhalation. Am. J. Physiol. Lung. Cell Mol. Physiol. 288, L709–717.10.1152/ajplung.00034.2004Search in Google Scholar

Schmaier, A.H., Wahl, R., Fisher, S.J., and Brenner, D. (1998). The pharmacokinetics of the kininogens. Thromb. Res. 92, 293–297.10.1016/S0049-3848(98)00142-XSearch in Google Scholar

Selman, M., King, T.E., and Pardo, A. (2001). Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann. Intern. Med. 134, 136–151.10.7326/0003-4819-134-2-200101160-00015Search in Google Scholar PubMed

Serveau-Avesque, C., Martino, MF-D., Hervé-Grépinet, V., Hazouard, E., Gauthier, F., Diot, E., and Lalmanach, G. (2006). Active cathepsins B, H, K, L and S in human inflammatory bronchoalveolar lavage fluids. Biol. Cell 98, 15–22.10.1042/BC20040512Search in Google Scholar PubMed

Shi, G.P., Sukhova, G.K., Grubb, A., Ducharme, A., Rhode, L.H., Lee, R.T., Ridker, P.M., Libby, P., and Chapman, H.A. (1999). Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J. Clin. Invest. 104, 1191–1197.10.1172/JCI7709Search in Google Scholar PubMed PubMed Central

Small, D.M., Burden, R.E., and Scott, C.J. (2011). The Emerging Relevance of the Cysteine Protease Cathepsin S in Disease. Clin. Rev. Bone. Miner. Metab. 9, 122–132.10.1007/s12018-011-9095-5Search in Google Scholar

Somoza, J.R., Palmer, J.T., and Ho, J.D. (2002). The crystal structure of human cathepsin F and its implications for the development of novel immunomodulators. J. Mol. Biol. 322, 559–568.10.1016/S0022-2836(02)00780-5Search in Google Scholar

Spira, D., Stypmann, J., Tobin, D.J., Petermann, I., Mayer, C., Hagemann, S., Vasiljeva, O., Günther, T., Schüle, R., Peters, C., et al. (2007). Cell type-specific functions of the lysosomal protease cathepsin L in the heart. J. Biol. Chem. 282, 37045–37052.10.1074/jbc.M703447200Search in Google Scholar PubMed

Srivastava, M., Steinwede, K., Kiviranta, R., Morko, J., Hoymann, H-G., Länger, F., Buhling, F., Welte, T., and Maus, U.A. (2008). Overexpression of cathepsin K in mice decreases collagen deposition and lung resistance in response to bleomycin-induced pulmonary fibrosis. Respir. Res. 9, 54.10.1186/1465-9921-9-54Search in Google Scholar PubMed PubMed Central

Stinchcombe, J.C. and Griffiths, G.M. (1999). Regulated secretion from hemopoietic cells. J. Cell. Biol. 147, 1–6.10.1083/jcb.147.1.1Search in Google Scholar PubMed PubMed Central

Stockley, R.A. (2014). Biomarkers in chronic obstructive pulmonary disease: confusing or useful? Int. J. Chron. Obstruct. Pulmon. Dis. 9, 163–177.10.2147/COPD.S42362Search in Google Scholar PubMed PubMed Central

Stypmann, J., Gläser, K., Roth, W., Tobin, D.J., Petermann, I., Matthias, R., Mönnig, G., Haverkamp, W., Breithardt, G., Schmahl, W., et al. (2002). Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc. Natl. Acad. Sci. USA 99, 6234–6239.10.1073/pnas.092637699Search in Google Scholar PubMed PubMed Central

Swedko, P.J., Clark, H.D., Paramsothy, K., and Akbari, A. (2003). Serum creatinine is an inadequate screening test for renal failure in elderly patients. Arch. Intern. Med. 163, 356–360.10.1001/archinte.163.3.356Search in Google Scholar PubMed

Swigris, J.J. and Brown, K.K. (2010). The role of endothelin-1 in the pathogenesis of idiopathic pulmonary fibrosis. BioDrugs. 24, 49–54.10.2165/11319550-000000000-00000Search in Google Scholar PubMed PubMed Central

Taggart, C.C., Lowe, G.J., Greene, C.M., Mulgrew, A.T., O’Neill, S.J., Levine, R.L., and McElvaney, N.G. (2001). Cathepsin B, L, and S cleave and inactivate secretory leucoprotease inhibitor. J. Biol. Chem. 276, 33345–33352.10.1074/jbc.M103220200Search in Google Scholar PubMed

Taggart, C.C., Greene, C.M., Smith, S.G., Levine, R.L., McCray, P.B., O’Neill, S., and McElvaney, N.G. (2003). Inactivation of human beta-defensins 2 and 3 by elastolytic cathepsins. J. Immunol. 171, 931–937.10.4049/jimmunol.171.2.931Search in Google Scholar PubMed

