Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 5, 2016

Alpha-synuclein at the intracellular and the extracellular side: functional and dysfunctional implications

  • Denis Ottolini , Tito Calí , Ildikò Szabò and Marisa Brini EMAIL logo
From the journal Biological Chemistry

Abstract

Alpha-synuclein (α-syn) is an abundant neuronal protein whose physiological function, even if still not completely understood, has been consistently related to synaptic function and vesicle trafficking. A group of disorders known as synucleinopathies, among which Parkinson’s disease (PD), is deeply associated with the misfolding and aggregation of α-syn, which can give rise to proteinaceous inclusion known as Lewy bodies (LB). Proteostasis stress is a relevant aspect in these diseases and, currently, the presence of oligomeric α-syn species rather than insoluble aggregated forms, appeared to be associated with cytotoxicity. Many observations suggest that α-syn is responsible for neurodegeneration by interfering with multiple signaling pathways. α-syn protein can directly form plasma membrane channels or modify with their activity, thus altering membrane permeability to ions, abnormally associate with mitochondria and cause mitochondrial dysfunction (i.e. mitochondrial depolarization, Ca2+ dys-homeostasis, cytochrome c release) and interfere with autophagy regulation. The picture is further complicated by the fact that single point mutations, duplications and triplication in α-syn gene are linked to autosomal dominant forms of PD. In this review we discuss the multi-faced aspect of α-syn biology and address the main hypothesis at the basis of its involvement in neuronal degeneration.

Acknowledgments

Work performed by the authors on the topic was supported by grants to M.B. from the University of Padova (Progetto di Ateneo CPDA153402, bando 2015) and to T. C. from MIUR (SIR RBSI14C65Z, bando 2014).

References

Abeliovich, A., Schmitz, Y., Farinas, I., Choi-Lundberg, D., Ho, W.H., Castillo, P.E., Shinsky, N., Verdugo, J.M., Armanini, M., Ryan, A., et al. (2000). Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252.10.1016/S0896-6273(00)80886-7Search in Google Scholar

Agnati, L.F., Guidolin, D., Baluska, F., Leo, G., Barlow, P.W., Carone, C., and Genedani, S. (2010). A new hypothesis of pathogenesis based on the divorce between mitochondria and their host cells: possible relevance for Alzheimer’s disease. Curr. Alzheimer Res. 7, 307–322.10.2174/1567210198607242050Search in Google Scholar

Anderson, J.P., Walker, D.E., Goldstein, J.M., de Laat, R., Banducci, K., Caccavello, R.J., Barbour, R., Huang, J., Kling, K., Lee, M., et al. (2006). Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J. Biol. Chem. 281, 29739–29752.10.1074/jbc.M600933200Search in Google Scholar

Angot, E. and Brundin, P. (2009). Dissecting the potential molecular mechanisms underlying α-synuclein cell-to-cell transfer in Parkinson’s disease. Parkinsonism Relat. Disord. 15(Suppl. 3), S143–S147.10.1016/S1353-8020(09)70802-8Search in Google Scholar

Angot, E., Steiner, J.A., Hansen, C., Li, J.Y., and Brundin, P. (2010). Are synucleinopathies prion-like disorders? Lancet Neurol. 9, 1128–1138.10.1016/S1474-4422(10)70213-1Search in Google Scholar

Angot, E., Steiner, J.A., Lema Tome, C.M., Ekstrom, P., Mattsson, B., Bjorklund, A., and Brundin, P. (2012). Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS One 7, e39465.10.1371/journal.pone.0039465Search in Google Scholar PubMed PubMed Central

Appel-Cresswell, S., Vilarino-Guell, C., Encarnacion, M., Sherman, H., Yu, I., Shah, B., Weir, D., Thompson, C., Szu-Tu, C., Trinh, J., et al. (2013). Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov. Disord. 28, 811–813.10.1002/mds.25421Search in Google Scholar PubMed

Area-Gomez, E., Del Carmen Lara Castillo, M., Tambini, M.D., Guardia-Laguarta, C., de Groof, A.J., Madra, M., Ikenouchi, J., Umeda, M., Bird, T.D., Sturley, S.L., et al. (2012). Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106–4123.10.1038/emboj.2012.202Search in Google Scholar PubMed PubMed Central

Auluck, P.K., Caraveo, G., and Lindquist, S. (2010). Alpha-Synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu. Rev. Cell Dev. Biol. 26, 211–233.10.1146/annurev.cellbio.042308.113313Search in Google Scholar PubMed

Azeredo da Silveira, S., Schneider, B.L., Cifuentes-Diaz, C., Sage, D., Abbas-Terki, T., Iwatsubo, T., Unser, M., and Aebischer, P. (2009). Phosphorylation does not prompt, nor prevent, the formation of α-synuclein toxic species in a rat model of Parkinson’s disease. Hum. Mol. Genet. 18, 872–887.10.1093/hmg/ddn417Search in Google Scholar PubMed

Bachhuber, T., Katzmarski, N., McCarter, J.F., Loreth, D., Tahirovic, S., Kamp, F., Abou-Ajram, C., Nuscher, B., Serrano-Pozo, A., Muller, A., et al. (2015). Inhibition of amyloid-α plaque formation by α-synuclein. Nat. Med. 21, 802–807.10.1038/nm.3885Search in Google Scholar

Banigan, M.G., Kao, P.F., Kozubek, J.A., Winslow, A.R., Medina, J., Costa, J., Schmitt, A., Schneider, A., Cabral, H., Cagsal-Getkin, O., et al. (2013). Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS One 8, e48814.10.1371/journal.pone.0048814Search in Google Scholar

Bartels, T., Choi, J.G., and Selkoe, D.J. (2011). Alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477, 107–110.10.1038/nature10324Search in Google Scholar

Bartels, T., Kim, N.C., Luth, E.S., and Selkoe, D.J. (2014). N-α-acetylation of α-synuclein increases its helical folding propensity, GM1 binding specificity and resistance to aggregation. PLoS One 9, e103727.10.1371/journal.pone.0103727Search in Google Scholar

Bedford, L., Hay, D., Devoy, A., Paine, S., Powe, D.G., Seth, R., Gray, T., Topham, I., Fone, K., Rezvani, N., et al. (2008). Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J. Neurosci 28, 8189–8198.10.1523/JNEUROSCI.2218-08.2008Search in Google Scholar

Bennett, M.C., Bishop, J.F., Leng, Y., Chock, P.B., Chase, T.N., and Mouradian, M.M. (1999). Degradation of α-synuclein by proteasome. J. Biol. Chem. 274, 33855–33858.10.1074/jbc.274.48.33855Search in Google Scholar

Bernardi, P., Rasola, A., Forte, M., and Lippe, G. (2015). The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol. Rev. 95, 1111–1155.10.1152/physrev.00001.2015Search in Google Scholar

Beyer, K. and Ariza, A. (2013). Alpha-Synuclein posttranslational modification and alternative splicing as a trigger for neurodegeneration. Mol. Neurobiol. 47, 509–524.10.1007/s12035-012-8330-5Search in Google Scholar

Borghi, R., Marchese, R., Negro, A., Marinelli, L., Forloni, G., Zaccheo, D., Abbruzzese, G., and Tabaton, M. (2000). Full length α-synuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects. Neurosci. Lett. 287, 65–67.10.1016/S0304-3940(00)01153-8Search in Google Scholar

Bousset, L., Pieri, L., Ruiz-Arlandis, G., Gath, J., Jensen, P.H., Habenstein, B., Madiona, K., Olieric, V., Bockmann, A., Meier, B.H., et al. (2013). Structural and functional characterization of two α-synuclein strains. Nat. Commun. 4, 2575.10.1038/ncomms3575Search in Google Scholar PubMed PubMed Central

Braak, H., Del Tredici, K., Rub, U., de Vos, R.A., Jansen Steur, E.N., and Braak, E. (2003a). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211.10.1016/S0197-4580(02)00065-9Search in Google Scholar

Braak, H., Rub, U., and Del Tredici, K. (2006). Cognitive decline correlates with neuropathological stage in Parkinson’s disease. J. Neurol. Sci. 248, 255–258.10.1016/j.jns.2006.05.011Search in Google Scholar PubMed

Braak, H., Rub, U., Gai, W.P., and Del Tredici, K. (2003b). Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural. Transm. (Vienna) 110, 517–536.10.1007/s00702-002-0808-2Search in Google Scholar PubMed

Burre, J., Sharma, M., and Sudhof, T.C. (2014). Alpha-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc. Natl. Acad. Sci. USA 111, E4274–E4283.10.1073/pnas.1416598111Search in Google Scholar PubMed PubMed Central

Burre, J., Sharma, M., and Sudhof, T.C. (2015). Definition of a molecular pathway mediating α-synuclein neurotoxicity. J. Neurosci. 35, 5221–5232.10.1523/JNEUROSCI.4650-14.2015Search in Google Scholar PubMed PubMed Central

Burre, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M.R., and Sudhof, T.C. (2010). Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663–1667.10.1126/science.1195227Search in Google Scholar PubMed PubMed Central

Cabin, D.E., Shimazu, K., Murphy, D., Cole, N.B., Gottschalk, W., McIlwain, K.L., Orrison, B., Chen, A., Ellis, C.E., Paylor, R., et al. (2002). Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. J. Neurosci. 22, 8797–8807.10.1523/JNEUROSCI.22-20-08797.2002Search in Google Scholar

Calí, T., Ottolini, D., Negro, A., and Brini, M. (2012). Alpha-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J. Biol. Chem. 287, 17914–17929.10.1074/jbc.M111.302794Search in Google Scholar PubMed PubMed Central

Cardoso, S.M., Moreira, P.I., Agostinho, P., Pereira, C., and Oliveira, C.R. (2005). Neurodegenerative pathways in Parkinson’s disease: therapeutic strategies. Curr. Drug. Targets CNS Neurol. Disord. 4, 405–419.10.2174/1568007054546072Search in Google Scholar PubMed

Chandra, S., Fornai, F., Kwon, H.B., Yazdani, U., Atasoy, D., Liu, X., Hammer, R.E., Battaglia, G., German, D.C., Castillo, P.E., et al. (2004). Double-knockout mice for α- and β-synucleins: effect on synaptic functions. Proc. Natl. Acad. Sci. USA 101, 14966–14971.10.1073/pnas.0406283101Search in Google Scholar PubMed PubMed Central

Chartier-Harlin, M.C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., et al. (2004). Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364, 1167–1169.10.1016/S0140-6736(04)17103-1Search in Google Scholar

Chen, L. and Feany, M.B. (2005). Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat. Neurosci. 8, 657–663.10.1038/nn1443Search in Google Scholar PubMed

Chen, Q., Long, Y., Yuan, X., Zou, L., Sun, J., Chen, S., Perez-Polo, J.R., and Yang, K. (2005). Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J. Neurosci. Res. 80, 611–619.10.1002/jnr.20494Search in Google Scholar PubMed

Chen, L., Periquet, M., Wang, X., Negro, A., McLean, P.J., Hyman, B.T., and Feany, M.B. (2009). Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J. Clin. Invest. 119, 3257–3265.10.1172/JCI39088Search in Google Scholar PubMed PubMed Central

Chinta, S.J., Mallajosyula, J.K., Rane, A., and Andersen, J.K. (2010). Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci. Lett. 486, 235–239.10.1016/j.neulet.2010.09.061Search in Google Scholar PubMed PubMed Central

