Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 15, 2015

Relationship among IL-6, LDL cholesterol and lipid peroxidation

  • Valter Lubrano EMAIL logo , Morena Gabriele , Maria Rita Puntoni , Vincenzo Longo and Laura Pucci

Abstract

Previous studies evidenced a significant reduction in serum cholesterol levels during an episode of acute inflammation. The aim of the present study was to verify the hypothesis of a regulatory role of cytokines through an in vitro model that simulates a situation of vascular inflammation and high levels of LDL or lipoperoxides.

Human microvascular endothelial cells-1 were used in all experiments. The cells were exposed for 24 h to increasing doses of LDL, oxidized lipoprotein, and 8-isoprostane (in the absence or presence of SQ29.548, a TXA2 receptor antagonist). Moreover, LDL receptor and oxidized lipoprotein receptor expression analyzed after endothelial cells’ incubation with increasing doses of interleukin-6. The ELISA test and quantitative real-time PCR were performed. Endothelial cells showed a significant increase in interleukin-6 medium levels associated with LDL, oxidized LDL and with the degree of oxidation (absence or presence of SQ29.548), while 8-isoprostane did not. Treatment of human microvascular endothelial cells-1 for 24 h with increasing doses of interleukin-6 significantly enhanced LDL receptor and oxidized lipoprotein receptor-1 mRNA expression.

Our data suggest the presence of a compensatory mechanism. The induction of a significant increase of IL-6 does not seem to be caused by the presence of the biological activity of 8-isoprostane.

References

1. Naka, T., Nishimoto, N. and Kishimoto, T. The paradigm of IL-6: from basic science to medicine. Arthritis Res. 4 (2002) S233-242.10.1186/ar565Search in Google Scholar

2. Rosenson, R.S. Myocardial injury: the acute phase response and lipoprotein metabolism. J. Am. Coll. Cardiol. 22 (1993) 933-940.10.1016/0735-1097(93)90213-KSearch in Google Scholar

3. Song, J.X., Ren, J.Y. and Chen, H. Primary and secondary hypocholesterolemia. Beijing Da Xue Xue Bao 42 (2010) 612-615.Search in Google Scholar

4. Nakagomi, A., Seino, Y., Noma, S., Kohashi, K., Kosugi, M., Kato, K., Kusama, Y., Atarashi, H. and Shimizu, W. Relationships between the serum cholesterol levels, production of monocyte proinflammatory cytokines and long-term prognosis in patients with chronic heart failure. Intern. Med. 53 (2014) 2415-2424.Search in Google Scholar

5. Hardardottir, I., Grunfeld, C. and Feingold, K.R. Effects of endotoxin and cytokines on lipid metabolism. Curr. Opin. Lipidol. 5 (1994) 207-215.Search in Google Scholar

6. Murthy, S., Mathur, S., Bishop, W.P. and Field, E.J. Inhibition of apolipoprotein B secretion by IL-6 is mediated by EGF or an EGF-like molecule in CaCo-2 cells. J. Lipid Res. 38 (1997) 206-216.Search in Google Scholar

7. Schectman, G., Kaul, S., Mueller, R.A., Borden, E.C. and Kissebah, A.H. The effect of interferon on the metabolism of LDLs. Arterioscler. Thromb. 12 (1992) 1053-1062.Search in Google Scholar

8. Gierens, H., Nauck, M., Roth, M., Schinker, R., Schürmann, C., Scharnagl, H., Neuhaus, G., Wieland, H. and März, W. Interleukin-6 stimulates LDL receptor gene expression via activation of sterol-responsive and Sp1 binding elements. Arterioscler. Thromb. Vasc. Biol. 20 (2000) 1777-1783.Search in Google Scholar

9. Hong, D., Bai, Y.P., Gao, H.C., Wang, X., Li, L.F., Zhang, G.G. and Hu, C.P. Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway Atherosclerosis 235 (2014) 310-317. DOI: 10.1016/j.atherosclerosis.2014.04.028.10.1016/j.atherosclerosis.2014.04.028Search in Google Scholar PubMed

10. Steinberg, D. Clinical trials of antioxidants in atherosclerosis: are we doing the right thing? Lancet 346 (1995) 36-38.Search in Google Scholar

11. Lubrano, V., Vassalle, C., Blandizzi, C., Del Tacca, M., Palombo, C., L'Abbate, A., Baldi, S. and Natali, A. The effect of lipoproteins on endothelial nitric oxide synthase is modulated by lipoperoxides. Eur. J. Clin. Invest. 33 (2003) 117-125.Search in Google Scholar

12. Simionescu, M. Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler. Thromb. Vasc. Biol. 27 (2007) 266-274.Search in Google Scholar

