Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 5, 2014

Mammalian gamete fusion depends on the inhibition of ovastacin by fetuin-B

  • Walter Stöcker EMAIL logo , Konstantin Karmilin , André Hildebrand , Hagen Westphal , Irene Yiallouros , Ralf Weiskirchen , Eileen Dietzel , Julia Floehr and Willi Jahnen-Dechent
From the journal Biological Chemistry

Abstract

The zona pellucida, a glycoprotein matrix surrounding the mammalian oocyte, hardens after intrusion of the first spermatozoon, thus protecting the embryo until implantation and preventing multiple fertilizations (polyspermy). Definitive zona hardening is mediated by the metalloprotease ovastacin, which is released from cortical granules of the oocyte upon sperm penetration. However, traces of ovastacin seep from unfertilized eggs to cause zona hardening even in the absence of sperm. These small amounts of protease are inactivated by the plasma protein fetuin-B, thus keeping eggs fertilizable. Once a sperm has penetrated the egg, ovastacin from cortical vesicles overrides fetuin-B and initiates zona hardening.


Corresponding author: Walter Stöcker, Institute of Zoology, Cell and Matrix Biology, JGU Mainz, Johannes-von-Müller-Weg 6, D-55128 Mainz, Germany, e-mail:

Acknowledgments

We thank the Natural Science and Medical Research Center (NMFZ) of the Johannes Gutenberg University Mainz, the Transgene Service, a core facility of the Interdisciplinary Center for Clinical Research (IZKF) Aachen within the Faculty of Medicine at RWTH Aachen, and the Deutsche Forschungsgemeinschaft for financial support.

References

Avella, M.A., Xiong, B., and Dean, J. (2013). The molecular basis of gamete recognition in mice and humans. Mol. Hum. Reprod. 19, 279–289.Search in Google Scholar

Becker-Pauly, C., Barré, O., Schilling, O., auf dem Keller, U., Ohler, A., Broder, C., Schütte, A., Kappelhoff, R., Stöcker, W., and Overall, C.M. (2011). Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates. Mol. Cell. Proteomics 10, M111.009233.Search in Google Scholar

Bianchi, E., Doe, B., Goulding, D., and Wright, G.J. (2014). Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508, 483–487.Search in Google Scholar

Blobel, C.P. (1997). Metalloprotease-disintegrins: links to cell adhesion and cleavage of TNF alpha and Notch. Cell 90, 589–592.Search in Google Scholar

Burkart, A.D., Xiong, B., Baibakov, B., Jimenez-Movilla, M., and Dean, J. (2012). Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. J. Cell Biol. 197, 37–44.Search in Google Scholar

Cerdà-Costa, N. and Gomis-Rüth, F.X. (2014). Architecture and function of metallopeptidase catalytic domains. Protein Sci. 23, 123–144.Search in Google Scholar

Denecke, B., Gräber, S., Schäfer, C., Heiss, A., Wöltje, M., and Jahnen-Dechent, W. (2003). Tissue distribution and activity testing suggest a similar but not identical function of fetuin-B and fetuin-A. Biochem. J. 376, 135–145.Search in Google Scholar

Dietzel, E., Wessling, J., Floehr, J., Schäfer, C., Ensslen, S., Denecke, B., Rösing, B., Neulen, J., Veitinger, T., Spehr, M., et al. (2013). Fetuin-B, a liver-derived plasma protein is essential for fertilization. Dev. Cell 25, 106–112.Search in Google Scholar

Gomis-Rüth, F.X., Trillo-Muyo, S., and Stöcker, W. (2012). Functional and structural insights into astacin metallopeptidases. Biol. Chem. 393, 1027–1041.Search in Google Scholar

Guevara, T., Yiallouros, I., Kappelhoff, R., Bissdorf, S., Stöcker, W., and Gomis-Rüth, F.X. (2010). Proenzyme structure and activation of astacin metallopeptidase. J. Biol. Chem. 285, 13958–13965.Search in Google Scholar

Hedrich, J., Lottaz, D., Meyer, K., Yiallouros, I., Jahnen-Dechent, W., Stöcker, W., and Becker-Pauly, C. (2010). Fetuin-A and cystatin C are endogenous inhibitors of human meprin metalloproteases. Biochemistry 49, 8599–8607.Search in Google Scholar

Heiss, A., DuChesne, A., Denecke, B., Grötzinger, J., Yamamoto, K., Renné, T., and Jahnen-Dechent, W. (2003). Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J. Biol. Chem. 278, 13333–13341.Search in Google Scholar

Jahnen-Dechent, W., Schinke, T., Trindl, A., Muller-Esterl, W., Sablitzky, F., Kaiser, S., and Blessing, M. (1997). Cloning and targeted deletion of the mouse fetuin gene. J. Biol. Chem. 272, 31496–31503.Search in Google Scholar

Jahnen-Dechent, W., Heiss, A., Schäfer, C., and Ketteler, M. (2011). Fetuin-A regulation of calcified matrix metabolism. Circ. Res. 108, 1494–1509.Search in Google Scholar

