Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 4, 2018

Rab23 and developmental disorders

  • Catherine H.H. Hor ORCID logo EMAIL logo , Bor Luen Tang ORCID logo and Eyleen L.K. Goh EMAIL logo

Abstract

Rab23 is a conserved member of the Rab family of small GTPases that regulates membrane trafficking in eukaryotes. It is unique amongst the Rabs in terms of its implicated role in mammalian development, as originally illustrated by the embryonic lethality and open neural tube phenotype of a spontaneous mouse mutant that carries homozygous mutation of open brain, a gene encoding Rab23. Rab23 was initially identified to act as an antagonist of Sonic hedgehog (Shh) signaling, and has since been implicated in a number of physiological and pathological roles, including oncogenesis. Interestingly, RAB23 null allele homozygosity in humans is not lethal, but instead causes the developmental disorder Carpenter’s syndrome (CS), which is characterized by craniofacial malformations, polysyndactyly, obesity and intellectual disability. CS bears some phenotypic resemblance to a spectrum of hereditary defects associated with the primary cilium, or the ciliopathies. Recent findings have in fact implicated Rab23 in protein traffic to the primary cilium, thus linking it with the primary cellular locale of Shh signaling. Rab23 also has Shh and cilia-independent functions. It is known to mediate the expression of Nodal at the mouse left lateral plate mesoderm and Kupffer’s vesicle, the zebrafish equivalent of the mouse node. It is thus important for the left-right patterning of vertebrate embryos. In this review, we discuss the developmental disorders associated with Rab23 and attempt to relate its cellular activities to its roles in development.

Acknowledgment

We thank Shawn Tan for proof reading of the manuscript.

References

Alessandri, J.-L., Dagoneau, N., Laville, J.-M., Baruteau, J., Hébert, J.-C., and Cormier-Daire, V. (2010). RAB23 mutation in a large family from Comoros Islands with Carpenter syndrome. Am. J. Med. Genet. 152A, 982–986.10.1002/ajmg.a.33327Search in Google Scholar PubMed

Baker, K. and Beales, P.L. (2009). Making sense of cilia in disease: the human ciliopathies. Am. J. Med. Genet. C Semin. Med. Genet. 151C, 281–295.10.1002/ajmg.c.30231Search in Google Scholar PubMed

Bangs, F. and Anderson, K.V. (2017). Primary cilia and mammalian hedgehog signaling. Cold Spring Harb. Perspect. Biol. 9, a028175.10.1101/cshperspect.a028175Search in Google Scholar PubMed PubMed Central

Barr, F. and Lambright, D.G. (2010). Rab GEFs and GAPs. Curr. Opin. Cell Biol. 22, 461–470.10.1016/j.ceb.2010.04.007Search in Google Scholar PubMed PubMed Central

Barral, D.C., Ramalho, J.S., Anders, R., Hume, A.N., Knapton, H.J., Tolmachova, T., Collinson, L.M., Goulding, D., Authi, K.S., and Seabra, M.C. (2002). Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J. Clin. Invest. 110, 247–257.10.1172/JCI0215058Search in Google Scholar

Bem, D., Yoshimura, S.-I., Nunes-Bastos, R., Bond, F.C., Bond, F.F., Kurian, M.A., Rahman, F., Handley, M.T.W., Hadzhiev, Y., Masood, I., et al. (2011). Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am. J. Hum. Genet. 88, 499–507.10.1016/j.ajhg.2011.03.012Search in Google Scholar PubMed PubMed Central

Ben-Salem, S., Begum, M.A., Ali, B.R., and Al-Gazali, L. (2013). A novel aberrant splice site mutation in RAB23 leads to an eight nucleotide deletion in the mRNA and is responsible for Carpenter syndrome in a consanguineous Emirati family. Mol. Syndromol. 3, 255–261.10.1159/000345653Search in Google Scholar PubMed PubMed Central

Blümer, J., Rey, J., Dehmelt, L., Mazel, T., Wu, Y.-W., Bastiaens, P., Goody, R.S., and Itzen, A. (2013). RabGEFs are a major determinant for specific Rab membrane targeting. J. Cell. Biol. 200, 287–300.10.1083/jcb.201209113Search in Google Scholar PubMed PubMed Central