13. Clejan, S., Japa, S., Clemetson, C., Hasabnis, S.S., David, O. and Talano, J.V. Blood histamine is associated with coronary artery disease, cardiac events and severity of inflammation and atherosclerosis. J. Cell. Mol. Med. 6 (2002) 583-592.Search in Google Scholar

14. Holvoet, P., Vanhaecke, J., Janssens, S., Van de Werf, F. and Collen, D. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation 98 (1998) 1487-1494.Search in Google Scholar

15. Sawamura, T., Kume, N., Aoyama, T., Moriwaki, H., Hoshikawa, H., Aiba, Y., Tanaka, T., Miwa, S., Katsura, Y., Kita, T. and Masaki, T. An endothelial receptor for oxidized low-density lipoprotein. Nature 386 (1997) 73-77.Search in Google Scholar

16. Cominacini, L., Pasini, A.F., Garbin, U., Davoli, A., Tosetti, M.L., Campagnola, M., Rigoni, A., Pastorino, A.M., Lo Cascio, V. and Sawamura, T. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J. Biol. Chem. 275 (2000) 12633-12638.Search in Google Scholar

17. Cominacini, L., Rigoni, A., Pasini, A.F., Garbin, U., Davoli, A., Campagnola, M., Pastorino, A.M., Lo Cascio, V. and Sawamura, T. The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. J. Biol. Chem. 276 (2001) 13750-13755.Search in Google Scholar

18. Gu, L., Bai, W., Li, S., Zhang, Y., Han, Y., Gu, Y., Meng, G., Xie, L., Wang, J., Xiao, Y., Shan, L., Zhou, S., Wei, L., Ferro, A. and Ji, Y. Celastrol prevents atherosclerosis via inhibiting LOX-1 and oxidative stress. PLoS One 8 (2013) e65477. DOI: 10.1371/journal.pone.0065477.10.1371/journal.pone.0065477Search in Google Scholar PubMed PubMed Central

19. Kataoka, H., Kume, N., Miyamoto, S., Minami, M., Moriwaki, H., Murase, T., Sawamura, T., Masaki, T., Hashimoto, N. and Kita, T. Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation 99 (1999) 3110-3117.Search in Google Scholar

20. Hossain, E., Ota, A., Karnan, S., Takahashi, M., Mannan, S.B., Konishi, H. and Hosokawa, Y. Lipopolysaccharide augments the uptake of oxidized LDL by up-regulating lectin-like oxidized LDL receptor-1 in macrophages. Mol. Cell. Biochem. 400 (2015) 29-40. DOI: 10.1007/s11010-014-2259-0.10.1007/s11010-014-2259-0Search in Google Scholar PubMed

21. Lubrano, V. and Balzan, S. LOX-1 and ROS, inseparable factors in the process of endothelial damage. Free Radic. Res. 48 (2014) 841-848. DOI: 10.3109/10715762.2014.929122.10.3109/10715762.2014.929122Search in Google Scholar PubMed

22. Chen, J., Mehta, J.L., Haider, N., Zhang, X., Narula, J. and Li, D. Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells, Circ. Res. 94 (2004) 370-376. 10.1161/01.RES.0000113782.07824.BESearch in Google Scholar PubMed

23. Lubrano, V., Del Turco, S., Nicolini, G., Di Cecco, P. and Basta, G. Circulating levels of lectin-like oxidized low-density lipoprotein receptor-1 are associated with inflammatory markers. Lipids 43 (2008) 945-950.Search in Google Scholar

24. Banerjee, M., Kang, K.H., Morrow, J.D., Roberts, L.J. and Newman, J.H. Effects of a novel prostaglandin, 8-epi-PGF2 alpha, in rabbit lung in situ. Am. J. Physiol. 263 (1992) 660-663.Search in Google Scholar

25. Vacchiano, C.A. and Tempel, G.E. Role of nonenzymatically generated prostanoid, 8-iso-PGF2 alpha, in pulmonary oxygen toxicity. J. Appl. Physiol. 77 (1994) 2912-2917.10.1152/jappl.1994.77.6.2912Search in Google Scholar PubMed

26. Cracowski, J.L., Devillier, P., Durand, T., Stanke-Labesque, F. and Bessard, G. Vascular biology of the isoprostanes. J. Vasc. Res. 38 (2001) 93-103.10.1159/000051036Search in Google Scholar PubMed

27. Kawikova, I., Barnes, P.J., Takahashi, T., Tadjkarimi, S., Yacoub, M.H. and Belvisi, M.G. 8-epiPGF2alpha, a novel noncyclooxygenasederived prostaglandin, constricts airways in vitro. Am. J. Respir. Crit. Care Med. 153 (1996) 590-596.10.1164/ajrccm.153.2.8564103Search in Google Scholar PubMed

