Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 14, 2015

Autophagy in Alzheimer’s disease

  • Ameneh Zare-shahabadi , Eliezer Masliah , Gail V.W. Johnson and Nima Rezaei EMAIL logo

Abstract

Autophagy is a vesicle and lysosome-mediated degradative pathway that is essential for protein homeostasis and cell health. In particular, compared to nonneuronal cells, neurons are dependent on high basal autophagy for survival. There is emerging agreement that defects in autophagy are likely to contribute to the neurodegenerative processes in numerous diseases, including Alzheimer’s disease (AD). Autophagy-lysosome defects occur early in the pathogenesis of AD and have been proposed to be a significant contributor to the disease process. Given the fact that autophagy deficits are likely major contributors to the etiology of AD, the focus of this review will be on recent studies that support a role for autophagy deficits in AD.


Corresponding author: Nima Rezaei, Molecular Immunology Research Center, and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 14194, Iran; Universal Scientific Education and Research Network (USERN), Tehran 14194, Iran; and Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran, e-mail:

References

Bejarano, E. and Cuervo, A.M. (2010). Chaperone-mediated autophagy. Proc. Am. Thoracic Soc. 7, 29.10.1513/pats.200909-102JSSearch in Google Scholar PubMed PubMed Central

Berger, Z., Ravikumar, B., Menzies, F.M., Oroz, L.G., Underwood, B.R., Pangalos, M.N., Schmitt, I., Wullner, U., Evert, B.O., O’Kane, C.J., et al. (2006). Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15, 433–442.10.1093/hmg/ddi458Search in Google Scholar PubMed

Bjørkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Øvervatn, A., Stenmark, H., and Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614.10.1083/jcb.200507002Search in Google Scholar PubMed PubMed Central

Boland, B., Kumar, A., Lee, S., Platt, F.M., Wegiel, J., Yu, W.H., and Nixon, R.A. (2008). Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J. Neurosci. 28, 6926–6937.10.1523/JNEUROSCI.0800-08.2008Search in Google Scholar PubMed PubMed Central

Caccamo, A., Majumder, S., Richardson, A., Strong, R., and Oddo, S. (2010). Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and τ effects on cognitive impairments. J. Biol. Chem. 285, 13107–13120.10.1074/jbc.M110.100420Search in Google Scholar PubMed PubMed Central

Caccamo, A., Magrì, A., Medina, D.X., Wisely, E.V., López-Aranda, M.F., Silva, A.J., and Oddo, S. (2013). mTOR regulates τ phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12, 370–380.10.1111/acel.12057Search in Google Scholar PubMed PubMed Central

Cai, Z. and Yan, L.-J. (2013). Rapamycin, autophagy, and Alzheimer’s disease. J. Biochem. Pharmacol. Res. 1, 84.Search in Google Scholar

Cai, Z., Yan, L.-J., Li, K., Quazi, S.H., and Zhao, B. (2012). Roles of AMP-activated protein kinase in Alzheimer’s disease. Neuromol. Med. 14, 1–14.10.1007/s12017-012-8173-2Search in Google Scholar PubMed

Cárdenas, C. and Foskett, J.K. (2012). Mitochondrial Ca2+ signals in autophagy. Cell Calcium 52, 44–51.10.1016/j.ceca.2012.03.001Search in Google Scholar PubMed PubMed Central

Cataldo, A.M., Hamilton, D.J., Barnett, J.L., Paskevich, P.A., and Nixon, R.A. (1996). Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer’s disease. J. Neurosci. 16, 186–199.10.1523/JNEUROSCI.16-01-00186.1996Search in Google Scholar

Chapman, P.F., White, G.L., Jones, M.W., Cooper-Blacketer, D., Marshall, V.J., Irizarry, M., Younkin, L., Good, M.A., Bliss, T.V., Hyman, B.T., et al. (1999). Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat. Neurosci. 2, 271–276.10.1038/6374Search in Google Scholar PubMed