Boehlke, C., Bashkurov, M., Buescher, A., and Krick, T. (2010). Differential role of Rab proteins in ciliary trafficking: Rab23 regulates smoothened levels. J. Cell. Sci. 123, 1460–1467.10.1242/jcs.058883Search in Google Scholar PubMed

Braun, D.A. and Hildebrandt, F. (2017). Ciliopathies. Cold Spring Harb. Perspect. Biol. 9, a028191.10.1101/cshperspect.a028191Search in Google Scholar PubMed PubMed Central

Bröcker, C., Engelbrecht-Vandré, S., and Ungermann, C. (2010). Multisubunit tethering complexes and their role in membrane fusion. Curr. Biol. 20, R943–952.10.1016/j.cub.2010.09.015Search in Google Scholar PubMed

Carpenter, B.S., Barry, R.L., Verhey, K.J., and Allen, B.L. (2015). The heterotrimeric kinesin-2 complex interacts with and regulates GLI protein function. J. Cell. Sci. 128, 1034–1050.10.1242/jcs.162552Search in Google Scholar PubMed PubMed Central

Caspary, T., Larkins, C.E., and Anderson, K.V. (2007). The graded response to Sonic hedgehog depends on cilia architecture. Dev. Cell. 12, 767–778.10.1016/j.devcel.2007.03.004Search in Google Scholar PubMed

Caswell, P.T., Chan, M., Lindsay, A.J., McCaffrey, M.W., Boettiger, D., and Norman, J.C. (2008). Rab-coupling protein coordinates recycling of a5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J. Cell. Biol. 183, 143–155.10.1083/jcb.200804140Search in Google Scholar PubMed PubMed Central

Caswell, P.T., Spence, H.J., Parsons, M., White, D.P., Clark, K., Cheng, K.W., Mills, G.B., Humphries, M.J., Messent, A.J., Anderson, K.I., et al. (2007). Rab25 associates with an a5β1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell. 13, 496–510.10.1016/j.devcel.2007.08.012Search in Google Scholar PubMed

Chang, J., Xu, W., Liu, G., Du, X., and Li, X. (2017). Downregulation of Rab23 in prostate cancer inhibits tumor growth in vitro and in vivo. Oncol. Res. 25, 241–248.10.3727/096504016X14742891049118Search in Google Scholar PubMed PubMed Central

Chen, Y., Ng, F., and Tang, B.L. (2016). Rab23 activities and human cancer – emerging connections and mechanisms. Tumour Biol. 37, 12959–12967.10.1007/s13277-016-5207-7Search in Google Scholar PubMed

Cherfils, J. and Zeghouf, M. (2013). Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 93, 269–309.10.1152/physrev.00003.2012Search in Google Scholar PubMed

Chi, S., Xie, G., Liu, H., Chen, K., Zhang, X., Li, C., and Xie, J. (2012). Rab23 negatively regulates Gli1 transcriptional factor in a Su(Fu)-dependent manner. Cell. Signal. 24, 1222–1228.10.1016/j.cellsig.2012.02.004Search in Google Scholar PubMed PubMed Central

Chia, W.J. and Tang, B.L. (2009). Emerging roles for Rab family GTPases in human cancer. Biochim. Biophys. Acta 1795, 110–116.10.1016/j.bbcan.2008.10.001Search in Google Scholar PubMed

Chua, C.E.L. and Tang, B.L. (2015). Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation. Cell. Mol. Life Sci. 72, 2289–2304.10.1007/s00018-015-1862-xSearch in Google Scholar PubMed

Cooper, A.F., Yu, K.P., Brueckner, M., Brailey, L.L., Johnson, L., McGrath, J.M., and Bale, A.E. (2005). Cardiac and CNS defects in a mouse with targeted disruption of suppressor of fused. Development 132, 4407–4417.10.1242/dev.02021Search in Google Scholar PubMed

D’Adamo, P., Masetti, M., Bianchi, V., More, L., Mignogna, M.L., Giannandrea, M., and Gatti, S. (2014). RAB GTPases and RAB-interacting proteins and their role in the control of cognitive functions. Neurosci. Biobehav. Rev. 46, 302–314.10.1016/j.neubiorev.2013.12.009Search in Google Scholar PubMed