Choi, W., Zibaee, S., Jakes, R., Serpell, L.C., Davletov, B., Crowther, R.A., and Goedert, M. (2004). Mutation E46K increases phospholipid binding and assembly into filaments of human α-synuclein. FEBS Lett. 576, 363–368.10.1016/j.febslet.2004.09.038Search in Google Scholar PubMed

Choubey, V., Safiulina, D., Vaarmann, A., Cagalinec, M., Wareski, P., Kuum, M., Zharkovsky, A., and Kaasik, A. (2011). Mutant A53T α-synuclein induces neuronal death by increasing mitochondrial autophagy. J. Biol. Chem. 286, 10814–10824.10.1074/jbc.M110.132514Search in Google Scholar PubMed PubMed Central

Chu, Y. and Kordower, J.H. (2010). Lewy body pathology in fetal grafts. Ann. NY Acad. Sci. 1184, 55–67.10.1111/j.1749-6632.2009.05229.xSearch in Google Scholar PubMed

Chu, Y. and Kordower, J.H. (2015). The prion hypothesis of Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 15, 28.10.1007/s11910-015-0549-xSearch in Google Scholar PubMed

Chu, Y., Goldman, J.G., Kelly, L., He, Y., Waliczek, T., and Kordower, J.H. (2014). Abnormal α-synuclein reduces nigral voltage-dependent anion channel 1 in sporadic and experimental Parkinson’s disease. Neurobiol Dis. 69, 1–14.10.1016/j.nbd.2014.05.003Search in Google Scholar PubMed

Chung, K.K., Zhang, Y., Lim, K.L., Tanaka, Y., Huang, H., Gao, J., Ross, C.A., Dawson, V.L., and Dawson, T.M. (2001). Parkin ubiquitinates the α-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med. 7, 1144–1150.10.1038/nm1001-1144Search in Google Scholar PubMed

Chung, C.Y., Khurana, V., Auluck, P.K., Tardiff, D.F., Mazzulli, J.R., Soldner, F., Baru, V., Lou, Y., Freyzon, Y., Cho, S., et al. (2013). Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987.10.1126/science.1245296Search in Google Scholar PubMed PubMed Central

Colapinto, M., Mila, S., Giraudo, S., Stefanazzi, P., Molteni, M., Rossetti, C., Bergamasco, B., Lopiano, L., and Fasano, M. (2006). Alpha-Synuclein protects SH-SY5Y cells from dopamine toxicity. Biochem. Biophys. Res. Commun. 349, 1294–1300.10.1016/j.bbrc.2006.08.163Search in Google Scholar PubMed

Conway, K.A., Harper, J.D., and Lansbury, P.T. (1998). Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318–1320.10.1038/3311Search in Google Scholar PubMed

Conway, K.A., Lee, S.J., Rochet, J.C., Ding, T.T., Williamson, R.E., and Lansbury, P.T., Jr. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97, 571–576.10.1073/pnas.97.2.571Search in Google Scholar PubMed PubMed Central

Cooper, A.A., Gitler, A.D., Cashikar, A., Haynes, C.M., Hill, K.J., Bhullar, B., Liu, K., Xu, K., Strathearn, K.E., Liu, F., et al. (2006). Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313, 324–328.10.1126/science.1129462Search in Google Scholar PubMed PubMed Central

Cramer, W.A., Zakharov, S.D., Saif Hasan, S., Zhang, H., Baniulis, D., Zhalnina, M.V., Soriano, G.M., Sharma, O., Rochet, J.C., Ryan, C., et al. (2011). Membrane proteins in four acts: function precedes structure determination. Methods 55, 415–420.10.1016/j.ymeth.2011.11.001Search in Google Scholar PubMed PubMed Central

Crews, L., Spencer, B., Desplats, P., Patrick, C., Paulino, A., Rockenstein, E., Hansen, L., Adame, A., Galasko, D., and Masliah, E. (2010). Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of α-synucleinopathy. PLoS One 5, e9313.10.1371/journal.pone.0009313Search in Google Scholar PubMed PubMed Central

Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T., and Sulzer, D. (2004). Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295.10.1126/science.1101738Search in Google Scholar PubMed

Cuervo, A.M., Wong, E.S., and Martinez-Vicente, M. (2010). Protein degradation, aggregation, and misfolding. Mov. Disord. 25(Suppl 1), S49–S54.10.1002/mds.22718Search in Google Scholar PubMed

da Costa, C.A., Ancolio, K., and Checler, F. (2000). Wild-type but not Parkinson’s disease-related Ala-53 →Thr mutant α-synuclein protects neuronal cells from apoptotic stimuli. J. Biol. Chem. 275, 24065–24069.10.1074/jbc.M002413200Search in Google Scholar PubMed

Danzer, K.M., Kranich, L.R., Ruf, W.P., Cagsal-Getkin, O., Winslow, A.R., Zhu, L., Vanderburg, C.R., and McLean, P.J. (2012). Exosomal cell-to-cell transmission of α-synuclein oligomers. Mol. Neurodegener. 7, 42.10.1186/1750-1326-7-42Search in Google Scholar PubMed PubMed Central

Dauer, W., Kholodilov, N., Vila, M., Trillat, A.C., Goodchild, R., Larsen, K.E., Staal, R., Tieu, K., Schmitz, Y., Yuan, C.A., et al. (2002). Resistance of α-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc. Natl. Acad. Sci. USA 99, 14524–14529.10.1073/pnas.172514599Search in Google Scholar PubMed PubMed Central

Davidson, W.S., Jonas, A., Clayton, D.F., and George, J.M. (1998). Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449.10.1074/jbc.273.16.9443Search in Google Scholar PubMed

De Vos, K.J., Grierson, A.J., Ackerley, S., and Miller, C.C. (2008). Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151–173.10.1146/annurev.neuro.31.061307.090711Search in Google Scholar PubMed

Deng, H. and Yuan, L. (2014). Genetic variants and animal models in SNCA and Parkinson disease. Ageing Res. Rev. 15, 161–176.10.1016/j.arr.2014.04.002Search in Google Scholar PubMed

Desplats, P., Lee, H.J., Bae, E.J., Patrick, C., Rockenstein, E., Crews, L., Spencer, B., Masliah, E., and Lee, S.J. (2009). Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl. Acad. Sci. USA 106, 13010–13015.10.1073/pnas.0903691106Search in Google Scholar PubMed PubMed Central

Dettmer, U., Newman, A.J., Soldner, F., Luth, E.S., Kim, N.C., von Saucken, V.E., Sanderson, J.B., Jaenisch, R., Bartels, T., and Selkoe, D. (2015). Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat. Commun. 6, 7314.10.1038/ncomms8314Search in Google Scholar PubMed PubMed Central

Devi, L., Raghavendran, V., Prabhu, B.M., Avadhani, N.G., and Anandatheerthavarada, H.K. (2008). Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 283, 9089–9100.10.1074/jbc.M710012200Search in Google Scholar PubMed PubMed Central

Di Pasquale, E., Fantini, J., Chahinian, H., Maresca, M., Taieb, N., and Yahi, N. (2010). Altered ion channel formation by the Parkinson’s-disease-linked E46K mutant of α-synuclein is corrected by GM3 but not by GM1 gangliosides. J. Mol. Biol. 397, 202–218.10.1016/j.jmb.2010.01.046Search in Google Scholar PubMed

Dikiy, I. and Eliezer, D. (2014). N-terminal acetylation stabilizes N-terminal helicity in lipid- and micelle-bound α-synuclein and increases its affinity for physiological membranes. J. Biol. Chem. 289, 3652–3665.10.1074/jbc.M113.512459Search in Google Scholar PubMed PubMed Central

Dzamko, N., Zhou, J., Huang, Y., and Halliday, G.M. (2014). Parkinson’s disease-implicated kinases in the brain; insights into disease pathogenesis. Front. Mol. Neurosci. 7, 57.10.3389/fnmol.2014.00057Search in Google Scholar PubMed PubMed Central

Dzamko, N., Geczy, C.L., and Halliday, G.M. (2015). Inflammation is genetically implicated in Parkinson’s disease. Neuroscience 302, 89–102.10.1016/j.neuroscience.2014.10.028Search in Google Scholar PubMed

Ebrahimi-Fakhari, D., Cantuti-Castelvetri, I., Fan, Z., Rockenstein, E., Masliah, E., Hyman, B.T., McLean, P.J., and Unni, V.K. (2011). Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of α-synuclein. J. Neurosci. 31, 14508–14520.10.1523/JNEUROSCI.1560-11.2011Search in Google Scholar PubMed PubMed Central

El-Agnaf, O.M., Salem, S.A., Paleologou, K.E., Cooper, L.J., Fullwood, N.J., Gibson, M.J., Curran, M.D., Court, J.A., Mann, D.M., Ikeda, S., et al. (2003). Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J. 17, 1945–1947.10.1096/fj.03-0098fjeSearch in Google Scholar PubMed

Eliezer, D., Kutluay, E., Bussell, R., Jr., and Browne, G. (2001). Conformational properties of α-synuclein in its free and lipid-associated states. J. Mol. Biol. 307, 1061–1073.10.1006/jmbi.2001.4538Search in Google Scholar PubMed

Emanuele, M. and Chieregatti, E. (2015). Mechanisms of α-synuclein action on neurotransmission: cell-autonomous and non-cell autonomous role. Biomolecules 5, 865–892.10.3390/biom5020865Search in Google Scholar PubMed PubMed Central

Emmanouilidou, E., Melachroinou, K., Roumeliotis, T., Garbis, S.D., Ntzouni, M., Margaritis, L.H., Stefanis, L., and Vekrellis, K. (2010a). Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30, 6838–6851.10.1523/JNEUROSCI.5699-09.2010Search in Google Scholar PubMed PubMed Central

Emmanouilidou, E., Stefanis, L., and Vekrellis, K. (2010b). Cell-produced α-synuclein oligomers are targeted to, and impair, the 26S proteasome. Neurobiol. Aging 31, 953–968.10.1016/j.neurobiolaging.2008.07.008Search in Google Scholar PubMed

Fares, M.B., Ait-Bouziad, N., Dikiy, I., Mbefo, M.K., Jovicic, A., Kiely, A., Holton, J.L., Lee, S.J., Gitler, A.D., Eliezer, D., et al. (2014). The novel Parkinson’s disease linked mutation G51D attenuates in vitro aggregation and membrane binding of α-synuclein, and enhances its secretion and nuclear localization in cells. Hum. Mol. Genet. 23, 4491–4509.10.1093/hmg/ddu165Search in Google Scholar PubMed PubMed Central

Fauvet, B., Mbefo, M.K., Fares, M.B., Desobry, C., Michael, S., Ardah, M.T., Tsika, E., Coune, P., Prudent, M., Lion, N., et al. (2012). Alpha-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J. Biol. Chem. 287, 15345–15364.10.1074/jbc.M111.318949Search in Google Scholar

Feng, L.R. and Maguire-Zeiss, K.A. (2011). Dopamine and paraquat enhance α-synuclein-induced alterations in membrane conductance. Neurotox. Res. 20, 387–401.10.1007/s12640-011-9255-xSearch in Google Scholar

Feng, L.R., Federoff, H.J., Vicini, S., and Maguire-Zeiss, K.A. (2010). Alpha-synuclein mediates alterations in membrane conductance: a potential role for α-synuclein oligomers in cell vulnerability. Eur. J. Neurosci. 32, 10–17.10.1111/j.1460-9568.2010.07266.xSearch in Google Scholar