Chauhan, S., Goodwin, J.G., Chauhan, S., Manyam, G., Wang, J., Kamat, A.M., and Boyd, D.D. (2013). ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell 50, 16–28.10.1016/j.molcel.2013.01.024Search in Google Scholar PubMed PubMed Central

Chen, H., Qian, K., Du, Z., Cao, J., Petersen, A., Liu, H., Blackbourn, L.W. IV, Huang, C.-L., Errigo, A., Yin, Y., et al. (2014). Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 14, 796–809.10.1016/j.stem.2014.02.004Search in Google Scholar PubMed PubMed Central

Chesser, A.S., Pritchard, S.M., and Johnson, G.V. (2013). τ clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front. Neurol. 4.10.3389/fneur.2013.00122Search in Google Scholar PubMed PubMed Central

Cheung, Z.H. and Ip, N.Y. (2011). Autophagy deregulation in neurodegenerative diseases–recent advances and future perspectives. J. Neurochem. 118, 317–325.10.1111/j.1471-4159.2011.07314.xSearch in Google Scholar PubMed

Coffey, E., Beckel, J., Laties, A., and Mitchell, C. (2014). Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 263, 111–124.10.1016/j.neuroscience.2014.01.001Search in Google Scholar PubMed PubMed Central

Congdon, E.E., Wu, J.W., Myeku, N., Figueroa, Y.H., Herman, M., Marinec, P.S., Gestwicki, J.E., Dickey, C.A., Yu, W.H., and Duff, K.E. (2012). Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8, 609–622.10.4161/auto.19048Search in Google Scholar PubMed PubMed Central

Criollo, A., Maiuri, M.C., Tasdemir, E., Vitale, I., Fiebig, A.A., Andrews, D., Molgó, J., Díaz, J., Lavandero, S., Harper, F., et al. (2007). Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ. 14, 1029–1039.10.1038/sj.cdd.4402099Search in Google Scholar PubMed

Darlington, D., Deng, J., Giunta, B., Hou, H., Sanberg, C.D., Kuzmin-Nichols, N., Zhou, H.D., Mori, T., Ehrhart, J., Sanberg, P.R., et al. (2012). Multiple low-dose infusions of human umbilical cord blood cells improve cognitive impairments and reduce amyloid-β-associated neuropathology in Alzheimer mice. Stem Cells Dev. 22, 412–421.10.1089/scd.2012.0345Search in Google Scholar PubMed PubMed Central

David, D.C., Layfield, R., Serpell, L., Narain, Y., Goedert, M., and Spillantini, M.G. (2002). Proteasomal degradation of τ protein. J. Neurochem. 83, 176–185.10.1046/j.1471-4159.2002.01137.xSearch in Google Scholar PubMed

Decuypere, J.-P., Kindt, D., Luyten, T., Welkenhuyzen, K., Missiaen, L., De Smedt, H., Bultynck, G., and Parys, J.B. (2013). mTOR-controlled autophagy requires intracellular Ca2+ signaling. PLoS One 8, e61020.10.1371/journal.pone.0061020Search in Google Scholar PubMed PubMed Central

Dekosky, S.T. and Scheff, S.W. (1990). Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann. Neurol. 27, 457–464.10.1002/ana.410270502Search in Google Scholar

Dickey, C.A., Kamal, A., Lundgren, K., Klosak, N., Bailey, R.M., Dunmore, J., Ash, P., Shoraka, S., Zlatkovic, J., Eckman, C.B., et al. (2007). The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated τ client proteins. J. Clin. Invest. 117, 648.10.1172/JCI29715Search in Google Scholar

Dobrowolski, R., Vick, P., Ploper, D., Gumper, I., Snitkin, H., Sabatini, D.D., and De Robertis, E.M. (2012). Presenilin deficiency or lysosomal inhibition enhances Wnt signaling through relocalization of GSK3 to the late-endosomal compartment. Cell Rep. 29, 1316–1328.10.1016/j.celrep.2012.09.026Search in Google Scholar