Davis, E.E. and Katsanis, N. (2012). The ciliopathies: a transitional model into systems biology of human genetic disease. Curr. Opin. Genet. Dev. 22, 290–303.10.1016/j.gde.2012.04.006Search in Google Scholar PubMed PubMed Central

Dozynkiewicz, M.A., Jamieson, N.B., Macpherson, I., Grindlay, J., van den Berghe, P.V.E., von Thun, A., Morton, J.P., Gourley, C., Timpson, P., Nixon, C., et al. (2012). Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev. Cell 22, 131–145.10.1016/j.devcel.2011.11.008Search in Google Scholar PubMed PubMed Central

Eggenschwiler, J.T., Espinoza, E., and Anderson, K.V. (2001). Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412, 194–198.10.1038/35084089Search in Google Scholar PubMed

Eggenschwiler, J.T., Bulgakov, O.V., Qin, J., Li, T., and Anderson, K.V. (2006). Mouse Rab23 regulates Hedgehog signaling from Smoothened to Gli proteins. Dev Biol. 290, 1–12.10.1016/j.ydbio.2005.09.022Search in Google Scholar PubMed

El-Chemaly, S. and Young, L.R. (2016). Hermansky-Pudlak Syndrome. Clin. Chest Med. 37, 505–511.10.1016/j.ccm.2016.04.012Search in Google Scholar PubMed PubMed Central

Evans, T.M., Ferguson, C., Wainwright, B.J., Parton, R.G., and Wicking, C. (2003). Rab23, a negative regulator of hedgehog signaling, localizes to the plasma membrane and the endocytic pathway. Traffic 4, 869–884.10.1046/j.1600-0854.2003.00141.xSearch in Google Scholar PubMed

Fuller, K., O’Connell, J.T., Gordon, J., Mauti, O., and Eggenschwiler, J. (2014). Rab23 regulates Nodal signaling in vertebrate left-right patterning independently of the Hedgehog pathway. Dev. Biol. 391, 182–195.10.1016/j.ydbio.2014.04.012Search in Google Scholar PubMed

Gerondopoulos, A., Langemeyer, L., Liang, J.-R., Linford, A., and Barr, F.A. (2012). BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor. Curr. Biol. 22, 2135–2139.10.1016/j.cub.2012.09.020Search in Google Scholar PubMed PubMed Central

Giannandrea, M., Bianchi, V., Mignogna, M.L., Sirri, A., Carrabino, S., D’Elia, E., Vecellio, M., Russo, S., Cogliati, F., Larizza, L., et al. (2010). Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. Am. J. Hum. Genet. 86, 185–195.10.1016/j.ajhg.2010.01.011Search in Google Scholar PubMed PubMed Central

Gomes, A.Q., Ali, B.R., Ramalho, J.S., Godfrey, R.F., Barral, D.C., Hume, A.N., and Seabra, M.C. (2003). Membrane targeting of Rab GTPases is influenced by the prenylation motif. Mol. Biol. Cell. 14, 1882–1899.10.1091/mbc.e02-10-0639Search in Google Scholar PubMed PubMed Central

Guo, A., Wang, T., Ng, E.L., Aulia, S., Chong, K.H., Teng, F.Y.H., Wang, Y., and Tang, B.L. (2006). Open brain gene product Rab23: expression pattern in the adult mouse brain and functional characterization. J. Neurosci. Res. 83, 1118–1127.10.1002/jnr.20788Search in Google Scholar PubMed

Gutkowska, M. and Swiezewska, E. (2012). Structure, regulation and cellular functions of Rab geranylgeranyl transferase and its cellular partner Rab Escort Protein. Mol. Membr. Biol. 29, 243–256.10.3109/09687688.2012.693211Search in Google Scholar PubMed

Haye, D., Collet, C., Sembely-Taveau, C., Haddad, G., Denis, C., Soulé, N., Suc, A.-L., Listrat, A. and Toutain, A. (2014). Prenatal findings in Carpenter syndrome and a novel mutation in RAB23. Am. J. Med. Genet. 164A, 2926–2930.10.1002/ajmg.a.36726Search in Google Scholar PubMed

