Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 16, 2017

Kostchyienones A and B, new antiplasmodial and cytotoxicity of limonoids from the roots of Pseudocedrela kotschyi (Schweinf.) Harms

  • Lazare S. Sidjui EMAIL logo , Yves O.D. Nganso , Rufin M.K. Toghueo , Brussine N.K. Wakeu , Joel T. Dameue , Pierre Mkounga , Achyut Adhikari , Mehreen Lateef , Gabriel N. Folefoc and Muhammad S. Ali EMAIL logo

Abstract

Two new limonoids, kostchyienones A (1) and B (2), along with 12 known compounds 3–14 were isolated from the roots of Pseudocedrela kostchyi. Compound (7) was isolated for the first time from a natural source. Their structures were elucidated on the basis of spectroscopic evidence. Compounds 1–6 and 13–14 gave IC50 values ranging from 0.75 to 5.62 μg/mL for antiplasmodial activity against chloroquine-sensitive (Pf3D7) and chloroquine-resistant (PfINDO) strains of Plasmodium falciparum. Compound 5 showed moderate potential cytotoxicity against the HEK239T cell line with an IC50 value of 22.2±0.89 μg/mL. The antiplasmodial efficacy of the isolated compounds supports the medicinal value of this plant and its potential to provide novel antimalarial drugs.

Acknowledgments

The authors LSS and BNKW are grateful to the Third World Academy of Sciences (TWAS) and the International Center for Chemical and Biological Sciences for the award of ICCBS-TWAS fellowship (FR number: 3240287192).

References

1. Chin PW, Misae S, Yuta N, Alfarius EK, Yusuke H, Toshio K, et al. New limonoids from Chisocheton ceramicus. Chem Pharm Bull 2011;59:407–11.10.1248/cpb.59.407Search in Google Scholar PubMed

2. Wiesner J, Ortmann R, Jomaa H, Schlitzer M. New antimalarial drugs. Angew Chem Int Ed 2003;42:5274.10.1002/anie.200200569Search in Google Scholar

3. Udeme OG, Owunari AG. Effect of extract of Pseudocedrela kitoschyi on blood glucose concentration of alloxan induced diabetic albino rats. East J Med 2009;14:17–9.Search in Google Scholar

4. Kassim OO, Loyevsky M, Amonoo H, Lashley L, Ako-Nai KA, Gordeuk VR. Inhibition of in vitro growth of Plasmodium falciparum by Pseudocedrela kotschyi extract alone and in combination with Fagar azanthoxyloides extract. Trans R Soc Trop Med Hyg 2009;103:698–702.10.1016/j.trstmh.2009.02.018Search in Google Scholar

5. Kerharo J, Adam JG. La pharmacopée senegalaise traditionnelle: plantes medicinales et toxiques. Paris, Vigot Frères, 1974: 547.Search in Google Scholar

6. Atawodi SE, Ameh DA, Ibrahim S, Andrew JN, Nzelibe HC, Onyike EO, et al. Indigenous knowledge system for treatment of trypanosomiasis in Kaduna State of Nigeria. J Ethnopharmacol 2002;79:279–82.10.1016/S0378-8741(01)00351-8Search in Google Scholar PubMed

7. Akuodor GC, Ajoku GA, Ezeunala MN, Chilaka KC, Asika EC. Antimalarial potential of the ethanolic leaf extract of Pseudocedrala kotschyi. J Acute Dis 2015:23–7.10.1016/S2221-6189(14)60077-9Search in Google Scholar

8. El Tahir A, Gwiria MH, Satti S, Khalid A. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (Lam.) Exell. J Ethnopharmacol 1999;64:227–33.10.1016/S0378-8741(98)00129-9Search in Google Scholar PubMed

9. Khalit M, Yusuke H, Litaudon M, Khalijah A, Hamib A, Koichim A, et al. Ceramicine B-D, new antiplasmodial limonoids from Chisocheton ceramicus. Bioorg Med Chem 2009;17:727–30.10.1016/j.bmc.2008.11.048Search in Google Scholar

10. Sidjui SL, Eyong OK, Hull GK, Folefoc GN, Mahiou-Leddet V, Herbette G, et al. Bioactive lanostane-type triterpenoids from the root of Leplaea mayombensis (Pellegr.) Staner (Meliaceae). J Nat Prod 2017 (accepted).10.1021/acs.jnatprod.7b00210Search in Google Scholar

11. Ekong DE, Olagbemi EO. Novel meliacins (limonoids) from the wood of Pseudocedrela kotschyii. Tetrahedron Lett 1967;8:3525–7.10.1016/S0040-4039(01)89835-XSearch in Google Scholar