Taipale, J., Miyazono, K., Heldin, C.H., and Keski-Oja, J. (1994). Latent transforming growth factor-beta 1 associates to fibroblast extracellular matrix via latent TGFβ binding protein. J. Cell. Biol. 124, 171–181.10.1083/jcb.124.1.171Search in Google Scholar PubMed PubMed Central

Tate, S., MacGregor, G., Davis, M., Innes, J.A., and Greening, A.P. (2002). Airways in cystic fibrosis are acidified: detection by exhaled breath condensate. Thorax. 57, 926–929.10.1136/thorax.57.11.926Search in Google Scholar PubMed PubMed Central

Tang, Q., Cai, J., Shen, D., Bian, Z., Yan, L., Wang, Y-X., Lan, J., Zhuang, G-Q., Ma, W-Z., and Wang, W. (2009). Lysosomal cysteine peptidase cathepsin L protects against cardiac hypertrophy through blocking AKT/GSK3β signaling. J. Mol. Med. 87, 249–260.10.1007/s00109-008-0423-2Search in Google Scholar PubMed

Takeuchi, M., Fukuda, Y., Nakano, I., Katano, Y., and Hayakawa, T. (2001). Elevation of serum cystatin C concentrations in patients with chronic liver disease. Eur. J. Gastroenterol. Hepatol. 13, 951–955.10.1097/00042737-200108000-00013Search in Google Scholar PubMed

Tizon, B., Sahoo, S., Yu, H., Gauthier, S., Kumar, A.R., Mohan, P., Figliola, M., Pawlik, M., Grubb, A., Uchiyama, Y., et al. (2010). Induction of autophagy by cystatin C: a mechanism that protects murine primary cortical neurons and neuronal cell lines. PLoS One 5, e9819.10.1371/journal.pone.0009819Search in Google Scholar PubMed PubMed Central

Tolosa, E., Li, W., Yasuda, Y., Wienhold, W., Denzin, L.K., Lautwein, A., Driessen, C., Schnorrer, P., Weber, E., Stevanovic, S., et al. (2003). Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J. Clin. Invest. 112, 517–526.10.1172/JCI200318028Search in Google Scholar

Tuder, R.M. and Petrache, I. (2012). Pathogenesis of chronic obstructive pulmonary disease. J. Clin. Invest. 122, 2749–2755.10.1172/JCI60324Search in Google Scholar PubMed PubMed Central

Turk, B. (2006). Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug. Discov. 5, 785–799.10.1038/nrd2092Search in Google Scholar PubMed

Turk, B. and Turk, V. (2009). Lysosomes as ‘suicide bags’ in cell death: myth or reality? J. Biol. Chem. 284, 21783–21787.10.1074/jbc.R109.023820Search in Google Scholar PubMed PubMed Central

Turk, B., Turk, V., and Salvesen, G.S. (2002). Regulating cysteine protease activity: essential role of protease inhibitors as guardians and regulators. Curr. Pharm. Des. 8, 1623–1637.10.2174/1381612023394124Search in Google Scholar PubMed

Turk, V., Stoka, V., and Turk, D. (2008). Cystatins: biochemical and structural properties, and medical relevance. Front. Biosci. 13, 5406–5420.10.2741/3089Search in Google Scholar

Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., and Turk, D. (2012). Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta. 1824, 68–88.10.1016/j.bbapap.2011.10.002Search in Google Scholar

Van den Brûle, S., Misson, P., Bühling, F., Lison, D., and Huaux, F. (2005). Overexpression of cathepsin K during silica-induced lung fibrosis and control by TGFβ. Respir. Res. 6, 84.10.1186/1465-9921-6-84Search in Google Scholar

Vankeerberghen, A., Cuppens, H., and Cassiman, J-J. (2002). The cystic fibrosis transmembrane conductance regulator: an intriguing protein with pleiotropic functions. J. Cyst. Fibros. 1, 13–29.10.1016/S1569-1993(01)00003-0Search in Google Scholar

Vasiljeva, O., Reinheckel, T., Peters, C., Turk, D., Turk, V., and Turk, B. (2007). Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr. Pharm. Des. 13, 387–403.10.2174/138161207780162962Search in Google Scholar PubMed

Veillard, F., Lecaille, F., and Lalmanach, G. (2008). Lung cysteine cathepsins: intruders or unorthodox contributors to the kallikrein-kinin system? Int. J. Biochem. Cell Biol. 40, 1079–1094.10.1016/j.biocel.2007.10.030Search in Google Scholar PubMed

Verdot, L., Lalmanach, G., Vercruysse, V., Hartmann, S., Lucius, R., Hoebeke, J., Gauthier, F., and Vray, B. (1996). Cystatins up-regulate nitric oxide release from interferon-gamma-activated mouse peritoneal macrophages. J. Biol. Chem. 271, 28077–28081.10.1074/jbc.271.45.28077Search in Google Scholar PubMed