Dolan, P.J. and Johnson, G.V. (2010). A caspase cleaved form of τ is preferentially degraded through the autophagy pathway. J. Biol. Chem. 285, 21978–21987.10.1074/jbc.M110.110940Search in Google Scholar

Dou, Z., Pan, J.A., Dbouk, H.A., Ballou, L.M., DeLeon, J.L., Fan, Y., Chen, J.S., Liang, Z., Li, G., Backer, J.M., et al. (2013). Class IA PI3K p110β subunit promotes autophagy through Rab5 Small GTPase in response to growth factor limitation. Mol. Cell. 50, 29–42.10.1016/j.molcel.2013.01.022Search in Google Scholar

Eisenberg-Lerner, A. and Kimchi, A. (2012). PKD at the crossroads of necrosis and autophagy. Autophagy 8, 433–434.10.4161/auto.19288Search in Google Scholar

Esselens, C., Oorschot, V., Baert, V., Raemaekers, T., Spittaels, K., Serneels, L., Zheng, H., Saftig, P., De Strooper, B., Klumperman, J., et al. (2004). Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J. Cell Biol. 166, 1041–1054.10.1083/jcb.200406060Search in Google Scholar

Felbor, U., Kessler, B., Mothes, W., Goebel, H.H., Ploegh, H.L., Bronson, R.T., and Olsen, B.R. (2002). Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc. Natl. Acad. Sci. USA. 99, 7883–7888.10.1073/pnas.112632299Search in Google Scholar

Fred Dice, J. (1990). Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem. Sci. 15, 305–309.10.1016/0968-0004(90)90019-8Search in Google Scholar

Grotemeier, A., Alers, S., Pfisterer, S.G., Paasch, F., Daubrawa, M., Dieterle, A., Viollet, B., Wesselborg, S., Proikas-Cezanne, T., and Stork, B. (2010). AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal. 22, 914–925.10.1016/j.cellsig.2010.01.015Search in Google Scholar PubMed

Hamano, T., Gendron, T.F., Causevic, E., Yen, S.H., Lin, W.L., Isidoro, C., Deture, M., and Ko, L.W. (2008). Autophagic-lysosomal perturbation enhances τ aggregation in transfectants with induced wild-type τ expression. Eur. J. Neurosci. 27, 1119–1130.10.1111/j.1460-9568.2008.06084.xSearch in Google Scholar PubMed

Harrington, C., Ricard, J., Horsley, D., Harrington, K., Hindley, K., Riedel, G., Theuring, F., Seng, K., et al. (2008). Methylthioninium chloride (MTC) acts as a τ aggregation inhibitor in a cellular model and reverses τ pathology in transgenic mice models of Alzheimer’s disease. International Conference on Alzheimer’s Disease Abstracts.Search in Google Scholar

Hay, N. and Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945.10.1101/gad.1212704Search in Google Scholar PubMed

Hayashi, S.-I., Sato, N., Yamamoto, A., Ikegame, Y., Nakashima, S., Ogihara, T., and Morishita, R. (2009). Alzheimer disease-associated peptide, amyloid β40, inhibits vascular regeneration with induction of endothelial autophagy. Arterioscler. Thromb. Vasc. Biol. 29, 1909–1915.10.1161/ATVBAHA.109.188516Search in Google Scholar PubMed

Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S., Natsume, T., Takehana, K., Yamada, N., et al. (2009). Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991.10.1091/mbc.e08-12-1248Search in Google Scholar PubMed PubMed Central

Ichimura, Y. and Komatsu, M. (2010). Selective degradation of p62 by autophagy. Semin. Immunopathol. 32, 431–436.10.1007/s00281-010-0220-1Search in Google Scholar PubMed

Inomata, M., Niida, S., Shibata, K.-I., and Into, T. (2012). Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20. Cell. Mol. Life Sci. 69, 963–979.10.1007/s00018-011-0819-ySearch in Google Scholar PubMed PubMed Central