Hidestrand, P., Vasconez, H., and Cottrill, C. (2009). Carpenter syndrome. J. Craniofac. Surg. 20, 254–256.10.1097/SCS.0b013e318184357aSearch in Google Scholar PubMed

Hildebrandt, F., Benzing, T., and Katsanis, N. (2011). Ciliopathies. N. Engl. J. Med. 364, 1533–1543.10.1056/NEJMra1010172Search in Google Scholar PubMed PubMed Central

Hirokawa, N., Noda, Y., Tanaka, Y., and Niwa, S. (2009). Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682–696.10.1038/nrm2774Search in Google Scholar PubMed

Horgan, C.P. and McCaffrey, M.W. (2011). Rab GTPases and microtubule motors. Biochem. Soc. Trans. 39, 1202–1206.10.1042/BST0391202Search in Google Scholar PubMed

Hou, Q., Wu, Y.H., Grabsch, H., Zhu, Y., Leong, S.H., Ganesan, K., Cross, D., Tan, L.K., Tao, J., Gopalakrishnan, V., et al. (2008). Integrative genomics identifies RAB23 as an invasion mediator gene in diffuse-type gastric cancer. Cancer Res. 68, 4623–4630.10.1158/0008-5472.CAN-07-5870Search in Google Scholar PubMed

Huang, T.-H., Shui, H.-A., Ka, S.-M., Tang, B.L., Chao, T.-K., Chen, J.-S., Lin, Y.-F., and Chen, A. (2009). Rab 23 is expressed in the glomerulus and plays a role in the development of focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 24, 743–754.10.1093/ndt/gfn570Search in Google Scholar PubMed

Huang, T.-H., Ka, S.-M., Hsu, Y.-J., Shui, H.-A., Tang, B.L., Hu, K.-Y., Chang, J.-L., and Chen, A. (2011). Rab23 plays a role in the pathophysiology of mesangial cells – a proteomic analysis. Proteomics. 11, 380–394.10.1002/pmic.201000165Search in Google Scholar PubMed

Huangfu, D. and Anderson, K.V. (2006). Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 133, 3–14.10.1242/dev.02169Search in Google Scholar PubMed

Huangfu, D., Liu, A., Rakeman, A.S., Murcia, N.S., Niswander, L., and Anderson, K.V. (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87.10.1038/nature02061Search in Google Scholar PubMed

Ishikawa, H. and Marshall, W.F. (2011). Ciliogenesis: building the cell’s antenna. Nat. Rev. Mol. Cell Biol. 12, 222–234.10.1038/nrm3085Search in Google Scholar PubMed

Ishikawa, H. and Marshall, W.F. (2017). Intraflagellar transport and ciliary dynamics. Cold Spring Harb. Perspect. Biol. 9, a021998.10.1101/cshperspect.a021998Search in Google Scholar PubMed PubMed Central

Ishikawa, H., Thompson, J., Yates, J.R., and Marshall, W.F. (2012). Proteomic analysis of mammalian primary cilia. Curr. Biol. 22, 414–419.10.1016/j.cub.2012.01.031Search in Google Scholar PubMed PubMed Central

Jenkins, D., Seelow, D., Jehee, F.S., Perlyn, C.A., Alonso, L.G., Bueno, D.F., Donnai, D., Josifova, D., Josifiova, D., Mathijssen, I.M.J., et al. (2007). RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am. J. Hum. Genet. 80, 1162–1170.10.1086/518047Search in Google Scholar PubMed PubMed Central

Jenkins, D., Baynam, G., De Catte, L., Elcioglu, N., Gabbett, M.T., Hudgins, L., Hurst, J.A., Jehee, F.S., Oley, C., and Wilkie, A.O.M. (2011). Carpenter syndrome: extended RAB23 mutation spectrum and analysis of nonsense-mediated mRNA decay. Hum. Mutat. 32, 2069–2078.10.1002/humu.21457Search in Google Scholar PubMed PubMed Central

Jeong, J. and McMahon, A.P. (2005). Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1. Development. 132, 143–154.10.1242/dev.01566Search in Google Scholar PubMed