Fredenburg, R.A., Rospigliosi, C., Meray, R.K., Kessler, J.C., Lashuel, H.A., Eliezer, D., and Lansbury, P.T., Jr. (2007). The impact of the E46K mutation on the properties of α-synuclein in its monomeric and oligomeric states. Biochemistry 46, 7107–7118.10.1021/bi7000246Search in Google Scholar

Freundt, E.C., Maynard, N., Clancy, E.K., Roy, S., Bousset, L., Sourigues, Y., Covert, M., Melki, R., Kirkegaard, K., and Brahic, M. (2012). Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann. Neurol. 72, 517–524.10.1002/ana.23747Search in Google Scholar

Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M.S., Shen, J., Takio, K., and Iwatsubo, T. (2002). Alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 4, 160–164.10.1038/ncb748Search in Google Scholar

Furukawa, K., Matsuzaki-Kobayashi, M., Hasegawa, T., Kikuchi, A., Sugeno, N., Itoyama, Y., Wang, Y., Yao, P.J., Bushlin, I., and Takeda, A. (2006). Plasma membrane ion permeability induced by mutant α-synuclein contributes to the degeneration of neural cells. J. Neurochem. 97, 1071–1077.10.1111/j.1471-4159.2006.03803.xSearch in Google Scholar

Gallegos, S., Pacheco, C., Peters, C., Opazo, C.M., and Aguayo, L.G. (2015). Features of α-synuclein that could explain the progression and irreversibility of Parkinson’s disease. Front Neurosci. 9, 59.10.3389/fnins.2015.00059Search in Google Scholar

Geng, X., Lou, H., Wang, J., Li, L., Swanson, A.L., Sun, M., Beers-Stolz, D., Watkins, S., Perez, R.G., and Drain, P. (2011). Alpha-Synuclein binds the K(ATP) channel at insulin-secretory granules and inhibits insulin secretion. Am. J. Physiol. Endocrinol. Metab. 300, E276–E286.10.1152/ajpendo.00262.2010Search in Google Scholar

George, J.M., Jin, H., Woods, W.S., and Clayton, D.F. (1995). Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15, 361–372.10.1016/0896-6273(95)90040-3Search in Google Scholar

George, S., Rey, N.L., Reichenbach, N., Steiner, J.A., and Brundin, P. (2013). Alpha-Synuclein: the long distance runner. Brain Pathol. 23, 350–357.10.1111/bpa.12046Search in Google Scholar PubMed PubMed Central

Ghosh, D., Sahay, S., Ranjan, P., Salot, S., Mohite, G.M., Singh, P.K., Dwivedi, S., Carvalho, E., Banerjee, R., Kumar, A., et al. (2014). The newly discovered Parkinson’s disease associated Finnish mutation (A53E) attenuates α-synuclein aggregation and membrane binding. Biochemistry 53, 6419–6421.10.1021/bi5010365Search in Google Scholar PubMed

Giasson, B.I., Duda, J.E., Murray, I.V., Chen, Q., Souza, J.M., Hurtig, H.I., Ischiropoulos, H., Trojanowski, J.Q., and Lee, V.M. (2000). Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290, 985–989.10.1126/science.290.5493.985Search in Google Scholar PubMed

Giasson, B.I., Forman, M.S., Higuchi, M., Golbe, L.I., Graves, C.L., Kotzbauer, P.T., Trojanowski, J.Q., and Lee, V.M. (2003). Initiation and synergistic fibrillization of tau and α-synuclein. Science 300, 636–640.10.1126/science.1082324Search in Google Scholar PubMed

Gitler, A.D., Bevis, B.J., Shorter, J., Strathearn, K.E., Hamamichi, S., Su, L.J., Caldwell, K.A., Caldwell, G.A., Rochet, J.C., McCaffery, J.M., et al. (2008). The Parkinson’s disease protein α-synuclein disrupts cellular Rab homeostasis. Proc. Natl. Acad. Sci. USA 105, 145–150.10.1073/pnas.0710685105Search in Google Scholar PubMed PubMed Central

Good, P.F., Hsu, A., Werner, P., Perl, D.P., and Olanow, C.W. (1998). Protein nitration in Parkinson’s disease. J. Neuropathol. Exp. Neurol. 57, 338–342.10.1097/00005072-199804000-00006Search in Google Scholar PubMed

Greten-Harrison, B., Polydoro, M., Morimoto-Tomita, M., Diao, L., Williams, A.M., Nie, E.H., Makani, S., Tian, N., Castillo, P.E., Buchman, V.L., et al. (2010). αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proc. Natl. Acad. Sci. USA 107, 19573–19578.10.1073/pnas.1005005107Search in Google Scholar PubMed PubMed Central

Grey, M., Dunning, C.J., Gaspar, R., Grey, C., Brundin, P., Sparr, E., and Linse, S. (2015). Acceleration of α-synuclein aggregation by exosomes. J. Biol. Chem. 290, 2969–2982.10.1074/jbc.M114.585703Search in Google Scholar PubMed PubMed Central

Guardia-Laguarta, C., Area-Gomez, E., Rub, C., Liu, Y., Magrane, J., Becker, D., Voos, W., Schon, E.A., and Przedborski, S. (2014). Alpha-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 34, 249–259.10.1523/JNEUROSCI.2507-13.2014Search in Google Scholar PubMed PubMed Central

Guardia-Laguarta, C., Area-Gomez, E., Schon, E.A., and Przedborski, S. (2015). A new role for α-synuclein in Parkinson’s disease: alteration of ER-mitochondrial communication. Mov. Disord. 30, 1026–1033.10.1002/mds.26239Search in Google Scholar PubMed

Guo, J.L., Covell, D.J., Daniels, J.P., Iba, M., Stieber, A., Zhang, B., Riddle, D.M., Kwong, L.K., Xu, Y., Trojanowski, J.Q., et al. (2013). Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117.10.1016/j.cell.2013.05.057Search in Google Scholar PubMed PubMed Central

Gurnev, P.A., Yap, T.L., Pfefferkorn, C.M., Rostovtseva, T.K., Berezhkovskii, A.M., Lee, J.C., Parsegian, V.A., and Bezrukov, S.M. (2014). Alpha-synuclein lipid-dependent membrane binding and translocation through the α-hemolysin channel. Biophys. J. 106, 556–565.10.1016/j.bpj.2013.12.028Search in Google Scholar PubMed PubMed Central

Gurry, T., Ullman, O., Fisher, C.K., Perovic, I., Pochapsky, T., and Stultz, C.M. (2013). The dynamic structure of α-synuclein multimers. J. Am. Chem. Soc. 135, 3865–3872.10.1021/ja310518pSearch in Google Scholar PubMed

Hall, S., Ohrfelt, A., Constantinescu, R., Andreasson, U., Surova, Y., Bostrom, F., Nilsson, C., Hakan, W., Decraemer, H., Nagga, K., et al. (2012). Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 69, 1445–1452.10.1001/archneurol.2012.1654Search in Google Scholar PubMed

Hansen, C., Angot, E., Bergstrom, A.L., Steiner, J.A., Pieri, L., Paul, G., Outeiro, T.F., Melki, R., Kallunki, P., Fog, K., et al. (2011). Alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121, 715–725.10.1172/JCI43366Search in Google Scholar PubMed PubMed Central

Hasegawa, M., Fujiwara, H., Nonaka, T., Wakabayashi, K., Takahashi, H., Lee, V.M., Trojanowski, J.Q., Mann, D., and Iwatsubo, T. (2002). Phosphorylated α-synuclein is ubiquitinated in α-synucleinopathy lesions. J. Biol. Chem. 277, 49071–49076.10.1074/jbc.M208046200Search in Google Scholar PubMed

Hashimoto, M., Hsu, L.J., Rockenstein, E., Takenouchi, T., Mallory, M., and Masliah, E. (2002). Alpha-Synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J. Biol. Chem. 277, 11465–11472.10.1074/jbc.M111428200Search in Google Scholar PubMed

Hawkes, C.H., Del Tredici, K., and Braak, H. (2009). Parkinson’s disease: the dual hit theory revisited. Ann. N Y Acad. Sci. 1170, 615–622.10.1111/j.1749-6632.2009.04365.xSearch in Google Scholar PubMed

Hedskog, L., Pinho, C.M., Filadi, R., Ronnback, A., Hertwig, L., Wiehager, B., Larssen, P., Gellhaar, S., Sandebring, A., Westerlund, M., et al. (2013). Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc. Natl. Acad. Sci. USA 110, 7916–7921.10.1073/pnas.1300677110Search in Google Scholar PubMed PubMed Central

Hodara, R., Norris, E.H., Giasson, B.I., Mishizen-Eberz, A.J., Lynch, D.R., Lee, V.M., and Ischiropoulos, H. (2004). Functional consequences of α-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J. Biol. Chem. 279, 47746–47753.10.1074/jbc.M408906200Search in Google Scholar PubMed

Holmes, B.B., DeVos, S.L., Kfoury, N., Li, M., Jacks, R., Yanamandra, K., Ouidja, M.O., Brodsky, F.M., Marasa, J., Bagchi, D.P., et al. (2013). Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc. Natl. Acad. Sci. USA 110, E3138–E3147.10.1073/pnas.1301440110Search in Google Scholar

Holmqvist, S., Chutna, O., Bousset, L., Aldrin-Kirk, P., Li, W., Bjorklund, T., Wang, Z.Y., Roybon, L., Melki, R., and Li, J.Y. (2014). Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 128, 805–820.10.1007/s00401-014-1343-6Search in Google Scholar

Hsu, L.J., Sagara, Y., Arroyo, A., Rockenstein, E., Sisk, A., Mallory, M., Wong, J., Takenouchi, T., Hashimoto, M., and Masliah, E. (2000). Alpha-Synuclein promotes mitochondrial deficit and oxidative stress. Am. J. Pathol. 157, 401–410.10.1016/S0002-9440(10)64553-1Search in Google Scholar

Inglis, K.J., Chereau, D., Brigham, E.F., Chiou, S.S., Schobel, S., Frigon, N.L., Yu, M., Caccavello, R.J., Nelson, S., Motter, R., et al. (2009). Polo-like kinase 2 (PLK2) phosphorylates α-synuclein at serine 129 in central nervous system. J. Biol. Chem. 284, 2598–2602.10.1074/jbc.C800206200Search in Google Scholar

Irwin, D.J., Abrams, J.Y., Schonberger, L.B., Leschek, E.W., Mills, J.L., Lee, V.M., and Trojanowski, J.Q. (2013). Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70, 462–468.10.1001/jamaneurol.2013.1933Search in Google Scholar

Ishii, A., Nonaka, T., Taniguchi, S., Saito, T., Arai, T., Mann, D., Iwatsubo, T., Hisanaga, S., Goedert, M., and Hasegawa, M. (2007). Casein kinase 2 is the major enzyme in brain that phosphorylates Ser129 of human α-synuclein: implication for α-synucleinopathies. FEBS Lett. 581, 4711–4717.10.1016/j.febslet.2007.08.067Search in Google Scholar

Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., de Silva, H.A., Kittel, A., and Saitoh, T. (1995). The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467–475.10.1016/0896-6273(95)90302-XSearch in Google Scholar

Jakes, R., Spillantini, M.G., and Goedert, M. (1994). Identification of two distinct synucleins from human brain. FEBS Lett. 345, 27–32.10.1016/0014-5793(94)00395-5Search in Google Scholar

Jang, A., Lee, H.J., Suk, J.E., Jung, J.W., Kim, K.P., and Lee, S.J. (2010). Non-classical exocytosis of α-synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem 113, 1263–1274.10.1111/j.1471-4159.2010.06695.xSearch in Google Scholar PubMed