Verdot, L., Lalmanach, G., Vercruysse, V., Hoebeke, J., Gauthier, F., and Vray, B. (1999). Chicken cystatin stimulates nitric oxide release from interferon-γ-activated mouse peritoneal macrophages via cytokine synthesis. Eur. J. Biochem. 266, 1111–1117.10.1046/j.1432-1327.1999.00964.xSearch in Google Scholar PubMed

Wada, H. and Takizawa, H. (2013). Future treatment for COPD: targeting oxidative stress and its related signal. Recent. Pat. Inflamm. Allergy. Drug. Discov. 7, 1–11.10.2174/187221313804004709Search in Google Scholar

Wallin, H., Bjarnadottir, M., Vogel, L.K., Wassélius, J., Ekström, U., and Abrahamson, M. (2010). Cystatins – extra- and intracellular cysteine protease inhibitors: High-level secretion and uptake of cystatin C in human neuroblastoma cells. Biochimie. 92, 1625–1634.10.1016/j.biochi.2010.08.011Search in Google Scholar PubMed

Wang, Z., Zheng, T., Zhu, Z., Homer, R.J., Riese, R.J., Chapman, H.A. Jr, Shapiro, S.D., and Elias, J.A. (2000). Interferon γ induction of pulmonary emphysema in the adult murine lung. J. Exp. Med. 192, 1587–1600.10.1084/jem.192.11.1587Search in Google Scholar PubMed PubMed Central

Wex, T., Levy, B., Wex, H., and Brömme, D. (1999). Human cathepsins F and W: a new subgroup of cathepsins. Biochem. Biophys. Res. Commun. 259, 401–407.10.1006/bbrc.1999.0700Search in Google Scholar PubMed

Williams, A.S., Eynott, P.R., Leung, S-Y., Nath, P., Jupp, R., De Sanctis, G.T., Resnick, R., Adcock, I.M., and Chung, K.F. (2009). Role of cathepsin S in ozone-induced airway hyperresponsiveness and inflammation. Pulm. Pharmacol. Ther. 22, 27–32.10.1016/j.pupt.2008.11.002Search in Google Scholar PubMed

Wilson, M.S. and Wynn, T.A. (2009). Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal. Immunol. 2, 103–121.10.1038/mi.2008.85Search in Google Scholar PubMed PubMed Central

Woischnik, M., Bauer, A., Aboutaam, R., Pamir, A., Stanzel, F., de Blic, J., and Griese M (2008). Cathepsin H and napsin A are active in the alveoli and increased in alveolar proteinosis. Eur. Respir. J. 31, 1197–1204.10.1183/09031936.00081207Search in Google Scholar PubMed

Wynn, T.A. (2011). Integrating mechanisms of pulmonary fibrosis. J. Exp. Med. 208, 1339–1350.10.1084/jem.20110551Search in Google Scholar PubMed PubMed Central

Xie, L., Terrand, J., Xu, B., Tsaprailis, G., Boyer, J., and Chen, Q.M. (2010). Cystatin C increases in cardiac injury: a role in extracellular matrix protein modulation. Cardiovasc. Res. 87, 628–635.10.1093/cvr/cvq138Search in Google Scholar PubMed PubMed Central

Zerovnik, E., Staniforth, R.A., and Turk, D. (2010). Amyloid fibril formation by human stefins: Structure, mechanism & putative functions. Biochimie. 92, 1597–1607.10.1016/j.biochi.2010.05.012Search in Google Scholar PubMed

Zhang, D., Leung, N., Weber, E., Saftig, P., and Brömme, D. (2011a). The effect of cathepsin K deficiency on airway development and TGF-β1 degradation. Respir. Res. 12, 72.10.1186/1465-9921-12-72Search in Google Scholar PubMed PubMed Central

Zhang, D., Huang, C., Yang, C., Liu, R.J., Wang, J., Niu, J., and Bromme, D. (2011b). Antifibrotic effects of curcumin are associated with overexpression of cathepsins K and L in bleomycin treated mice and human fibroblasts. Respir. Res. 12, 154.10.1186/1465-9921-12-154Search in Google Scholar PubMed PubMed Central

Zheng, T., Zhu, Z., Wang, Z., Homer, R.J., Ma, B., Riese, R.J., Chapman, H.A., Shapiro, S.D., and Elias, J.A. (2000). Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Invest. 106, 1081–1093.10.1172/JCI10458Search in Google Scholar PubMed PubMed Central

Zheng, T., Kang, M.J., Crothers, K., Zhu, Z., Liu, W., Lee, C.G., Rabach, L.A., Chapman H.A., Homer, R.J., Aldous, D., et al. (2005). Role of cathepsin S-dependent epithelial cell apoptosis in IFN-γ-induced alveolar remodeling and pulmonary emphysema. J. Immunol. 174, 8106–8115.10.4049/jimmunol.174.12.8106Search in Google Scholar PubMed

Received: 2014-6-6
Accepted: 2014-8-26
Published Online: 2015-1-10
Published in Print: 2015-2-1

©2015 by De Gruyter

Downloaded on 19.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2014-0210/html
Scroll to top button