Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 14, 2018

Metabolism and mechanisms of action of hyaluronan in human biology

  • Reenu Anne Joy , Narendranath Vikkath and Prasanth S. Ariyannur ORCID logo EMAIL logo

Abstract

Hyaluronan is a ubiquitous high-molecular weight polymer of repeated disaccharides of glucuronic acid and N-acetylglucosamine. It is a membrane-bound, viscous material extruded into the extracellular matrix after being synthesized in the cytoplasm by hyaluronan synthases complex and a regulated degradation by a group of enzymes called hyaluronidases. Hyaluronan has varied biological roles on many vital organismal functions, such as cellular and tissue development, migration and repair after injury or inflammation and cancer genesis. Hyaluronan in the tissue microenvironment is regulated by its concentration as well as the chain length of the polysaccharide. Many functions of hyaluronan are mediated by specific receptors at the cellular level, though its general physiochemical properties facilitate and coordinate many organ functions as well as in development. These fundamental characteristics of hyaluronan are reviewed, focusing on human biological context.


Corresponding author: Dr. Prasanth S. Ariyannur, Department of Biochemistry, School of Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, AIMS Ponekkara Post, Kochi 682041, India, Phone: +91-484-285-2250

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Balazs EA, Laurent TC, Jeanloz RW. Nomenclature of hyaluronic acid. Biochem J 1986;235:903.10.1042/bj2350903Search in Google Scholar

2. Weigel PH. The hyaluronan synthases. Chemistry and biology of hyaluronan. Amsterdam: Elsevier, 2004:553–67.10.1016/B978-008044382-9/50056-XSearch in Google Scholar

3. DeAngelis PL. Hyaluronan synthases: mechanistic studies and biotechnological applications. Hyaluronan. Amsterdam: Elsevier, 2002:227–36.10.1533/9781845693121.227Search in Google Scholar

4. Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 1997;242:27–33.10.1046/j.1365-2796.1997.00170.xSearch in Google Scholar

5. Stern R. Hyaluronan in cancer biology. 1st ed. In: Stern R, editor. San Diego, CA. USA: Academic Press, Elsevier Inc., 2009.Search in Google Scholar

6. Kujawa MJ, Carrino DA, Caplan AI. Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev Biol 1986;114:519–28.10.1016/0012-1606(86)90215-0Search in Google Scholar

7. Horton MR, McKee CM, Bao C, Liao F, Farber JM, Hodge-DuFour J, et al. Hyaluronan fragments synergize with interferon-gamma to induce the C-X-C chemokines mig and interferon-inducible protein-10 in mouse macrophages. J Biol Chem 1998;273:35088–94.10.1074/jbc.273.52.35088Search in Google Scholar PubMed

8. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, et al. Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002;195:99–111.10.1084/jem.20001858Search in Google Scholar PubMed PubMed Central

9. West DC, Hampson IN, Arnold F, Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Science 1985;228:1324–6.10.1126/science.2408340Search in Google Scholar PubMed

10. Itano N, Kimata K. Altered hyaluronan biosynthesis in cancer progression. Hyaluronan in cancer biology. Amsterdam: Elsevier, 2009:171–85.10.1016/B978-012374178-3.10010-9Search in Google Scholar

11. Liang J, Jiang D, Noble PW. Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 2016;97:186–203.10.1016/j.addr.2015.10.017Search in Google Scholar PubMed PubMed Central

12. D’Agostino A, Stellavato A, Corsuto L, Diana P, Filosa R, La Gatta A, et al. Is molecular size a discriminating factor in hyaluronan interaction with human cells? Carbohydr Polym 2017;157:21–30.10.1016/j.carbpol.2016.07.125Search in Google Scholar

13. Babasola O, Rees-Milton KJ, Bebe S, Wang J, Anastassiades TP. Chemically modified N-acylated hyaluronan fragments modulate proinflammatory cytokine production by stimulated human macrophages. J Biol Chem 2014;289:24779–91.10.1074/jbc.M113.515783Search in Google Scholar

14. Weigel PH, DeAngelis PL. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 2007;282:36777–81.10.1074/jbc.R700036200Search in Google Scholar

15. Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): a review. Vet Med-Czech 2008;53:397–411.10.17221/1930-VETMEDSearch in Google Scholar

16. Spicer AP, McDonald JA. Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family. J Biol Chem 1998;273:1923–32.10.1074/jbc.273.4.1923Search in Google Scholar

17. Spicer AP, Seldin MF, Olsen AS, Brown N, Wells DE, Doggett NA, et al. Chromosomal localization of the human and mouse hyaluronan synthase genes. Genomics 1997;41:493–7.10.1006/geno.1997.4696Search in Google Scholar