Jensen, M.B., Bhatia, V.K., Jao, C.C., Rasmussen, J.E., Pedersen, S.L., Jensen, K.J., Langen, R., and Stamou, D. (2011). Membrane curvature sensing by amphipathic helices: a single liposome study using α-synuclein and annexin B12. J. Biol. Chem. 286, 42603–42614.10.1074/jbc.M111.271130Search in Google Scholar PubMed PubMed Central

Jo, E., Fuller, N., Rand, R.P., St George-Hyslop, P., and Fraser, P.E. (2002). Defective membrane interactions of familial Parkinson’s disease mutant A30P α-synuclein. J. Mol. Biol. 315, 799–807.10.1006/jmbi.2001.5269Search in Google Scholar PubMed

Kalia, L.V., Kalia, S.K., Chau, H., Lozano, A.M., Hyman, B.T., and McLean, P.J. (2011). Ubiquitinylation of α-synuclein by carboxyl terminus Hsp70-interacting protein (CHIP) is regulated by Bcl-2-associated athanogene 5 (BAG5). PLoS One 6, e14695.10.1371/journal.pone.0014695Search in Google Scholar PubMed PubMed Central

Kalia, L.V., Kalia, S.K., McLean, P.J., Lozano, A.M., and Lang, A.E. (2013). Alpha-Synuclein oligomers and clinical implications for Parkinson disease. Ann. Neurol. 73, 155–169.10.1002/ana.23746Search in Google Scholar PubMed PubMed Central

Kamp, F., Exner, N., Lutz, A.K., Wender, N., Hegermann, J., Brunner, B., Nuscher, B., Bartels, T., Giese, A., Beyer, K., et al. (2010). Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J. 29, 3571–3589.10.1038/emboj.2010.223Search in Google Scholar PubMed PubMed Central

Karpinar, D.P., Balija, M.B., Kugler, S., Opazo, F., Rezaei-Ghaleh, N., Wender, N., Kim, H.Y., Taschenberger, G., Falkenburger, B.H., Heise, H., et al. (2009). Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson’s disease models. EMBO J. 28, 3256–3268.10.1038/emboj.2009.257Search in Google Scholar PubMed PubMed Central

Khalaf, O., Fauvet, B., Oueslati, A., Dikiy, I., Mahul-Mellier, A.L., Ruggeri, F.S., Mbefo, M.K., Vercruysse, F., Dietler, G., Lee, S.J., et al. (2014). The H50Q mutation enhances α-synuclein aggregation, secretion, and toxicity. J. Biol. Chem. 289, 21856–21876.10.1074/jbc.M114.553297Search in Google Scholar PubMed PubMed Central

Kiely, A.P., Asi, Y.T., Kara, E., Limousin, P., Ling, H., Lewis, P., Proukakis, C., Quinn, N., Lees, A.J., Hardy, J., et al. (2013). Alpha-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol. 125, 753–769.10.1007/s00401-013-1096-7Search in Google Scholar PubMed PubMed Central

Kim, H.Y., Cho, M.K., Kumar, A., Maier, E., Siebenhaar, C., Becker, S., Fernandez, C.O., Lashuel, H.A., Benz, R., Lange, A., et al. (2009). Structural properties of pore-forming oligomers of α-synuclein. J. Am. Chem. Soc. 131, 17482–17489.10.1021/ja9077599Search in Google Scholar PubMed

Kim, Y.M., Jang, W.H., Quezado, M.M., Oh, Y., Chung, K.C., Junn, E., and Mouradian, M.M. (2011). Proteasome inhibition induces α-synuclein SUMOylation and aggregate formation. J. Neurol. Sci. 307, 157–161.10.1016/j.jns.2011.04.015Search in Google Scholar PubMed PubMed Central

Kim, H.J., Jeon, B.S., Yoon, M.Y., Park, S.S., and Lee, K.W. (2012). Increased expression of α-synuclein by SNCA duplication is associated with resistance to toxic stimuli. J. Mol. Neurosci. 47, 249–255.10.1007/s12031-012-9732-6Search in Google Scholar PubMed

Klivenyi, P., Siwek, D., Gardian, G., Yang, L., Starkov, A., Cleren, C., Ferrante, R.J., Kowall, N.W., Abeliovich, A., and Beal, M.F. (2006). Mice lacking α-synuclein are resistant to mitochondrial toxins. Neurobiol. Dis. 21, 541–548.10.1016/j.nbd.2005.08.018Search in Google Scholar PubMed

Kordower, J.H., Chu, Y., Hauser, R.A., Freeman, T.B., and Olanow, C.W. (2008). Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med. 14, 504–506.10.1038/nm1747Search in Google Scholar PubMed

Kordower, J.H., Dodiya, H.B., Kordower, A.M., Terpstra, B., Paumier, K., Madhavan, L., Sortwell, C., Steece-Collier, K., and Collier, T.J. (2011). Transfer of host-derived α-synuclein to grafted dopaminergic neurons in rat. Neurobiol. Dis. 43, 552–557.10.1016/j.nbd.2011.05.001Search in Google Scholar PubMed PubMed Central

Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J.T., Schols, L., and Riess, O. (1998). Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet. 18, 106–108.10.1038/ng0298-106Search in Google Scholar PubMed

Krumova, P., and Weishaupt, J.H. (2013). Sumoylation in neurodegenerative diseases. Cell Mol. Life Sci. 70, 2123–2138.10.1007/s00018-012-1158-3Search in Google Scholar PubMed

Krumova, P., Meulmeester, E., Garrido, M., Tirard, M., Hsiao, H.H., Bossis, G., Urlaub, H., Zweckstetter, M., Kugler, S., Melchior, F., et al. (2011). Sumoylation inhibits α-synuclein aggregation and toxicity. J. Cell. Biol. 194, 49–60.10.1083/jcb.201010117Search in Google Scholar PubMed PubMed Central

Kubo, S., Nemani, V.M., Chalkley, R.J., Anthony, M.D., Hattori, N., Mizuno, Y., Edwards, R.H., and Fortin, D.L. (2005). A combinatorial code for the interaction of α-synuclein with membranes. J. Biol. Chem. 280, 31664–31672.10.1074/jbc.M504894200Search in Google Scholar PubMed

Kurowska, Z., Englund, E., Widner, H., Lindvall, O., Li, J.Y., and Brundin, P. (2011). Signs of degeneration in 12–22-year old grafts of mesencephalic dopamine neurons in patients with Parkinson’s disease. J. Parkinsons Dis. 1, 83–92.10.3233/JPD-2011-11004Search in Google Scholar PubMed

Lamberts, J.T., Hildebrandt, E.N., and Brundin, P. (2015). Spreading of α-synuclein in the face of axonal transport deficits in Parkinson’s disease: a speculative synthesis. Neurobiol. Dis. 77, 276–283.10.1016/j.nbd.2014.07.002Search in Google Scholar PubMed

Lashuel, H.A., Overk, C.R., Oueslati, A., and Masliah, E. (2013). The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 14, 38–48.10.1038/nrn3406Search in Google Scholar PubMed PubMed Central

Lazaro, D.F., Rodrigues, E.F., Langohr, R., Shahpasandzadeh, H., Ribeiro, T., Guerreiro, P., Gerhardt, E., Krohnert, K., Klucken, J., Pereira, M.D., et al. (2014). Systematic comparison of the effects of α-synuclein mutations on its oligomerization and aggregation. PLoS Genet 10, e1004741.10.1371/journal.pgen.1004741Search in Google Scholar PubMed PubMed Central

Lee, H.J., Khoshaghideh, F., Patel, S., and Lee, S.J. (2004a). Clearance of α-synuclein oligomeric intermediates via the lysosomal degradation pathway. J. Neurosci. 24, 1888–1896.10.1523/JNEUROSCI.3809-03.2004Search in Google Scholar PubMed PubMed Central

Lee, Y.J., Jeong, S.Y., Karbowski, M., Smith, C.L., and Youle, R.J. (2004b). Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001–5011.10.1091/mbc.e04-04-0294Search in Google Scholar PubMed PubMed Central

Lee, H.J., Patel, S., and Lee, S.J. (2005). Intravesicular localization and exocytosis of α-synuclein and its aggregates. J. Neurosci. 25, 6016–6024.10.1523/JNEUROSCI.0692-05.2005Search in Google Scholar PubMed PubMed Central

Lee, H.J., Suk, J.E., Bae, E.J., Lee, J.H., Paik, S.R., and Lee, S.J. (2008a). Assembly-dependent endocytosis and clearance of extracellular α-synuclein. Int. J. Biochem. Cell Biol. 40, 1835–1849.10.1016/j.biocel.2008.01.017Search in Google Scholar PubMed

Lee, H.J., Suk, J.E., Bae, E.J., and Lee, S.J. (2008b). Clearance and deposition of extracellular α-synuclein aggregates in microglia. Biochem. Biophys. Res. Commun. 372, 423–428.10.1016/j.bbrc.2008.05.045Search in Google Scholar PubMed

Lee, J.T., Wheeler, T.C., Li, L., and Chin, L.S. (2008c). Ubiquitination of α-synuclein by Siah-1 promotes α-synuclein aggregation and apoptotic cell death. Hum. Mol. Genet. 17, 906–917.10.1093/hmg/ddm363Search in Google Scholar PubMed

Lee, H.J., Cho, E.D., Lee, K.W., Kim, J.H., Cho, S.G., and Lee, S.J. (2013). Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein. Exp. Mol. Med. 45, e22.10.1038/emm.2013.45Search in Google Scholar PubMed PubMed Central

Lesage, S., Anheim, M., Letournel, F., Bousset, L., Honore, A., Rozas, N., Pieri, L., Madiona, K., Durr, A., Melki, R., et al. (2013). G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann. Neurol. 73, 459–471.10.1002/ana.23894Search in Google Scholar PubMed

Levin, J., Schmidt, F., Boehm, C., Prix, C., Botzel, K., Ryazanov, S., Leonov, A., Griesinger, C., and Giese, A. (2014). The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset. Acta Neuropathol. 127, 779–780.10.1007/s00401-014-1265-3Search in Google Scholar PubMed PubMed Central

Li, W.W., Yang, R., Guo, J.C., Ren, H.M., Zha, X.L., Cheng, J.S., and Cai, D.F. (2007). Localization of α-synuclein to mitochondria within midbrain of mice. Neuroreport 18, 1543–1546.10.1097/WNR.0b013e3282f03db4Search in Google Scholar PubMed

Li, J.Y., Englund, E., Holton, J.L., Soulet, D., Hagell, P., Lees, A.J., Lashley, T., Quinn, N.P., Rehncrona, S., Bjorklund, A., et al. (2008). Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503.10.1038/nm1746Search in Google Scholar PubMed

Li, J.Y., Englund, E., Widner, H., Rehncrona, S., Bjorklund, A., Lindvall, O., and Brundin, P. (2010). Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Mov. Disord. 25, 1091–1096.10.1002/mds.23012Search in Google Scholar PubMed

Liani, E., Eyal, A., Avraham, E., Shemer, R., Szargel, R., Berg, D., Bornemann, A., Riess, O., Ross, C.A., Rott, R., et al. (2004). Ubiquitylation of synphilin-1 and α-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 101, 5500–5505.10.1073/pnas.0401081101Search in Google Scholar PubMed PubMed Central