Jaeger, P.A., Pickford, F., Sun, C.-H., Lucin, K.M., Masliah, E., and Wyss-Coray, T. (2010). Regulation of amyloid precursor protein processing by the Beclin1 complex. PLoS One 5, e11102.10.1371/journal.pone.0011102Search in Google Scholar PubMed PubMed Central

Jinwal, U.K., Miyata, Y., Koren, J. 3rd, Jones, J.R., Trotter, J.H., Chang, L., O’Leary, J., Morgan, D., Lee, D.C., Shults, C.L., et al. (2009). Chemical manipulation of hsp70 ATPase activity regulates τ stability. J. Neurosci. 29, 12079–12088.10.1523/JNEUROSCI.3345-09.2009Search in Google Scholar PubMed PubMed Central

Jisun, L., Samantha, G., and Jianhua, Z. (2012). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441, 523–540.10.1042/BJ20111451Search in Google Scholar PubMed PubMed Central

Jo, C., Gundemir, S., Pritchard, S., Jin, Y.N., Rahman, I., and Johnson, G.V. (2014). Nrf2 reduces levels of phosphorylated τ protein by inducing autophagy adaptor protein NDP52. Nat. Commun. 5, 3496.10.1038/ncomms4496Search in Google Scholar PubMed PubMed Central

Johansen, T. and Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279–296.10.4161/auto.7.3.14487Search in Google Scholar

Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728.10.1093/emboj/19.21.5720Search in Google Scholar

Kaminskyy, V. and Zhivotovsky, B. (2012). Proteases in autophagy. Biochim. Biophys. Acta Proteins Proteomics 1824, 44–50.10.1016/j.bbapap.2011.05.013Search in Google Scholar

Kaushik, S., Bandyopadhyay, U., Sridhar, S., Kiffin, R., Martinez-Vicente, M., Kon, M., Orenstein, S.J., Wong, E., and Cuervo, A.M. (2011). Chaperone-mediated autophagy at a glance. J. Cell Sci. 124, 495–499.10.1242/jcs.073874Search in Google Scholar

Keck, S., Nitsch, R., Grune, T., and Ullrich, O. (2003). Proteasome inhibition by paired helical filament-τ in brains of patients with Alzheimer’s disease. J. Neurochem. 85, 115–122.10.1046/j.1471-4159.2003.01642.xSearch in Google Scholar

Khan, M.T. and Joseph, S.K. (2010). Role of inositol trisphosphate receptors in autophagy in DT40 cells. J. Biol. Chem. 285, 16912–16920.10.1074/jbc.M110.114207Search in Google Scholar

Kim, D.-H., Sarbassov, D.D., Ali, S.M., King, J.E., Latek, R.R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175.10.1016/S0092-8674(02)00808-5Search in Google Scholar

Kirkin, V., Lamark, T., Sou, Y.S., Bjørkøy, G., Nunn, J.L., Bruun, J.A., Shvets, E., McEwan, D.G., Clausen, T.H., Wild, P., et al. (2009a). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516.10.1016/j.molcel.2009.01.020Search in Google Scholar PubMed

Kirkin, V., Mcewan, D.G., Novak, I., and Dikic, I. (2009b). A role for ubiquitin in selective autophagy. Mol. Cell 34, 259–269.10.1016/j.molcel.2009.04.026Search in Google Scholar PubMed

Kodiha, M. and Stochaj, U. (2011). AMP kinase: the missing link between type 2 diabetes and neurodegenerative diseases? Trends Mol. Med. 17, 613–614.Search in Google Scholar

Krüger, U., Wang, Y., Kumar, S., and Mandelkow, E.-M. (2012). Autophagic degradation of τ in primary neurons and its enhancement by trehalose. Neurobiol. Aging 33, 2291–2305.10.1016/j.neurobiolaging.2011.11.009Search in Google Scholar PubMed

Kundu, M. (2011). ULK1, mammalian target of rapamycin, and mitochondria: linking nutrient availability and autophagy. Antioxidants Redox Signal. 14, 1953–1958.10.1089/ars.2010.3809Search in Google Scholar PubMed PubMed Central