Jiang, Y., Han, Y., Sun, C., Han, C., Han, N., Zhi, W., and Qiao, Q. (2016). Rab23 is overexpressed in human bladder cancer and promotes cancer cell proliferation and invasion. Tumour Biol. 37, 8131–8138.10.1007/s13277-015-4590-9Search in Google Scholar PubMed

Johnston, J.J., Olivos-Glander, I., Killoran, C., Elson, E., Turner, J.T., Peters, K.F., Abbott, M.H., Aughton, D.J., Aylsworth, A.S., Bamshad, M.J., et al. (2005). Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am. J. Hum. Genet. 76, 609–622.10.1086/429346Search in Google Scholar PubMed PubMed Central

Kasarskis, A., Manova, K., and Anderson, K.V. (1998). A phenotype-based screen for embryonic lethal mutations in the mouse. Proc. Natl. Acad. Sci. USA 95, 7485–7490.10.1073/pnas.95.13.7485Search in Google Scholar PubMed PubMed Central

Kolpakova-Hart, E., Jinnin, M., Hou, B., Fukai, N., and Olsen, B.R. (2007). Kinesin-2 controls development and patterning of the vertebrate skeleton by Hedgehog- and Gli3-dependent mechanisms. Dev. Biol. 309, 273–284.10.1016/j.ydbio.2007.07.018Search in Google Scholar PubMed PubMed Central

Kovacs, J.J., Whalen, E.J., Liu, R., Xiao, K., Kim, J., Chen, M., Wang, J., Chen, W., and Lefkowitz, R.J. (2008). Beta-arrestin-mediated localization of smoothened to the primary cilium. Science 320, 1777–1781.10.1126/science.1157983Search in Google Scholar PubMed PubMed Central

Krzewski, K. and Cullinane, A.R. (2013). Evidence for defective Rab GTPase-dependent cargo traffic in immune disorders. Exp. Cell Res. 319, 2360–2367.10.1016/j.yexcr.2013.06.012Search in Google Scholar PubMed PubMed Central

Leaf, A. and Von Zastrow, M. (2015). Dopamine receptors reveal an essential role of IFT-B, KIF17, and Rab23 in delivering specific receptors to primary cilia. eLife 4, e06996.10.7554/eLife.06996.044Search in Google Scholar

Li, N., Volff, J.-N., and Wizenmann, A. (2007). Rab23 GTPase is expressed asymmetrically in Hensen’s node and plays a role in the dorsoventral patterning of the chick neural tube. Dev. Dyn. 236, 2993–3006.10.1002/dvdy.21331Search in Google Scholar PubMed

Liegel, R.P., Handley, M.T., Ronchetti, A., Brown, S., Langemeyer, L., Linford, A., Chang, B., Morris-Rosendahl, D.J., Carpanini, S., Posmyk, R., et al. (2013). Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. Am. J. Hum. Genet. 93, 1001–1014.10.1016/j.ajhg.2013.10.011Search in Google Scholar PubMed PubMed Central

Liem, K.F., Ashe, A., He, M., Satir, P., Moran, J., and Beier, D. (2012). The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J. Cell. Biol. 197, 789–800.10.1083/jcb.201110049Search in Google Scholar PubMed PubMed Central

Lim, Y.S. and Tang, B.L. (2015). A role for Rab23 in the trafficking of Kif17 to the primary cilium. J. Cell Sci. 128, 2996–3008.10.1242/jcs.163964Search in Google Scholar PubMed

Lim, Y.S., Chua, C.E.L., and Tang, B.L. (2011). Rabs and other small GTPases in ciliary transport. Biol. Cell. 103, 209–221.10.1042/BC20100150Search in Google Scholar PubMed

Litingtung, Y., Dahn, R.D., Li, Y., Fallon, J.F., and Chiang, C. (2002). Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418, 979–983.10.1038/nature01033Search in Google Scholar PubMed

Liu, Y., Zeng, C., Bao, N., Zhao, J., Hu, Y., Li, C., and Chi, S. (2015). Effect of Rab23 on the proliferation and apoptosis in breast cancer. Oncol. Rep. 34, 1835–1844.10.3892/or.2015.4152Search in Google Scholar PubMed