Lindersson, E., Beedholm, R., Hojrup, P., Moos, T., Gai, W., Hendil, K.B., and Jensen, P.H. (2004). Proteasomal inhibition by α-synuclein filaments and oligomers. J. Biol. Chem. 279, 12924–12934.10.1074/jbc.M306390200Search in Google Scholar PubMed

Liu, C.W., Corboy, M.J., DeMartino, G.N., and Thomas, P.J. (2003). Endoproteolytic activity of the proteasome. Science 299, 408–411.10.1126/science.1079293Search in Google Scholar PubMed PubMed Central

Liu, T.T., Liu, Y.J., Wang, Q., Yang, X.G., and Wang, K. (2012). Reactive-oxygen-species-mediated Cdc25C degradation results in differential antiproliferative activities of vanadate, tungstate, and molybdate in the PC-3 human prostate cancer cell line. J. Biol. Inorg. Chem. 17, 311–320.10.1007/s00775-011-0852-1Search in Google Scholar PubMed

Liu, Q., Emadi, S., Shen, J.X., Sierks, M.R., and Wu, J. (2013). Human α4β2 nicotinic acetylcholine receptor as a novel target of oligomeric α-synuclein. PLoS One 8, e55886.10.1371/journal.pone.0055886Search in Google Scholar PubMed PubMed Central

Lleo, A., Cavedo, E., Parnetti, L., Vanderstichele, H., Herukka, S.K., Andreasen, N., Ghidoni, R., Lewczuk, P., Jeromin, A., Winblad, B., et al. (2015). Cerebrospinal fluid biomarkers in trials for Alzheimer and Parkinson diseases. Nat. Rev. Neurol. 11, 41–55.10.1038/nrneurol.2014.232Search in Google Scholar PubMed

Loeb, V., Yakunin, E., Saada, A., and Sharon, R. (2010). The transgenic overexpression of α-synuclein and not its related pathology associates with complex I inhibition. J. Biol. Chem. 285, 7334–7343.10.1074/jbc.M109.061051Search in Google Scholar PubMed PubMed Central

Lu, L., Zhang, C., Cai, Q., Lu, Q., Duan, C., Zhu, Y., and Yang, H. (2013). Voltage-dependent anion channel involved in the α-synuclein-induced dopaminergic neuron toxicity in rats. Acta Biochim. Biophys. Sin. (Shanghai) 45, 170–178.10.1093/abbs/gms114Search in Google Scholar PubMed

Luk, K.C., Kehm, V., Carroll, J., Zhang, B., O’Brien, P., Trojanowski, J.Q., and Lee, V.M. (2012a). Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953.10.1126/science.1227157Search in Google Scholar PubMed PubMed Central

Luk, K.C., Kehm, V.M., Zhang, B., O’Brien, P., Trojanowski, J.Q., and Lee, V.M. (2012b). Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 209, 975–986.10.1084/jem.20112457Search in Google Scholar PubMed PubMed Central

Luth, E.S., Stavrovskaya, I.G., Bartels, T., Kristal, B.S., and Selkoe, D.J. (2014). Soluble, prefibrillar α-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction. J. Biol. Chem. 289, 21490–21507.10.1074/jbc.M113.545749Search in Google Scholar PubMed PubMed Central

Machiya, Y., Hara, S., Arawaka, S., Fukushima, S., Sato, H., Sakamoto, M., Koyama, S., and Kato, T. (2010). Phosphorylated α-synuclein at Ser-129 is targeted to the proteasome pathway in a ubiquitin-independent manner. J. Biol. Chem. 285, 40732–40744.10.1074/jbc.M110.141952Search in Google Scholar PubMed PubMed Central

Mahul-Mellier, A.L., Vercruysse, F., Maco, B., Ait-Bouziad, N., De Roo, M., Muller, D., and Lashuel, H.A. (2015). Fibril growth and seeding capacity play key roles in α-synuclein-mediated apoptotic cell death. Cell Death Differ. 22, 2107–2122.10.1038/cdd.2015.79Search in Google Scholar PubMed PubMed Central

Mak, S.K., McCormack, A.L., Manning-Bog, A.B., Cuervo, A.M., and Di Monte, D.A. (2010). Lysosomal degradation of α-synuclein in vivo. J. Biol. Chem. 285, 13621–13629.10.1074/jbc.M109.074617Search in Google Scholar PubMed PubMed Central

Maltsev, A.S., Ying, J., and Bax, A. (2012). Impact of N-terminal acetylation of α-synuclein on its random coil and lipid binding properties. Biochemistry 51, 5004–5013.10.1021/bi300642hSearch in Google Scholar PubMed PubMed Central

Maroteaux, L., Campanelli, J.T., and Scheller, R.H. (1988). Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8, 2804–2815.10.1523/JNEUROSCI.08-08-02804.1988Search in Google Scholar

Martin, L.J., Pan, Y., Price, A.C., Sterling, W., Copeland, N.G., Jenkins, N.A., Price, D.L., and Lee, M.K. (2006). Parkinson’s disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26, 41–50.10.1523/JNEUROSCI.4308-05.2006Search in Google Scholar PubMed PubMed Central

Martin, L.J., Semenkow, S., Hanaford, A., and Wong, M. (2014). Mitochondrial permeability transition pore regulates Parkinson’s disease development in mutant α-synuclein transgenic mice. Neurobiol. Aging 35, 1132–1152.10.1016/j.neurobiolaging.2013.11.008Search in Google Scholar PubMed PubMed Central

Martinez-Vicente, M., Talloczy, Z., Kaushik, S., Massey, A.C., Mazzulli, J., Mosharov, E.V., Hodara, R., Fredenburg, R., Wu, D.C., Follenzi, A., et al. (2008). Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118, 777–788.10.1172/JCI32806Search in Google Scholar PubMed PubMed Central

Massey, A.C., Kaushik, S., Sovak, G., Kiffin, R., and Cuervo, A.M. (2006). Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA 103, 5805–5810.10.1073/pnas.0507436103Search in Google Scholar PubMed PubMed Central

Masuda-Suzukake, M., Nonaka, T., Hosokawa, M., Oikawa, T., Arai, T., Akiyama, H., Mann, D.M., and Hasegawa, M. (2013). Prion-like spreading of pathological α-synuclein in brain. Brain 136, 1128–1138.10.1093/brain/awt037Search in Google Scholar PubMed PubMed Central

Masuda-Suzukake, M., Nonaka, T., Hosokawa, M., Kubo, M., Shimozawa, A., Akiyama, H., and Hasegawa, M. (2014). Pathological α-synuclein propagates through neural networks. Acta Neuropathol. Commun. 2, 88.10.1186/s40478-014-0088-8Search in Google Scholar PubMed PubMed Central

Mbefo, M.K., Paleologou, K.E., Boucharaba, A., Oueslati, A., Schell, H., Fournier, M., Olschewski, D., Yin, G., Zweckstetter, M., Masliah, E., et al. (2010). Phosphorylation of synucleins by members of the Polo-like kinase family. J. Biol. Chem. 285, 2807–2822.10.1074/jbc.M109.081950Search in Google Scholar PubMed PubMed Central

Mbefo, M.K., Fares, M.B., Paleologou, K., Oueslati, A., Yin, G., Tenreiro, S., Pinto, M., Outeiro, T., Zweckstetter, M., Masliah, E., et al. (2015). Parkinson disease mutant E46K enhances α-synuclein phosphorylation in mammalian cell lines, in yeast, and in vivo. J. Biol. Chem. 290, 9412–9427.10.1074/jbc.M114.610774Search in Google Scholar PubMed PubMed Central

Middleton, E.R., and Rhoades, E. (2010). Effects of curvature and composition on α-synuclein binding to lipid vesicles. Biophys. J. 99, 2279–2288.10.1016/j.bpj.2010.07.056Search in Google Scholar PubMed PubMed Central

Millecamps, S., and Julien, J.P. (2013). Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 14, 161–176.10.1038/nrn3380Search in Google Scholar PubMed

Mironov, S.L. (2015). Alpha-Synuclein forms non-selective cation channels and stimulates ATP-sensitive potassium channels in hippocampal neurons. J. Physiol. 593, 145–159.10.1113/jphysiol.2014.280974Search in Google Scholar PubMed PubMed Central

Mittelbrunn, M., Vicente-Manzanares, M., and Sanchez-Madrid, F. (2015). Organizing polarized delivery of exosomes at synapses. Traffic 16, 327–337.10.1111/tra.12258Search in Google Scholar PubMed PubMed Central

Mougenot, A.L., Nicot, S., Bencsik, A., Morignat, E., Verchere, J., Lakhdar, L., Legastelois, S., and Baron, T. (2012). Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol. Aging 33, 2225–2228.10.1016/j.neurobiolaging.2011.06.022Search in Google Scholar PubMed

Mullin, S. and Schapira, A. (2013). Alpha-Synuclein and mitochondrial dysfunction in Parkinson’s disease. Mol. Neurobiol. 47, 587–597.10.1007/s12035-013-8394-xSearch in Google Scholar PubMed PubMed Central

Murata, S., Minami, Y., Minami, M., Chiba, T., and Tanaka, K. (2001). CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2, 1133–1138.10.1093/embo-reports/kve246Search in Google Scholar PubMed PubMed Central

Nakamura, K., Nemani, V.M., Wallender, E.K., Kaehlcke, K., Ott, M., and Edwards, R.H. (2008). Optical reporters for the conformation of α-synuclein reveal a specific interaction with mitochondria. J. Neurosci. 28, 12305–12317.10.1523/JNEUROSCI.3088-08.2008Search in Google Scholar PubMed PubMed Central

Nakamura, K., Nemani, V.M., Azarbal, F., Skibinski, G., Levy, J.M., Egami, K., Munishkina, L., Zhang, J., Gardner, B., Wakabayashi, J., et al. (2011). Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. J. Biol. Chem. 286, 20710–20726.10.1074/jbc.M110.213538Search in Google Scholar PubMed PubMed Central

Nam, M.K., Han, J.H., Jang, J.Y., Yun, S.E., Kim, G.Y., Kang, S., and Rhim, H. (2015). A novel link between the conformations, exposure of specific epitopes, and subcellular localization of α-synuclein. Biochim. Biophys. Acta 1850, 2497–2505.10.1016/j.bbagen.2015.09.006Search in Google Scholar PubMed

Nemani, M., Linares-Cruz, G., Bruzzoni-Giovanelli, H., Roperch, J.P., Tuynder, M., Bougueleret, L., Cherif, D., Medhioub, M., Pasturaud, P., Alvaro, V., et al. (1996). Activation of the human homologue of the Drosophila sina gene in apoptosis and tumor suppression. Proc. Natl. Acad. Sci. USA 93, 9039–9042.10.1073/pnas.93.17.9039Search in Google Scholar PubMed PubMed Central

Nemani, V.M., Lu, W., Berge, V., Nakamura, K., Onoa, B., Lee, M.K., Chaudhry, F.A., Nicoll, R.A., and Edwards, R.H. (2010). Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65, 66–79.10.1016/j.neuron.2009.12.023Search in Google Scholar PubMed PubMed Central

Nonaka, T., Iwatsubo, T., and Hasegawa, M. (2005). Ubiquitination of α-synuclein. Biochemistry 44, 361–368.10.1021/bi0485528Search in Google Scholar PubMed

Norris, K.L., Hao, R., Chen, L.F., Lai, C.H., Kapur, M., Shaughnessy, P.J., Chou, D., Yan, J., Taylor, J.P., Engelender, S., et al. (2015). Convergence of Parkin, PINK1, and α-synuclein on stress-induced mitochondrial morphological remodeling. J. Biol. Chem. 290, 13862–13874.10.1074/jbc.M114.634063Search in Google Scholar