Lee, J.H., Yu, W.H., Kumar, A., Lee, S., Mohan, P.S., Peterhoff, C.M., Wolfe, D.M., Martinez-Vicente, M., Massey, A.C., Sovak, G., et al. (2010). Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146–1158.10.1016/j.cell.2010.05.008Search in Google Scholar PubMed PubMed Central

Lee, M.J., Lee, J.H., and Rubinsztein, D.C. (2013). τ degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog. Neurobiol. 105, 49–59.10.1016/j.pneurobio.2013.03.001Search in Google Scholar PubMed

Li, L., Zhang, X., and Le, W. (2010). Autophagy dysfunction in Alzheimer’s disease. Neurodegener. Dis. 7, 265–271.10.1159/000276710Search in Google Scholar PubMed

Li, W.-W., Li, J., and Bao, J.-K. (2012). Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69, 1125–1136.10.1007/s00018-011-0865-5Search in Google Scholar PubMed

Lipinski, M.M., Zheng, B., Lu, T., Yan, Z., Py, B.F., Ng, A., Xavier, R.J., Li, C., Yankner, B.A., Scherzer, C.R., et al. (2010). Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 107, 14164–14169.10.1073/pnas.1009485107Search in Google Scholar PubMed PubMed Central

Luo, W., Dou, F., Rodina, A., Chip, S., Kim, J., Zhao, Q., Moulick, K., Aguirre, J., Wu, N., Greengard, P., et al. (2007). Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc. Natl. Acad. Sci. USA. 104, 9511–9516.10.1073/pnas.0701055104Search in Google Scholar PubMed PubMed Central

Majeski, A.E. and Fred Dice, J. (2004). Mechanisms of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol. 36, 2435–2444.10.1016/j.biocel.2004.02.013Search in Google Scholar PubMed

Majumder, S., Richardson, A., Strong, R., and Oddo, S. (2011). Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One 6, e25416.10.1371/journal.pone.0025416Search in Google Scholar PubMed PubMed Central

Martina, J.A., Diab, H.I., Lishu, L., Jeong-A, L., Patange, S., Raben, N., and Puertollano, R. (2014). The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 7, ra9.10.1126/scisignal.2004754Search in Google Scholar PubMed PubMed Central

Medina, D.X., Caccamo, A., and Oddo, S. (2011). Methylene blue reduces Aβ levels and rescues early cognitive deficit by increasing proteasome activity. Brain Pathol. 21, 140–149.10.1111/j.1750-3639.2010.00430.xSearch in Google Scholar PubMed PubMed Central

Murrow, L. and Debnath, J. (2013). Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu. Rev. Pathol. Mech. Dis. 8, 105–137.10.1146/annurev-pathol-020712-163918Search in Google Scholar PubMed PubMed Central

Necula, M., Breydo, L., Milton, S., Kayed, R., Van Der Veer, W.E., Tone, P., and Glabe, C.G. (2007). Methylene blue inhibits amyloid Aβ oligomerization by promoting fibrillization. Biochemistry (Moscow) 46, 8850–8860.10.1021/bi700411kSearch in Google Scholar PubMed

Neely, K.M., Green, K.N., and Laferla, F.M. (2011). Presenilin is necessary for efficient proteolysis through the autophagy-lysosome system in a γ-secretase-independent manner. J. Neurosci. 31, 2781–2791.10.1523/JNEUROSCI.5156-10.2010Search in Google Scholar PubMed PubMed Central

Nishida, Y., Arakawa, S., Fujitani, K., Yamaguchi, H., Mizuta, T., Kanaseki, T., Komatsu, M., Otsu, K., Tsujimoto, Y., and Shimizu, S. (2009). Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654–658.10.1038/nature08455Search in Google Scholar PubMed

Nixon, R.A. and Yang, D.-S. (2011). Autophagy failure in Alzheimer’s disease – locating the primary defect. Neurobiol. Dis. 43, 38–45.10.1016/j.nbd.2011.01.021Search in Google Scholar PubMed PubMed Central