12. Hay AE, Ioset JR, Ahua KM, Diallo D, Kurt BR, Hostettmann K. Limonoid orthoacetates and antiprotozoal compounds from the roots of Pseudocedrela kotschyi, J Nat Prod 2007;70:9–13.10.1021/np0680230Search in Google Scholar PubMed

13. Niven ML, Taylor DA. Revision of the structure of the limonoid pseudrelone B from Pseudocedrela kotschyii. Phytochemistry 1988;27:1542.10.1016/0031-9422(88)80237-1Search in Google Scholar

14. Dawet A, Yakubu DP. Antiplasmodial efficacy of stem bark extracts of Pseudocedrela kotschyii in mice infected with Plasmodium berghei berghei. Br J Pharm Res 2014;4: 594–607.10.9734/BJPR/2014/2809Search in Google Scholar

15. Taylor DA. A limonoid, pseudrelone B, from Pseudocedrela kotschyii. Phytochemistry 1979;18:1574–6.10.1016/S0031-9422(00)98505-4Search in Google Scholar

16. Gessler MC, Nkunya MH, Nwasumbi LB, Heinrich M, Tonner M. Screening Tanzanian medical plants for antimalarial activity. Acta Trop 1994;55:65–7.10.1016/0001-706X(94)90041-8Search in Google Scholar

17. Sabrina K, Martin MT, Grellier P, Kasenene J, Sevenet T. Novel antimalarial compounds isolated in a survey of self-medicative behavior of wild chimpanzees in Uganda. Antimicrob Agents Chemother 2004;48:3196–9.10.1128/AAC.48.8.3196-3199.2004Search in Google Scholar PubMed PubMed Central

18. Tsamo TA, Nangmo KP, Mkounga P, Ingrid MB, Kirk M, Gabriele S, et al. Antiplasmodial limonoids from Trichilia rubescens (Meliaceae). Med Chem 2016;12:1–7.10.2174/1573406412666160106154357Search in Google Scholar

19. Weenen H, Nkunya HH, Bray HD, Mwasumbi BL, Kinabo SL, Kilimali BE. Antimalarial activity of Tanzanian medicinal plants. Planta Med 1990;56:368–70.10.1055/s-2006-960984Search in Google Scholar PubMed

20. Weenen H, Nkunya HH, Bray HD, Mwasumbi BL, Kinabo SL, Kilimali BE. Antimalarial compounds containing an α, β-unsaturared carbonyl moiety from Tanzanian medicinal plants. Planta Med 1990;56:371–3.10.1055/s-2006-960985Search in Google Scholar PubMed

21. Duker-Eshun G, Jaroszewski WJ, Asomaning AW, Oppong-Boachie F, Brøgger Christensen S. Antiplasmodial constituents of Cajanus cajan. Phytother Res 2004;18:128–30.10.1002/ptr.1375Search in Google Scholar PubMed

22. Irungu NB, Adipo N, Orwa AJ, Kimani F, Heydenreichd M, Midiwo OJ, et al. Antiplasmodial and cytotoxic activities of the constituents of Turraea robusta and Turraea nilotica. J Ethnopharmacol 2015;174:419–25.10.1016/j.jep.2015.08.039Search in Google Scholar PubMed PubMed Central

23. Takanka Y, Sakamato A, Inoue T, Yamada T, Kikuchi T, Kajimoto T, et al. Andirolides H-P from the flower of andiroba (Carapa guianensis, Meliaceae). Tetrahedron 2012;68: 3669–77.10.1016/j.tet.2011.12.076Search in Google Scholar

24. Singh RK, Gupta RK, Vaishali, Hugar M, Tiwari S, Pandey A, et al. Isolation and characterization of bioactive phytoconstituent from the leaves of Cassia auriculata. World J Pharm Pharm Sci 2013;6:6366–7.Search in Google Scholar

25. Guerrero MF, Puebla P, Carron R, Martin ML, San Roman L. Quercetin 3,7-dimethyl ether: a vasorelaxant: avonoid isolated from Croton schiedeanus Schlecht. J Pharm Pharmacol 2002;54:1373–8.10.1211/002235702760345455Search in Google Scholar

26. Trager W, Jensen JB. Human malaria parasites in continuous culture. Science 1976;193:673–5.10.1126/science.781840Search in Google Scholar PubMed

27. Bickii J, Njifutie N, Ayafor JF, Basco KL, Ringwal P. In vitro antimalarial activity of limonoids from Khaya grandifolia C.D.C. (Meliaceae). J Ethnopharmacol 2000;69:27–3.10.1016/S0378-8741(99)00117-8Search in Google Scholar

28. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.10.1016/0022-1759(83)90303-4Search in Google Scholar PubMed


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/znc-2017-0102).


Received: 2017-6-5
Revised: 2017-8-11
Accepted: 2017-8-24
Published Online: 2017-9-16
Published in Print: 2018-2-23

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1515/znc-2017-0102/html
Scroll to top button