Okochi, M., Walter, J., Koyama, A., Nakajo, S., Baba, M., Iwatsubo, T., Meijer, L., Kahle, P.J., and Haass, C. (2000). Constitutive phosphorylation of the Parkinson’s disease associated α-synuclein. J. Biol. Chem. 275, 390–397.10.1074/jbc.275.1.390Search in Google Scholar

Olanow, C.W. and Brundin, P. (2013). Parkinson’s disease and α-synuclein: is Parkinson’s disease a prion-like disorder? Mov. Disord. 28, 31–40.10.1002/mds.25373Search in Google Scholar

Oueslati, A., Fournier, M., and Lashuel, H.A. (2010). Role of post-translational modifications in modulating the structure, function and toxicity of α-synuclein: implications for Parkinson’s disease pathogenesis and therapies. Prog. Brain Res. 183, 115–145.10.1016/S0079-6123(10)83007-9Search in Google Scholar

Outeiro, T.F. and Lindquist, S. (2003). Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302, 1772–1775.10.1126/science.1090439Search in Google Scholar PubMed PubMed Central

Outeiro, T.F., Putcha, P., Tetzlaff, J.E., Spoelgen, R., Koker, M., Carvalho, F., Hyman, B.T., and McLean, P.J. (2008). Formation of toxic oligomeric α-synuclein species in living cells. PLoS One 3, e1867.10.1371/journal.pone.0001867Search in Google Scholar PubMed PubMed Central

Pacheco, C.R., Morales, C.N., Ramirez, A.E., Munoz, F.J., Gallegos, S.S., Caviedes, P.A., Aguayo, L.G., and Opazo, C.M. (2015). Extracellular α-synuclein alters synaptic transmission in brain neurons by perforating the neuronal plasma membrane. J. Neurochem. 132, 731–741.10.1111/jnc.13060Search in Google Scholar PubMed

Paleologou, K.E., Kragh, C.L., Mann, D.M., Salem, S.A., Al-Shami, R., Allsop, D., Hassan, A.H., Jensen, P.H., and El-Agnaf, O.M. (2009). Detection of elevated levels of soluble α-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain 132, 1093–1101.10.1093/brain/awn349Search in Google Scholar PubMed

Paleologou, K.E., Oueslati, A., Shakked, G., Rospigliosi, C.C., Kim, H.Y., Lamberto, G.R., Fernandez, C.O., Schmid, A., Chegini, F., Gai, W.P., et al. (2010). Phosphorylation at S87 is enhanced in synucleinopathies, inhibits α-synuclein oligomerization, and influences synuclein-membrane interactions. J. Neurosci. 30, 3184–3198.10.1523/JNEUROSCI.5922-09.2010Search in Google Scholar PubMed PubMed Central

Pan-Montojo, F., Anichtchik, O., Dening, Y., Knels, L., Pursche, S., Jung, R., Jackson, S., Gille, G., Spillantini, M.G., Reichmann, H., et al. (2010). Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 5, e8762.10.1371/journal.pone.0008762Search in Google Scholar PubMed PubMed Central

Parihar, M.S., Parihar, A., Fujita, M., Hashimoto, M., and Ghafourifar, P. (2008). Mitochondrial association of α-synuclein causes oxidative stress. Cell Mol. Life Sci. 65, 1272–1284.10.1007/s00018-008-7589-1Search in Google Scholar

Parnetti, L., Chiasserini, D., Persichetti, E., Eusebi, P., Varghese, S., Qureshi, M.M., Dardis, A., Deganuto, M., De Carlo, C., Castrioto, A., et al. (2014). Cerebrospinal fluid lysosomal enzymes and α-synuclein in Parkinson’s disease. Mov. Disord. 29, 1019–1027.10.1002/mds.25772Search in Google Scholar

Pasanen, P., Myllykangas, L., Siitonen, M., Raunio, A., Kaakkola, S., Lyytinen, J., Tienari, P.J., Poyhonen, M., and Paetau, A. (2014). Novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol. Aging 35, 2180 e2181–e2185.10.1016/j.neurobiolaging.2014.03.024Search in Google Scholar

Paumier, K.L., Luk, K.C., Manfredsson, F.P., Kanaan, N.M., Lipton, J.W., Collier, T.J., Steece-Collier, K., Kemp, C.J., Celano, S., Schulz, E., et al. (2015). Intrastriatal injection of pre-formed mouse α-synuclein fibrils into rats triggers α-synuclein pathology and bilateral nigrostriatal degeneration. Neurobiol. Dis. 82, 185–199.10.1016/j.nbd.2015.06.003Search in Google Scholar

Paxinou, E., Chen, Q., Weisse, M., Giasson, B.I., Norris, E.H., Rueter, S.M., Trojanowski, J.Q., Lee, V.M., and Ischiropoulos, H. (2001). Induction of α-synuclein aggregation by intracellular nitrative insult. J. Neurosci. 21, 8053–8061.10.1523/JNEUROSCI.21-20-08053.2001Search in Google Scholar

Peelaerts, W., Bousset, L., Van der Perren, A., Moskalyuk, A., Pulizzi, R., Giugliano, M., Van den Haute, C., Melki, R., and Baekelandt, V. (2015). Alpha-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344.10.1038/nature14547Search in Google Scholar

Petroi, D., Popova, B., Taheri-Talesh, N., Irniger, S., Shahpasandzadeh, H., Zweckstetter, M., Outeiro, T.F., and Braus, G.H. (2012). Aggregate clearance of α-synuclein in Saccharomyces cerevisiae depends more on autophagosome and vacuole function than on the proteasome. J. Biol. Chem. 287, 27567–27579.10.1074/jbc.M112.361865Search in Google Scholar

Petroski, M.D. and Deshaies, R.J. (2005). Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9–20.10.1038/nrm1547Search in Google Scholar

Petrucelli, L., O’Farrell, C., Lockhart, P.J., Baptista, M., Kehoe, K., Vink, L., Choi, P., Wolozin, B., Farrer, M., Hardy, J., et al. (2002). Parkin protects against the toxicity associated with mutant α-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36, 1007–1019.10.1016/S0896-6273(02)01125-XSearch in Google Scholar

Pfefferkorn, C.M., Jiang, Z., and Lee, J.C. (2012). Biophysics of α-synuclein membrane interactions. Biochim. Biophys. Acta 1818, 162–171.10.1016/j.bbamem.2011.07.032Search in Google Scholar PubMed PubMed Central

Pinotsi, D., Michel, C.H., Buell, A.K., Laine, R.F., Mahou, P., Dobson, C.M., Kaminski, C.F., and Kaminski Schierle, G.S. (2016). Nanoscopic insights into seeding mechanisms and toxicity of α-synuclein species in neurons. Proc. Natl. Acad. Sci. USA 113, 3815–3819.10.1073/pnas.1516546113Search in Google Scholar PubMed PubMed Central

Piper, R.C. and Katzmann, D.J. (2007). Biogenesis and function of multivesicular bodies. Annu. Rev. Cell Dev. Biol. 23, 519–547.10.1146/annurev.cellbio.23.090506.123319Search in Google Scholar PubMed PubMed Central

Plotegher, N., Gratton, E., and Bubacco, L. (2014). Number and Brightness analysis of α-synuclein oligomerization and the associated mitochondrial morphology alterations in live cells. Biochim. Biophys. Acta 1840, 2014–2024.10.1016/j.bbagen.2014.02.013Search in Google Scholar PubMed PubMed Central

Poehler, A.M., Xiang, W., Spitzer, P., May, V.E., Meixner, H., Rockenstein, E., Chutna, O., Outeiro, T.F., Winkler, J., Masliah, E., et al. (2014). Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment. Autophagy 10, 2171–2192.10.4161/auto.36436Search in Google Scholar PubMed PubMed Central

Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., et al. (1997). Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.10.1126/science.276.5321.2045Search in Google Scholar PubMed

Pountney, D.L., Chegini, F., Shen, X., Blumbergs, P.C., and Gai, W.P. (2005). SUMO-1 marks subdomains within glial cytoplasmic inclusions of multiple system atrophy. Neurosci. Lett. 381, 74–79.10.1016/j.neulet.2005.02.013Search in Google Scholar PubMed

Pronin, A.N., Morris, A.J., Surguchov, A., and Benovic, J.L. (2000). Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J. Biol. Chem. 275, 26515–26522.10.1074/jbc.M003542200Search in Google Scholar PubMed

Prots, I., Veber, V., Brey, S., Campioni, S., Buder, K., Riek, R., Bohm, K.J., and Winner, B. (2013). Alpha-Synuclein oligomers impair neuronal microtubule-kinesin interplay. J. Biol. Chem. 288, 21742–21754.10.1074/jbc.M113.451815Search in Google Scholar PubMed PubMed Central

Proukakis, C., Dudzik, C.G., Brier, T., MacKay, D.S., Cooper, J.M., Millhauser, G.L., Houlden, H., and Schapira, A.H. (2013). A novel α-synuclein missense mutation in Parkinson disease. Neurology 80, 1062–1064.10.1212/WNL.0b013e31828727baSearch in Google Scholar PubMed PubMed Central

Qing, H., Wong, W., McGeer, E.G., and McGeer, P.L. (2009). Lrrk2 phosphorylates α-synuclein at serine 129: Parkinson disease implications. Biochem. Biophys. Res. Commun. 387, 149–152.10.1016/j.bbrc.2009.06.142Search in Google Scholar PubMed

Quist, A., Doudevski, I., Lin, H., Azimova, R., Ng, D., Frangione, B., Kagan, B., Ghiso, J., and Lal, R. (2005). Amyloid ion channels: a common structural link for protein-misfolding disease. Proc. Natl. Acad. Sci. USA 102, 10427–10432.10.1073/pnas.0502066102Search in Google Scholar PubMed PubMed Central

Rajendran, L., Bali, J., Barr, M.M., Court, F.A., Kramer-Albers, E.M., Picou, F., Raposo, G., van der Vos, K.E., van Niel, G., Wang, J., et al. (2014). Emerging roles of extracellular vesicles in the nervous system. J. Neurosci. 34, 15482–15489.10.1523/JNEUROSCI.3258-14.2014Search in Google Scholar PubMed PubMed Central

Recasens, A., Dehay, B., Bove, J., Carballo-Carbajal, I., Dovero, S., Perez-Villalba, A., Fernagut, P.O., Blesa, J., Parent, A., Perier, C., et al. (2014). Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann. Neurol. 75, 351–362.10.1002/ana.24066Search in Google Scholar PubMed

Reyes, J.F., Rey, N.L., Bousset, L., Melki, R., Brundin, P., and Angot, E. (2014). Alpha-Synuclein transfers from neurons to oligodendrocytes. Glia 62, 387–398.10.1002/glia.22611Search in Google Scholar PubMed

Rideout, H.J., Dietrich, P., Wang, Q., Dauer, W.T., and Stefanis, L. (2004). Alpha-Synuclein is required for the fibrillar nature of ubiquitinated inclusions induced by proteasomal inhibition in primary neurons. J. Biol. Chem. 279, 46915–46920.10.1074/jbc.M405146200Search in Google Scholar PubMed

Ronzitti, G., Bucci, G., Emanuele, M., Leo, D., Sotnikova, T.D., Mus, L.V., Soubrane, C.H., Dallas, M.L., Thalhammer, A., Cingolani, L.A., et al. (2014). Exogenous α-synuclein decreases raft partitioning of Cav2.2 channels inducing dopamine release. J. Neurosci. 34, 10603–10615.10.1523/JNEUROSCI.0608-14.2014Search in Google Scholar PubMed PubMed Central