28. Fukunaga, M., Takahashi, K. and Badr, K.F. Vascular smooth muscle actions and receptor interactions of 8-isoprostaglandin E2, an E2isoprostane. Biochem. Biophys. Res. Comm. 195 (1993) 507-515.10.1006/bbrc.1993.2075Search in Google Scholar

29. Held, H.D. and Uhlig, S. Mechanisms of endotoxininduced airway and pulmonary vascular hypperreactivity in mice. Am. J. Respir. Crit. Care Med. 162 (2000) 1547-1552.Search in Google Scholar

30. Okazawa, A., Kawikova, I., Cui, Z., Skoogh, B. and Lotvall, J. 8-epi- PGF2alpha induces airflow obstruction and airway plasma exudation in vivo. Am. J. Respir. Crit. Care Med. 155 (1997) 436-441.Search in Google Scholar

31. Ades, E.W., Candal, F.J., Swerlick, R.A., George, V.G., Summers, S., Bosse, D.C. and Lawley, T.J. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J. Invest. Dermatol. 99 (1992) 683-690.Search in Google Scholar

32. Liao, J.K., Shin, W.S., Lee, W.Y. and Clark, S.L. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J. Biol. Chem. 270 (1995) 319-324.Search in Google Scholar

33. Esterbauer, H. and Cheeseman, K. Determination of aldehyde lipid peroxidation products: malonaldehyde and 4-hydroxinonenal. Meth. Enzymol. 186 (1990) 407-421.10.1016/0076-6879(90)86134-HSearch in Google Scholar

34. Livak, K.J. and Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25 (2001) 402-408. DOI:10.1006/meth.2001.1262.10.1006/meth.2001.1262Search in Google Scholar

35. Bentzon, J.F., Otsuka, F., Virmani, R. and Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 114 (2014) 1852-1866. DOI: 10.1161/CIRCRESAHA.114.302721.10.1161/CIRCRESAHA.114.302721Search in Google Scholar

36. Wu, Q., Hwang, C.K., Zheng, H., Wagley, Y., Lin, H.Y., Kim do, K., Law, P.Y., Loh, H.H. and Wei, L.N. MicroRNA 339 down-regulates μ-opioid receptor at the post-transcriptional level in response to opioid treatment. FASEB J. 27 (2013) 522-535. DOI: 10.1096/fj.12-213439. 10.1096/fj.12-213439Search in Google Scholar

37. Lubrano, V., Cocci, F., Battaglia, D., Papa, A., Marraccini, P. and Zucchelli, G.C. Usefulness of high-sensitivity IL-6 measurement for clinical characterization of patients with coronary artery disease. J. Clin. Lab. Anal. 19 (2005) 110-114.Search in Google Scholar

38. Pritchard, K.A., Ackerman, A.W., Ou, J., Curtis, M., Smalley, D.M., Fontana, J.T., Stemerman, M.B. and Sessa, W.C. Native low-density lipoprotein induces endothelial nitric oxide synthase dysfunction: role of heat shock protein 90 and caveolin-1. Free Radic. Biol. Med. 33 (2002) 52-62.10.1016/S0891-5849(02)00851-1Search in Google Scholar

39. Carpagnano, G.E., Resta, O., Foschino-Barbaro, M.P., Spanevello, A., Stefano, A., Di Gioia, G., Serviddio, G. and Gramiccioni, E. Exhaled interleukine-6 and 8-isoprostane in chronic obstructive pulmonary disease: effect of carbocysteine lysine salt monohydrate (SCMC-Lys). Eur. J. Pharmacol. 505 (2004) 169-175.Search in Google Scholar

40. Yura, T., Fukunaga, M., Khan, R., Nassar, G.N., Badr, K.F. and Montero, A. Free-radical-generated F2-isoprostane stimulates cell proliferation and endothelin-1 expression on endothelial cells. Kidney Int. 56 (1999) 471-478.Search in Google Scholar

41. Răchişan, A.L., Hruşcă, A., Căinap, S., Pop, T.L., Andreica, M., Miu, N. and Samaşca, G. The activity of 8-iso-prostaglandin F2alpha as an oxidative stress marker in vivo in paediatric patients with type 1 diabetes mellitus and associated autoimmunities. Clin. Lab. 60 (2014) 253-259.Search in Google Scholar

42. Madamanchi, N.R., Vendrov, A. and Runge, M.S. Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol. 25 (2005) 29-38. 10.1161/01.ATV.0000150649.39934.13Search in Google Scholar PubMed

Received: 2014-9-26
Accepted: 2015-3-3
Published Online: 2015-5-15
Published in Print: 2015-6-1

© University of Wrocław, Poland

Downloaded on 19.5.2024 from https://www.degruyter.com/document/doi/10.1515/cmble-2015-0020/html
Scroll to top button