Lumb, J.H. and Field, M.C. (2011). Rab23 is a flagellar protein in Trypanosoma brucei. BMC Res. Notes 4, 190.10.1186/1756-0500-4-190Search in Google Scholar PubMed PubMed Central

Mellman, I. and Yarden, Y. (2013). Endocytosis and cancer. Cold Spring Harb. Perspect. Biol. 5, a016949.10.1101/cshperspect.a016949Search in Google Scholar PubMed PubMed Central

Meng, X., Poon, R., Zhang, X., Cheah, A., Ding, Q., Hui, C.C., and Alman, B. (2001). Suppressor of fused negatively regulates β-catenin signaling. J. Biol. Chem. 276, 40113–40119.10.1074/jbc.M105317200Search in Google Scholar PubMed

Miao, Y., Jian, Q., Zhang, M., and Li, C. (2015). Rab23 enhances invasion of Sa3 cutaneous squamous cell carcinoma cells via up-regulating the expression of Rac1. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 31, 1611–1614.Search in Google Scholar

Min, T.H., Kriebel, M., Hou, S., and Pera, E.M. (2011). The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. Dev. Biol. 358, 262–276.10.1016/j.ydbio.2011.07.035Search in Google Scholar PubMed

Mitra, S., Cheng, K.W., and Mills, G.B. (2011). Rab GTPases implicated in inherited and acquired disorders. Semin. Cell Dev. Biol. 22, 57–68.10.1016/j.semcdb.2010.12.005Search in Google Scholar PubMed PubMed Central

Murdoch, J.N. and Copp, A.J. (2010). The relationship between sonic Hedgehog signaling, cilia, and neural tube defects. Birth Defects Res. A Clin. Mol. Teratol. 88, 633–652.10.1002/bdra.20686Search in Google Scholar

Novarino, G., Akizu, N., and Gleeson, J.G. (2011). Modeling human disease in humans: the ciliopathies. Cell 147, 70–79.10.1016/j.cell.2011.09.014Search in Google Scholar

Olkkonen, V.M., Peterson, J.R., Dupree, P., Lütcke, A., Zerial, M., and Simons, K. (1994). Isolation of a mouse cDNA encoding Rab23, a small novel GTPase expressed predominantly in the brain. Gene 138, 207–211.10.1016/0378-1119(94)90809-5Search in Google Scholar

Pataki, C., Matusek, T., Kurucz, E., Andó, I., Jenny, A., and Mihály, J. (2010). Drosophila Rab23 is involved in the regulation of the number and planar polarization of the adult cuticular hairs. Genetics 184, 1051–1065.10.1534/genetics.109.112060Search in Google Scholar PubMed PubMed Central

Pfeffer, S.R. (2013). Rab GTPase regulation of membrane identity. Curr. Opin. Cell Biol. 25, 414–419.10.1016/j.ceb.2013.04.002Search in Google Scholar PubMed PubMed Central

Pfeffer, S. and Aivazian, D. (2004). Targeting Rab GTPases to distinct membrane compartments. Nat. Rev. Mol. Cell Biol. 5, 886–896.10.1038/nrm1500Search in Google Scholar PubMed

Pylypenko, O., Hammich, H., Yu, I.-M., and Houdusse, A. (2017). Rab GTPases and their interacting protein partners: structural insights into Rab functional diversity. Small GTPases 9, 22–48.10.1080/21541248.2017.1336191Search in Google Scholar PubMed PubMed Central

Reiter, J.F. and Leroux, M.R. (2017). Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533.10.1038/nrm.2017.60Search in Google Scholar PubMed PubMed Central

Rojas, A.M., Fuentes, G., Rausell, A., and Valencia, A. (2012). The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J. Cell. Biol. 196, 189–201.10.1083/jcb.201103008Search in Google Scholar PubMed PubMed Central

Scholey, J.M. and Anderson, K.V. (2006). Intraflagellar transport and cilium-based signaling. Cell 125, 439–442.10.1016/j.cell.2006.04.013Search in Google Scholar PubMed

Schou, K.B., Pedersen, L.B., and Christensen, S.T. (2015). Ins and outs of GPCR signaling in primary cilia. EMBO Rep. 16, 1099–1113.10.15252/embr.201540530Search in Google Scholar PubMed PubMed Central