Rostovtseva, T.K., Gurnev, P.A., Protchenko, O., Hoogerheide, D.P., Yap, T.L., Philpott, C.C., Lee, J.C., and Bezrukov, S.M. (2015). Alpha-Synuclein shows high affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease. J. Biol. Chem. 290, 18467–18477.10.1074/jbc.M115.641746Search in Google Scholar PubMed PubMed Central

Rott, R., Szargel, R., Haskin, J., Shani, V., Shainskaya, A., Manov, I., Liani, E., Avraham, E., and Engelender, S. (2008). Monoubiquitylation of α-synuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopaminergic cells. J. Biol. Chem. 283, 3316–3328.10.1074/jbc.M704809200Search in Google Scholar PubMed

Rott, R., Szargel, R., Shani, V., Bisharat, S., and Engelender, S. (2014). Alpha-Synuclein ubiquitination and novel therapeutic targets for Parkinson’s disease. CNS Neurol. Disord. Drug. Targets 13, 630–637.10.2174/18715273113126660195Search in Google Scholar PubMed

Roy, S. (2009). The paradoxical cell biology of α-Synucle. Results Probl. Cell Differ. 48, 159–172.10.1007/400_2009_23Search in Google Scholar PubMed

Rutherford, N.J. and Giasson, B.I. (2015). The A53E α-synuclein pathological mutation demonstrates reduced aggregation propensity in vitro and in cell culture. Neurosci. Lett. 597, 43–48.10.1016/j.neulet.2015.04.022Search in Google Scholar PubMed PubMed Central

Sacino, A.N., Brooks, M., Thomas, M.A., McKinney, A.B., Lee, S., Regenhardt, R.W., McGarvey, N.H., Ayers, J.I., Notterpek, L., Borchelt, D.R., et al. (2014). Intramuscular injection of alpha-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc. Natl. Acad. Sci. USA 111, 10732–10737.10.1073/pnas.1321785111Search in Google Scholar PubMed PubMed Central

Sadowski, M. and Sarcevic, B. (2010). Mechanisms of mono- and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine. Cell Div. 5, 19.10.1186/1747-1028-5-19Search in Google Scholar PubMed PubMed Central

Sato, H., Kato, T., and Arawaka, S. (2013). The role of Ser129 phosphorylation of α-synuclein in neurodegeneration of Parkinson’s disease: a review of in vivo models. Rev. Neurosci. 24, 115–123.10.1515/revneuro-2012-0071Search in Google Scholar PubMed

Schmidt, F., Levin, J., Kamp, F., Kretzschmar, H., Giese, A., and Botzel, K. (2012). Single-channel electrophysiology reveals a distinct and uniform pore complex formed by α-synuclein oligomers in lipid membranes. PLoS One 7, e42545.10.1371/journal.pone.0042545Search in Google Scholar PubMed PubMed Central

Schneider, A. and Simons, M. (2013). Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res. 352, 33–47.10.1007/s00441-012-1428-2Search in Google Scholar PubMed PubMed Central

Shahpasandzadeh, H., Popova, B., Kleinknecht, A., Fraser, P.E., Outeiro, T.F., and Braus, G.H. (2014). Interplay between sumoylation and phosphorylation for protection against α-synuclein inclusions. J. Biol. Chem. 289, 31224–31240.10.1074/jbc.M114.559237Search in Google Scholar PubMed PubMed Central

Shavali, S., Brown-Borg, H.M., Ebadi, M., and Porter, J. (2008). Mitochondrial localization of α-synuclein protein in α-synuclein overexpressing cells. Neurosci. Lett. 439, 125–128.10.1016/j.neulet.2008.05.005Search in Google Scholar PubMed PubMed Central

Shen, J., Du, T., Wang, X., Duan, C., Gao, G., Zhang, J., Lu, L., and Yang, H. (2014). Alpha-Synuclein amino terminus regulates mitochondrial membrane permeability. Brain Res. 1591, 14–26.10.1016/j.brainres.2014.09.046Search in Google Scholar PubMed

Sherer, T.B., and Greenamyre, J.T. (2005). Oxidative damage in Parkinson’s disease. Antioxid. Redox. Signal 7, 627–629.10.1089/ars.2005.7.627Search in Google Scholar PubMed

Shi, M., Liu, C., Cook, T.J., Bullock, K.M., Zhao, Y., Ginghina, C., Li, Y., Aro, P., Dator, R., He, C., et al. (2014). Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 128, 639–650.10.1007/s00401-014-1314-ySearch in Google Scholar PubMed PubMed Central

Shimura, H., Schlossmacher, M.G., Hattori, N., Frosch, M.P., Trockenbacher, A., Schneider, R., Mizuno, Y., Kosik, K.S., and Selkoe, D.J. (2001). Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293, 263–269.10.1126/science.1060627Search in Google Scholar PubMed

Shin, Y., Klucken, J., Patterson, C., Hyman, B.T., and McLean, P.J. (2005). The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates α-synuclein degradation decisions between proteasomal and lysosomal pathways. J. Biol. Chem. 280, 23727–23734.10.1074/jbc.M503326200Search in Google Scholar PubMed

Shrivastava, A.N., Redeker, V., Fritz, N., Pieri, L., Almeida, L.G., Spolidoro, M., Liebmann, T., Bousset, L., Renner, M., Lena, C., et al. (2015). Alpha-Synuclein assemblies sequester neuronal α3-Na+/K+-ATPase and impair Na+ gradient. EMBO J. 34, 2408–2423.10.15252/embj.201591397Search in Google Scholar PubMed PubMed Central

Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., et al. (2003). Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841.10.1126/science.1090278Search in Google Scholar PubMed

Smith, W.W., Jiang, H., Pei, Z., Tanaka, Y., Morita, H., Sawa, A., Dawson, V.L., Dawson, T.M., and Ross, C.A. (2005a). Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant α-synuclein-induced toxicity. Hum. Mol. Genet. 14, 3801–3811.10.1093/hmg/ddi396Search in Google Scholar PubMed

Smith, W.W., Margolis, R.L., Li, X., Troncoso, J.C., Lee, M.K., Dawson, V.L., Dawson, T.M., Iwatsubo, T., and Ross, C.A. (2005b). Alpha-Synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. J. Neurosci. 25, 5544–5552.10.1523/JNEUROSCI.0482-05.2005Search in Google Scholar PubMed PubMed Central

Snyder, H., Mensah, K., Theisler, C., Lee, J., Matouschek, A., and Wolozin, B. (2003). Aggregated and monomeric α-synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function. J. Biol. Chem. 278, 11753–11759.10.1074/jbc.M208641200Search in Google Scholar PubMed

Soper, J.H., Roy, S., Stieber, A., Lee, E., Wilson, R.B., Trojanowski, J.Q., Burd, C.G., and Lee, V.M. (2008). Alpha-Synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae. Mol. Biol. Cell 19, 1093–1103.10.1091/mbc.e07-08-0827Search in Google Scholar PubMed PubMed Central

Souza, J.M., Giasson, B.I., Chen, Q., Lee, V.M., and Ischiropoulos, H. (2000). Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J. Biol. Chem. 275, 18344–18349.10.1074/jbc.M000206200Search in Google Scholar PubMed

Spencer, B., Potkar, R., Trejo, M., Rockenstein, E., Patrick, C., Gindi, R., Adame, A., Wyss-Coray, T., and Masliah, E. (2009). Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson’s and Lewy body diseases. J. Neurosci. 29, 13578–13588.10.1523/JNEUROSCI.4390-09.2009Search in Google Scholar PubMed PubMed Central

Spira, P.J., Sharpe, D.M., Halliday, G., Cavanagh, J., and Nicholson, G.A. (2001). Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr α-synuclein mutation. Ann. Neurol. 49, 313–319.10.1002/ana.67Search in Google Scholar

Stefanis, L., Larsen, K.E., Rideout, H.J., Sulzer, D., and Greene, L.A. (2001). Expression of A53T mutant but not wild-type α-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 21, 9549–9560.10.1523/JNEUROSCI.21-24-09549.2001Search in Google Scholar

Stockl, M.T., Zijlstra, N., and Subramaniam, V. (2013). Alpha-Synuclein oligomers: an amyloid pore? Insights into mechanisms of α-synuclein oligomer-lipid interactions. Mol. Neurobiol. 47, 613–621.10.1007/s12035-012-8331-4Search in Google Scholar PubMed

Stoica, R., De Vos, K.J., Paillusson, S., Mueller, S., Sancho, R.M., Lau, K.F., Vizcay-Barrena, G., Lin, W.L., Xu, Y.F., Lewis, J., et al. (2014). ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 3996.10.1038/ncomms4996Search in Google Scholar PubMed PubMed Central

Stojkovska, I., Wagner, B.M., and Morrison, B.E. (2015). Parkinson’s disease and enhanced inflammatory response. Exp. Biol. Med. (Maywood) 240, 1387–1395.10.1177/1535370215576313Search in Google Scholar PubMed PubMed Central

Street, J.M., Barran, P.E., Mackay, C.L., Weidt, S., Balmforth, C., Walsh, T.S., Chalmers, R.T., Webb, D.J., and Dear, J.W. (2012). Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J. Transl. Med. 10, 5.10.1186/1479-5876-10-5Search in Google Scholar PubMed PubMed Central

Sugeno, N., Takeda, A., Hasegawa, T., Kobayashi, M., Kikuchi, A., Mori, F., Wakabayashi, K., and Itoyama, Y. (2008). Serine 129 phosphorylation of α-synuclein induces unfolded protein response-mediated cell death. J. Biol. Chem. 283, 23179–23188.10.1074/jbc.M802223200Search in Google Scholar PubMed

Tanaka, Y., Engelender, S., Igarashi, S., Rao, R.K., Wanner, T., Tanzi, R.E., Sawa, A., V, L.D., Dawson, T.M., and Ross, C.A. (2001). Inducible expression of mutant α-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum. Mol. Genet. 10, 919–926.10.1093/hmg/10.9.919Search in Google Scholar PubMed

Tenreiro, S., Eckermann, K., and Outeiro, T.F. (2014). Protein phosphorylation in neurodegeneration: friend or foe? Front. Mol. Neurosci. 7, 42.10.3389/fnmol.2014.00042Search in Google Scholar PubMed PubMed Central

Tetzlaff, J.E., Putcha, P., Outeiro, T.F., Ivanov, A., Berezovska, O., Hyman, B.T., and McLean, P.J. (2008). CHIP targets toxic α-synuclein oligomers for degradation. J. Biol. Chem. 283, 17962–17968.10.1074/jbc.M802283200Search in Google Scholar

Thayanidhi, N., Helm, J.R., Nycz, D.C., Bentley, M., Liang, Y., and Hay, J.C. (2010). Alpha-Synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol. Biol. Cell 21, 1850–1863.10.1091/mbc.e09-09-0801Search in Google Scholar

Tofaris, G.K., Layfield, R., and Spillantini, M.G. (2001). Alpha-Synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett. 509, 22–26.10.1016/S0014-5793(01)03115-5Search in Google Scholar

Tofaris, G.K., Razzaq, A., Ghetti, B., Lilley, K.S., and Spillantini, M.G. (2003). Ubiquitination of α-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J. Biol. Chem. 278, 44405–44411.10.1074/jbc.M308041200Search in Google Scholar PubMed