O’Leary, J.C. 3rd, Li, Q., Marinec, P., Blair, L.J., Congdon, E.E., Johnson, A.G., Jinwal, U.K., Koren, J. 3rd, Jones, J.R., Kraft, C., et al. (2010). Phenothiazine-mediated rescue of cognition in τ transgenic mice requires neuroprotection and reduced soluble τ burden. Mol. Neurodegener. 5, 1–11.10.1186/1750-1326-5-45Search in Google Scholar PubMed PubMed Central

Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Øvervatn, A., Bjørkøy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145.10.1074/jbc.M702824200Search in Google Scholar PubMed

Petrucelli, L., Dickson, D., Kehoe, K., Taylor, J., Snyder, H., Grover, A., De Lucia, M., McGowan, E., Lewis, J., Prihar, G., et al. (2004). CHIP and Hsp70 regulate τ ubiquitination, degradation and aggregation. Hum. Mol. Genet. 13, 703–714.10.1093/hmg/ddh083Search in Google Scholar PubMed

Pickford, F., Masliah, E., Britschgi, M., Lucin, K., Narasimhan, R., Jaeger, P.A., Small, S., Spencer, B., Rockenstein, E., Levine, B., et al. (2008). The autophagy-related protein Beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J. Clin. Invest. 118, 2190.10.1172/JCI33585Search in Google Scholar PubMed PubMed Central

Querfurth, H.W. and Laferla, F.M. (2010). Alzheimer’s disease. N. Engl. J. Med. 362, 329–344.10.1056/NEJMra0909142Search in Google Scholar PubMed

Rubinsztein, D.C. (2006). The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786.10.1038/nature05291Search in Google Scholar PubMed

Salminen, A., Kaarniranta, K., Kauppinen, A., Ojala, J., Haapasalo, A., Soininen, H., and Hiltunen, M. (2013). Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of Beclin1 interactome. Prog. Neurobiol. 106–107, 33–54.10.1016/j.pneurobio.2013.06.002Search in Google Scholar PubMed

Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303.10.1016/j.cell.2010.02.024Search in Google Scholar PubMed PubMed Central

Sarkar, S., Davies, J.E., Huang, Z., Tunnacliffe, A., and Rubinsztein, D.C. (2007). Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem. 282, 5641–5652.10.1074/jbc.M609532200Search in Google Scholar PubMed

Schaeffer, V. and Goedert, M. (2012). Stimulation of autophagy is neuroprotective in a mouse model of human tauopathy. Autophagy 8, 1686.10.4161/auto.21488Search in Google Scholar PubMed PubMed Central

Scheff, S.W., Price, D.A., Schmitt, F.A., and Mufson, E.J. (2006). Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 27, 1372–1384.10.1016/j.neurobiolaging.2005.09.012Search in Google Scholar PubMed

Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P., et al. (2011). TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433.10.1126/science.1204592Search in Google Scholar PubMed PubMed Central

Shimizu, S., Arakawa, S., and Nishida, Y. (2010). Autophagy takes an alternative pathway. Autophagy 6, 290–291.10.4161/auto.6.2.11127Search in Google Scholar PubMed

Shin, J.Y., Park, H.J., Kim, H.N., Oh, S.H., Bae, J.-S., Ha, H.-J., and Lee, P.H. (2014). Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy 10, 32–44.10.4161/auto.26508Search in Google Scholar PubMed PubMed Central

Shoval, Y., Berissi, H., Kimchi, A., and Pietrokovski, S. (2011). New modularity of DAP-kinases: alternative splicing of the DRP-1 gene produces a ZIPk-like isoform. PLoS One 6, e17344.10.1371/journal.pone.0017344Search in Google Scholar PubMed PubMed Central

Son, S.M., Jung, E.S., Shin, H.J., Byun, J., and Mook-Jung, I. (2012). Aβ-induced formation of autophagosomes is mediated by RAGE-CaMKKβ-AMPK signaling. Neurobiol. Aging 33, 1006.e11–e23.10.1016/j.neurobiolaging.2011.09.039Search in Google Scholar PubMed