Svard, J., Heby-Henricson, K., Persson-Lek, M., Rozell, B., Lauth, M., Bergstrom, A., Ericson, J., Toftgard, R., and Teglund, S. (2006). Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev. Cell. 10, 187–197.10.1016/j.devcel.2005.12.013Search in Google Scholar PubMed

Tabin, C.J. (2006). The key to left-right asymmetry. Cell 127, 27–32.10.1016/j.cell.2006.09.018Search in Google Scholar PubMed

Taylor, M.D., Zhang, X., Liu, L., Hui, C.-C., Mainprize, T.G., Scherer, S.W., Wainwright, B., Hogg, D., and Rutka, J.T. (2004). Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling. Oncogene 23, 4577–4583.10.1038/sj.onc.1207605Search in Google Scholar PubMed

Tzeng, H.-T. and Wang, Y.-C. (2016). Rab-mediated vesicle trafficking in cancer. J. Biomed. Sci. 23, 70.10.1186/s12929-016-0287-7Search in Google Scholar PubMed PubMed Central

Verhoeven, K., De Jonghe, P., Coen, K., Verpoorten, N., Auer-Grumbach, M., Kwon, J.M., FitzPatrick, D., Schmedding, E., De Vriendt, E., Jacobs, A., et al. (2003). Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am. J. Hum. Genet. 72, 722–727.10.1086/367847Search in Google Scholar PubMed PubMed Central

Victorine, A.S., Weida, J., Hines, K.A., Robinson, B., Torres-Martinez, W., and Weaver, D.D. (2014). Prenatal diagnosis of Carpenter syndrome: looking beyond craniosynostosis and polysyndactyly. Am. J. Med. Genet. 164A, 820–823.10.1002/ajmg.a.36362Search in Google Scholar PubMed

Wang, Y., Ng, E.L., and Tang, B.L. (2006). Rab23: what exactly does it traffic? Traffic 7, 746–750.10.1111/j.1600-0854.2006.00416.xSearch in Google Scholar PubMed

Wang, M., Dong, Q., and Wang, Y. (2016). Rab23 is overexpressed in human astrocytoma and promotes cell migration and invasion through regulation of Rac1. Tumour Biol. 37, 11049–11055.10.1007/s13277-016-4949-6Search in Google Scholar PubMed

Waters, A.M. and Beales, P.L. (2011). Ciliopathies: an expanding disease spectrum. Pediatr. Nephrol. 26, 1039–1056.10.1007/s00467-010-1731-7Search in Google Scholar PubMed PubMed Central

Wheeler, D.B., Zoncu, R., Root, D.E., Sabatini, D.M., and Sawyers, C.L. (2015). Identification of an oncogenic RAB protein. Science 350, 211–217.10.1126/science.aaa4903Search in Google Scholar PubMed PubMed Central

Xavier, G.M., Seppala, M., Barrell, W., and Birjandi, A.A. (2016). Hedgehog receptor function during craniofacial development. Dev. Biol. 415, 198–215.10.1016/j.ydbio.2016.02.009Search in Google Scholar PubMed

Yoshimura, S.I., Egerer, J., Fuchs, E., Haas, A.K., and Barr, F.A. (2007). Functional dissection of Rab GTPases involved in primary cilium formation. J. Cell. Biol. 178, 363–369.10.1083/jcb.200703047Search in Google Scholar PubMed PubMed Central

Zhang, X.-Y., Mu, J.-H., Liu, L.-Y., and Zhang, H.-Z. (2017). Upregulation of miR-802 suppresses gastric cancer oncogenicity via targeting RAB23 expression. Eur. Rev. Med. Pharmacol. Sci. 21, 4071–4078.Search in Google Scholar

Zheng, L.-Q., Chi, S.-M., and Li, C.-X. (2017). Rab23’s genetic structure, function and related diseases: a review. Biosci Rep. 37, BSR20160410.10.1042/BSR20160410Search in Google Scholar PubMed PubMed Central

Received: 2017-12-20
Accepted: 2018-03-03
Published Online: 2018-05-04
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2017-0110/html
Scroll to top button