Tofaris, G.K., Kim, H.T., Hourez, R., Jung, J.W., Kim, K.P., and Goldberg, A.L. (2011). Ubiquitin ligase Nedd4 promotes α-synuclein degradation by the endosomal-lysosomal pathway. Proc. Natl. Acad. Sci. USA 108, 17004–17009.10.1073/pnas.1109356108Search in Google Scholar PubMed PubMed Central

Tosatto, L., Andrighetti, A.O., Plotegher, N., Antonini, V., Tessari, I., Ricci, L., Bubacco, L., and Dalla Serra, M. (2012). Alpha-Synuclein pore forming activity upon membrane association. Biochim. Biophys. Acta 1818, 2876–2883.10.1016/j.bbamem.2012.07.007Search in Google Scholar PubMed

Tsigelny, I.F., Bar-On, P., Sharikov, Y., Crews, L., Hashimoto, M., Miller, M.A., Keller, S.H., Platoshyn, O., Yuan, J.X., and Masliah, E. (2007). Dynamics of α-synuclein aggregation and inhibition of pore-like oligomer development by β-synuclein. FEBS J. 274, 1862–1877.10.1111/j.1742-4658.2007.05733.xSearch in Google Scholar PubMed

Tsigelny, I.F., Sharikov, Y., Wrasidlo, W., Gonzalez, T., Desplats, P.A., Crews, L., Spencer, B., and Masliah, E. (2012). Role of α-synuclein penetration into the membrane in the mechanisms of oligomer pore formation. FEBS J. 279, 1000–1013.10.1111/j.1742-4658.2012.08489.xSearch in Google Scholar PubMed PubMed Central

Tu, P.H., Galvin, J.E., Baba, M., Giasson, B., Tomita, T., Leight, S., Nakajo, S., Iwatsubo, T., Trojanowski, J.Q., and Lee, V.M. (1998). Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble α-synuclein. Ann. Neurol. 44, 415–422.10.1002/ana.410440324Search in Google Scholar PubMed

Ubeda-Banon, I., Saiz-Sanchez, D., de la Rosa-Prieto, C., and Martinez-Marcos, A. (2014). Alpha-Synuclein in the olfactory system in Parkinson’s disease: role of neural connections on spreading pathology. Brain Struct. Funct. 219, 1513–1526.Search in Google Scholar

Ueda, K., Fukushima, H., Masliah, E., Xia, Y., Iwai, A., Yoshimoto, M., Otero, D.A., Kondo, J., Ihara, Y., and Saitoh, T. (1993). Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 11282–11286.10.1073/pnas.90.23.11282Search in Google Scholar PubMed PubMed Central

Ulusoy, A., Musgrove, R.E., Rusconi, R., Klinkenberg, M., Helwig, M., Schneider, A., and Di Monte, D.A. (2015). Neuron-to-neuron α-synuclein propagation in vivo is independent of neuronal injury. Acta Neuropathol. Commun. 3, 13.10.1186/s40478-015-0198-ySearch in Google Scholar PubMed PubMed Central

Utton, M.A., Noble, W.J., Hill, J.E., Anderton, B.H., and Hanger, D.P. (2005). Molecular motors implicated in the axonal transport of tau and α-synuclein. J. Cell Sci. 118, 4645–4654.10.1242/jcs.02558Search in Google Scholar PubMed

Uversky, V.N., Li, J., and Fink, A.L. (2001). Evidence for a partially folded intermediate in α-synuclein fibril formation. J. Biol. Chem. 276, 10737–10744.10.1074/jbc.M010907200Search in Google Scholar PubMed

Valera, E., and Masliah, E. (2016). Combination therapies: the next logical Step for the treatment of synucleinopathies? Mov. Disord. 31, 225–234.10.1002/mds.26428Search in Google Scholar PubMed PubMed Central

Vogiatzi, T., Xilouri, M., Vekrellis, K., and Stefanis, L. (2008). Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem. 283, 23542–23556.10.1074/jbc.M801992200Search in Google Scholar PubMed PubMed Central

Wagner, J., Ryazanov, S., Leonov, A., Levin, J., Shi, S., Schmidt, F., Prix, C., Pan-Montojo, F., Bertsch, U., Mitteregger-Kretzschmar, G., et al. (2013). Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol. 125, 795–813.10.1007/s00401-013-1114-9Search in Google Scholar PubMed PubMed Central

Walker, D.G., Lue, L.F., Adler, C.H., Shill, H.A., Caviness, J.N., Sabbagh, M.N., Akiyama, H., Serrano, G.E., Sue, L.I., and Beach, T.G. (2013). Changes in properties of serine 129 phosphorylated α-synuclein with progression of Lewy-type histopathology in human brains. Exp. Neurol. 240, 190–204.10.1016/j.expneurol.2012.11.020Search in Google Scholar PubMed PubMed Central

Wang, W., Perovic, I., Chittuluru, J., Kaganovich, A., Nguyen, L.T., Liao, J., Auclair, J.R., Johnson, D., Landeru, A., Simorellis, A.K., et al. (2011). A soluble α-synuclein construct forms a dynamic tetramer. Proc. Natl. Acad. Sci. USA 108, 17797–17802.10.1073/pnas.1113260108Search in Google Scholar PubMed PubMed Central

Waxman, E.A. and Giasson, B.I. (2011). Induction of intracellular tau aggregation is promoted by α-synuclein seeds and provides novel insights into the hyperphosphorylation of tau. J. Neurosci. 31, 7604–7618.10.1523/JNEUROSCI.0297-11.2011Search in Google Scholar PubMed PubMed Central

Webb, J.L., Ravikumar, B., Atkins, J., Skepper, J.N., and Rubinsztein, D.C. (2003). Alpha-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013.10.1074/jbc.M300227200Search in Google Scholar PubMed

Weetman, J., Wong, M.B., Sharry, S., Rcom-H’cheo-Gauthier, A., Gai, W.P., Meedeniya, A., and Pountney, D.L. (2013). Increased SUMO-1 expression in the unilateral rotenone-lesioned mouse model of Parkinson’s disease. Neurosci. Lett. 544, 119–124.10.1016/j.neulet.2013.03.057Search in Google Scholar

Winner, B., Jappelli, R., Maji, S.K., Desplats, P.A., Boyer, L., Aigner, S., Hetzer, C., Loher, T., Vilar, M., Campioni, S., et al. (2011). In vivo demonstration that α-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. USA 108, 4194–4199.10.1073/pnas.1100976108Search in Google Scholar

Winslow, A.R., Chen, C.W., Corrochano, S., Acevedo-Arozena, A., Gordon, D.E., Peden, A.A., Lichtenberg, M., Menzies, F.M., Ravikumar, B., Imarisio, S., et al. (2010). Alpha-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J. Cell Biol. 190, 1023–1037.10.1083/jcb.201003122Search in Google Scholar

Wong, M.B., Goodwin, J., Norazit, A., Meedeniya, A.C., Richter-Landsberg, C., Gai, W.P., and Pountney, D.L. (2013). SUMO-1 is associated with a subset of lysosomes in glial protein aggregate diseases. Neurotox. Res. 23, 1–21.10.1007/s12640-012-9358-zSearch in Google Scholar

Wood, S.J., Wypych, J., Steavenson, S., Louis, J.C., Citron, M., and Biere, A.L. (1999). Alpha-Synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J. Biol. Chem. 274, 19509–19512.10.1074/jbc.274.28.19509Search in Google Scholar

Woods, W.S., Boettcher, J.M., Zhou, D.H., Kloepper, K.D., Hartman, K.L., Ladror, D.T., Qi, Z., Rienstra, C.M., and George, J.M. (2007). Conformation-specific binding of α-synuclein to novel protein partners detected by phage display and NMR spectroscopy. J. Biol. Chem. 282, 34555–34567.10.1074/jbc.M705283200Search in Google Scholar

Xilouri, M., Vogiatzi, T., Vekrellis, K., Park, D., and Stefanis, L. (2009). Abberant α-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS One 4, e5515.10.1371/journal.pone.0005515Search in Google Scholar

Xin, W., Emadi, S., Williams, S., Liu, Q., Schulz, P., He, P., Alam, N.B., Wu, J., and Sierks, M.R. (2015). Toxic oligomeric α-synuclein variants present in human parkinson’s disease brains are differentially generated in mammalian cell models. Biomolecules 5, 1634–1651.10.3390/biom5031634Search in Google Scholar

Yamin, G., Uversky, V.N., and Fink, A.L. (2003). Nitration inhibits fibrillation of human α-synuclein in vitro by formation of soluble oligomers. FEBS Lett. 542, 147–152.10.1016/S0014-5793(03)00367-3Search in Google Scholar

Yang, F., Yang, Y.P., Mao, C.J., Liu, L., Zheng, H.F., Hu, L.F., and Liu, C.F. (2013). Crosstalk between the proteasome system and autophagy in the clearance of α-synuclein. Acta Pharmacol. Sin. 34, 674–680.10.1038/aps.2013.29Search in Google Scholar PubMed PubMed Central

Yonetani, M., Nonaka, T., Masuda, M., Inukai, Y., Oikawa, T., Hisanaga, S., and Hasegawa, M. (2009). Conversion of wild-type α-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J. Biol. Chem. 284, 7940–7950.10.1074/jbc.M807482200Search in Google Scholar PubMed PubMed Central

Yu, W.H., Dorado, B., Figueroa, H.Y., Wang, L., Planel, E., Cookson, M.R., Clark, L.N., and Duff, K.E. (2009). Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric α-synuclein. Am. J. Pathol. 175, 736–747.10.2353/ajpath.2009.080928Search in Google Scholar PubMed PubMed Central

Yu, Z., Xu, X., Xiang, Z., Zhou, J., Zhang, Z., Hu, C., and He, C. (2010). Nitrated α-synuclein induces the loss of dopaminergic neurons in the substantia nigra of rats. PLoS One 5, e9956.10.1371/journal.pone.0009956Search in Google Scholar PubMed PubMed Central

Zakharov, S.D., Hulleman, J.D., Dutseva, E.A., Antonenko, Y.N., Rochet, J.C., and Cramer, W.A. (2007). Helical α-synuclein forms highly conductive ion channels. Biochemistry 46, 14369–14379.10.1021/bi701275pSearch in Google Scholar PubMed

Zampese, E., Fasolato, C., Kipanyula, M.J., Bortolozzi, M., Pozzan, T., and Pizzo, P. (2011). Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc. Natl. Acad. Sci. USA 108, 2777–2782.10.1073/pnas.1100735108Search in Google Scholar PubMed PubMed Central

Zarranz, J.J., Alegre, J., Gomez-Esteban, J.C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares, B., et al. (2004). The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173.10.1002/ana.10795Search in Google Scholar PubMed

Zhang, S., Xie, J., Xia, Y., Yu, S., Gu, Z., Feng, R., Luo, G., Wang, D., Wang, K., Jiang, M., et al. (2015). LK6/Mnk2a is a new kinase of α-synuclein phosphorylation mediating neurodegeneration. Sci. Rep. 5, 12564.10.1038/srep12564Search in Google Scholar PubMed PubMed Central

Zuchner, T. and Brundin, P. (2008). Mutant huntingtin can paradoxically protect neurons from death. Cell Death Differ. 15, 435–442.10.1038/sj.cdd.4402261Search in Google Scholar PubMed

Received: 2016-5-6
Accepted: 2016-8-1
Published Online: 2016-8-5
Published in Print: 2017-1-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2016-0201/html
Scroll to top button