Spilman, P., Podlutskaya, N., Hart, M.J., Debnath, J., Gorostiza, O., Bredesen, D., Richardson, A., Strong, R., and Galvan, V. (2010). Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One 5, e9979.10.1371/journal.pone.0009979Search in Google Scholar PubMed PubMed Central

Steele, J.W., Lachenmayer, M.L., Ju, S., Stock, A., Liken, J., Kim, S.H., Delgado, L.M., Alfaro, I.E., Bernales, S., Verdile, G., et al. (2013). Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer’s mouse model. Mol Psychiatry 18, 889–897.10.1038/mp.2012.106Search in Google Scholar PubMed PubMed Central

Stefanis, L. (2012). α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009399.10.1101/cshperspect.a009399Search in Google Scholar PubMed PubMed Central

Sweetlove, M. (2012). Phase III CONCERT trial of latrepirdine. Pharm. Med. 26, 113–115.10.1007/BF03256900Search in Google Scholar

Tumbarello, D.A., Waxse, B.J., Arden, S.D., Bright, N.A., Kendrick-Jones, J., and Buss, F. (2012). Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat. Cell Biol. 14, 1024–1035.10.1038/ncb2589Search in Google Scholar PubMed PubMed Central

Tung, Y.-T., Wang, B.-J., Hu, M.-K., Hsu, W.-M., Lee, H., Huang, W.-P., and Liao, Y.-F. (2012). Autophagy: a double-edged sword in Alzheimer’s disease. J. Biosci. 37, 157–165.10.1007/s12038-011-9176-0Search in Google Scholar PubMed

Tung, Y.-T., Wang, B.-J., Hsu, W.-M., Hu, M.-K., Her, G.M., Huang, W.-P., and Liao, Y.-F. (2014). Presenilin-1 regulates the expression of p62 to govern p62-dependent τ degradation. Mol. Neurobiol. 49, 10–27.10.1007/s12035-013-8482-ySearch in Google Scholar PubMed

Vingtdeux, V., Giliberto, L., Zhao, H., Chandakkar, P., Wu, Q., Simon, J.E., Janle, E.M., Lobo, J., Ferruzzi, M.G., Davies, P., et al. (2010). AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J. Biol. Chem. 285, 9100–9113.10.1074/jbc.M109.060061Search in Google Scholar PubMed PubMed Central

Wan, W., Xia, S., Kalionis, B., Liu, L., and Li, Y. (2014). The role of Wnt signaling in the development of Alzheimer’s disease: a potential therapeutic target? BioMed Res. Int. 2014.10.1155/2014/301575Search in Google Scholar PubMed PubMed Central

Wang, S., Shih, Y., Ko, W., Wei, Y.-H., and Shih, C. (2008). Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell. Mol. Life Sci. 65, 3640–3652.10.1007/s00018-008-8383-9Search in Google Scholar PubMed

Wang, Y., Martinez-Vicente, M., Krüger, U., Kaushik, S., Wong, E., Mandelkow, E.-M., Cuervo, A.M., and Mandelkow, E. (2009). τ fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18, 4153–4170.10.1093/hmg/ddp367Search in Google Scholar PubMed PubMed Central

Wang, Y., Martinez-Vicente, M., Krüger, U., Kaushik, S., Wong, E., Mandelkow, E.-M., Cuervo, A.M., and Mandelkow, E. (2010). Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological τ aggregation. Autophagy 6, 182–183.10.4161/auto.6.1.10815Search in Google Scholar PubMed

Wilson, C.A., Murphy, D.D., Giasson, B.I., Zhang, B., Trojanowski, J.Q., and Lee, V.M.-Y. (2004). Degradative organelles containing mislocalized α- and β-synuclein proliferate in presenilin-1 null neurons. J. Cell Biol. 165, 335–346.10.1083/jcb.200403061Search in Google Scholar PubMed PubMed Central