Lee, C., Bongcam-Rudloff, E., Sollner, C., Jahnen-Dechent, W., and Claesson-Welsh, L. (2009). Type 3 cystatins; fetuins, kininogen and histidine-rich glycoprotein. Front. Biosci. 14, 2911–2922.Search in Google Scholar

Miyazaki, S. and Ito, M. (2006). Calcium signals for egg activation in mammals. J. Pharmacol. Sci. 100, 545–552.Search in Google Scholar

Moller, C.C. and Wassarman, P.M. (1989). Characterization of a proteinase that cleaves zona pellucida glycoprotein ZP2 following activation of mouse eggs. Dev. Biol. 132, 103–112.Search in Google Scholar

Nawratil, P., Lenzen, S., Kellermann, J., Haupt, H., Schinke, T., Müller-Esterl, W., and Jahnen-Dechent, W. (1996). Limited proteolysis of human alpha2-HS glycoprotein/fetuin. Evidence that a chymotryptic activity can release the connecting peptide. J. Biol. Chem. 271, 31735–31741.Search in Google Scholar

Okabe, M. (2013). The cell biology of mammalian fertilization. Development 140, 4471–4479.Search in Google Scholar

Olivier, E., Soury, E., Ruminy, P., Husson, A., Parmentier, F., Daveau, M., and Salier, J.P. (2000). Fetuin-B, a second member of the fetuin family in mammals. Biochem. J. 350, 589–597.Search in Google Scholar

Pires, E.S., Hlavin, C., Macnamara, E., Ishola-Gbenla, K., Doerwaldt, C., Chamberlain, C., Klotz, K., Herr, A.K., Khole, A., Chertihin, O., et al. (2013). SAS1B protein [ovastacin] shows temporal and spatial restriction to oocytes in several eutherian orders and initiates translation at the primary to secondary follicle transition. Dev. Dyn. 242, 1405–1426.Search in Google Scholar

Quesada, V., Sánchez, L.M., Alvarez, J., and López-Otín, C. (2004). Identification and characterization of human and mouse ovastacin: a novel metalloproteinase similar to hatching enzymes from arthropods, birds, amphibians, and fish. J. Biol. Chem. 279, 26627–26634.Search in Google Scholar

Sachdev, M., Mandal, A., Mulders, S., Digilio, L.C., Panneerdoss, S., Suryavathi, V., Pires, E., Klotz, K.L., Hermens, L., Herrero, M.B., et al. (2012). Oocyte specific oolemmal SAS1B involved in sperm binding through intra-acrosomal SLLP1 during fertilization. Dev. Biol. 363, 40–51.Search in Google Scholar

Salvesen, G., Parkes, C., Abrahamson, M., Grubb, A., and Barrett, A.J. (1986). Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases. Biochem. J. 234, 429–434.Search in Google Scholar

Schäfer, C., Heiss, A., Schwarz, A., Westenfeld, R., Ketteler, M., Floege, J., Müller-Esterl, W., Schinke, T., and Jahnen-Dechent, W. (2003). The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J. Clin. Invest. 112, 357–366.Search in Google Scholar

Schroeder, A.C., Schultz, R.M., Kopf, G.S., Taylor, F.R., Becker, R.B., and Eppig, J.J. (1990). Fetuin inhibits zona pellucida hardening and conversion of ZP2 to ZP2f during spontaneous mouse oocyte maturation in vitro in the absence of serum. Biol. Reprod. 43, 891–897.Search in Google Scholar

Stöcker, W., Grams, F., Baumann, U., Reinemer, P., Gomis-Rüth, F.X., McKay, D.B., and Bode, W. (1995). The metzincins – topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 4, 823–840.Search in Google Scholar

Turk, V. and Bode, W. (1991). The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 285, 213–219.Search in Google Scholar

Turk, B., Stoka, V., Bjork, I., Boudier, C., Johansson, G., Dolenc, I., Colic, A., Bieth, J.G., and Turk, V. (1995). High-affinity binding of two molecules of cysteine proteinases to low-molecular-weight kininogen. Protein Sci. 4, 1874–1880.Search in Google Scholar

Wassarman, P.M. (1999). Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis, and fusion. Cell 96, 175–183.Search in Google Scholar

Yiallouros, I., Kappelhoff, R., Schilling, O., Wegmann, F., Helms, M.W., Auge, A., Brachtendorf, G., Berkhoff, E.G., Beermann, B., Hinz, H.J., et al. (2002). Activation mechanism of pro-astacin: role of the pro-peptide, tryptic and autoproteolytic cleavage and importance of precise amino-terminal processing. J. Mol. Biol. 324, 237–246.Search in Google Scholar

Received: 2014-4-22
Accepted: 2014-5-19
Published Online: 2014-9-5
Published in Print: 2014-10-1

©2014 by De Gruyter

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2014-0189/html
Scroll to top button