Wischik, C., Edwards, P., Lai, R., Roth, M., and Harrington, C. (1996). Selective inhibition of Alzheimer disease-like τ aggregation by phenothiazines. Proc. Natl. Acad. Sci. USA. 93, 11213–11218.10.1073/pnas.93.20.11213Search in Google Scholar PubMed PubMed Central

Wischik, C.M., Bentham, P., Wischik, D.J., and Seng, K.M. (2008). O3-04-07: τ aggregation inhibitor (TAI) therapy with rember™ arrests disease progression in mild and moderate Alzheimer’s disease over 50 weeks. Alzheimer’s Dementia 4, T167.10.1016/j.jalz.2008.05.438Search in Google Scholar

Wolfe, D.M., Lee, J.H., Kumar, A., Lee, S., Orenstein, S.J., and Nixon, R.A. (2013). Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur. J. Neurosci. 37, 1949–1961.10.1111/ejn.12169Search in Google Scholar PubMed PubMed Central

Yang, D.S., Stavrides, P., Mohan, P.S., Kaushik, S., Kumar, A., Ohno, M., Schmidt, S.D., Wesson, D., Bandyopadhyay, U., Jiang, Y., et al. (2011). Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134, 258–277.10.1093/brain/awq341Search in Google Scholar PubMed PubMed Central

Yang, H., Xie, Z., Wei, L., Yang, H., Yang, S., Zhu, Z., Wang, P., Zhao, C., and Bi, J. (2013). Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-β deposition in an AβPP/PS1 transgenic mouse model. Stem Cell Res. Ther. 4, 76.10.1186/scrt227Search in Google Scholar PubMed PubMed Central

Yu, W., Kumar, A., Peterhoff, C., Shapiro Kulnane, L., Uchiyama, Y., Lamb, B., Cuervo, A., and Nixon, R. (2004). Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for β-amyloid peptide over-production and localization in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 36, 2531–2540.10.1016/j.biocel.2004.05.010Search in Google Scholar PubMed

Yu, W.H., Cuervo, A.M., Kumar, A., Peterhoff, C.M., Schmidt, S.D., Lee, J.H., Mohan, P.S., Mercken, M., Farmery, M.R., Tjernberg, L.O., et al. (2005). Macroautophagy—a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease. J. Cell Biol. 171, 87–98.10.1083/jcb.200505082Search in Google Scholar PubMed PubMed Central

Zhang, J., Liu, S., Li, H., and Wang, J.-Z. (2005). Microtubule- associated protein τ is a substrate of ATP/Mg2+-dependent proteasome protease system. J. Neural Transm. 112, 547–555.10.1007/s00702-004-0196-xSearch in Google Scholar PubMed

Zhang, X., Li, L., Chen, S., Yang, D., Wang, Y., Zhang, X., Wang, Z., and Le, W. (2011). Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Autophagy 7, 412–425.10.4161/auto.7.4.14541Search in Google Scholar PubMed

Zhang, X., Garbett, K., Veeraraghavalu, K., Wilburn, B., Gilmore, R., Mirnics, K., and Sisodia, S.S. (2012). A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J. Neurosci. 32, 8633–8648.10.1523/JNEUROSCI.0556-12.2012Search in Google Scholar PubMed PubMed Central

Zheng, H. and Koo, E.H. (2011). Biology and pathophysiology of the amyloid precursor protein. Mol. Neurodegener. 6, 1–16.10.1186/1750-1326-6-27Search in Google Scholar PubMed PubMed Central

Zhu, Z., Yan, J., Jiang, W., Yao, X.G., Chen, J., Chen, L., Li, C., Hu, L., Jiang, H., and Shen, X. (2013). Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance. J. Neurosci. 33, 13138–13149.10.1523/JNEUROSCI.4790-12.2013Search in Google Scholar PubMed PubMed Central

Received: 2014-11-11
Accepted: 2015-2-20
Published Online: 2015-4-14
Published in Print: 2015-8-1

©2015 by De Gruyter

Downloaded on 25.5.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2014-0076/html
Scroll to top button