18. Rosa F, Sargent TD, Rebbert ML, Michaels GS, Jamrich M, Grunz H, et al. Accumulation and decay of DG42 gene products follow a gradient pattern during Xenopus embryogenesis. Dev Biol 1988;129:114–23.10.1016/0012-1606(88)90166-2Search in Google Scholar

19. Weigel PH. Functional characteristics and catalytic mechanisms of the bacterial hyaluronan synthases. IUBMB Life 2002;54:201–11.10.1080/15216540214931Search in Google Scholar PubMed

20. Campbell JA, Davies GJ, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 1997;326(Pt 3):929–39.10.1042/bj3260929uSearch in Google Scholar PubMed PubMed Central

21. Weigel PH. Hyaluronan synthase: the mechanism of initiation at the reducing end and a pendulum model for polysaccharide translocation to the cell exterior. Int J Cell Biol 2015;2015:367579.10.1155/2015/367579Search in Google Scholar PubMed PubMed Central

22. Schulz T, Schumacher U, Prehm P. Hyaluronan export by the ABC transporter MRP5 and its modulation by intracellular cGMP. J Biol Chem 2007;282:20999–1004.10.1074/jbc.M700915200Search in Google Scholar PubMed

23. Thomas NK, Brown TJ. ABC transporters do not contribute to extracellular translocation of hyaluronan in human breast cancer in vitro. Exp Cell Res 2010;316:1241–53.10.1016/j.yexcr.2010.01.004Search in Google Scholar PubMed

24. Hubbard C, McNamara JT, Azumaya C, Patel MS, Zimmer J. The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan. J Mol Biol 2012;418:21–31.10.1016/j.jmb.2012.01.053Search in Google Scholar PubMed

25. Heldin P, Karousou E, Skandalis SS. Growth factor regulation of hyaluronan deposition in malignancies. Hyaluronan in cancer biology: Elsevier, 2009:37–50.10.1016/B978-012374178-3.10003-1Search in Google Scholar

26. Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 1999;274:25085–92.10.1074/jbc.274.35.25085Search in Google Scholar PubMed

27. Monslow J, Sato N, Mack JA, Maytin EV. Wounding-induced synthesis of hyaluronic acid in organotypic epidermal cultures requires the release of heparin-binding EGF and activation of the EGFR. J Invest Dermatol 2009;129:2046–58.10.1038/jid.2009.9Search in Google Scholar PubMed PubMed Central

28. Makkonen KM, Pasonen-Seppanen S, Torronen K, Tammi MI, Carlberg C. Regulation of the hyaluronan synthase 2 gene by convergence in cyclic AMP response element-binding protein and retinoid acid receptor signaling. J Biol Chem 2009;284:18270–81.10.1074/jbc.M109.012492Search in Google Scholar PubMed PubMed Central

29. Saavalainen K, Pasonen-Seppanen S, Dunlop TW, Tammi R, Tammi MI, Carlberg C. The human hyaluronan synthase 2 gene is a primary retinoic acid and epidermal growth factor responding gene. J Biol Chem 2005;280:14636–44.10.1074/jbc.M500206200Search in Google Scholar PubMed

30. Tammi RH, Passi AG, Rilla K, Karousou E, Vigetti D, Makkonen K, et al. Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J 2011;278:1419–28.10.1111/j.1742-4658.2011.08070.xSearch in Google Scholar PubMed

31. Zhang W, Watson CE, Liu C, Williams KJ, Werth VP. Glucocorticoids induce a near-total suppression of hyaluronan synthase mRNA in dermal fibroblasts and in osteoblasts: a molecular mechanism contributing to organ atrophy. Biochem J 2000;349(Pt 1):91–7.10.1042/bj3490091Search in Google Scholar

32. Stuhlmeier KM, Pollaschek C. Differential effect of transforming growth factor beta (TGF-beta) on the genes encoding hyaluronan synthases and utilization of the p38 MAPK pathway in TGF-beta-induced hyaluronan synthase 1 activation. J Biol Chem 2004;279:8753–60.10.1074/jbc.M303945200Search in Google Scholar

33. Sugiyama Y, Shimada A, Sayo T, Sakai S, Inoue S. Putative hyaluronan synthase mRNA are expressed in mouse skin and TGF-beta upregulates their expression in cultured human skin cells. J Invest Dermatol 1998;110:116–21.10.1046/j.1523-1747.1998.00093.xSearch in Google Scholar

34. Recklies AD, White C, Melching L, Roughley PJ. Differential regulation and expression of hyaluronan synthases in human articular chondrocytes, synovial cells and osteosarcoma cells. Biochem J 2001;354(Pt 1):17–24.10.1042/bj3540017Search in Google Scholar

35. Vigetti D, Genasetti A, Karousou E, Viola M, Clerici M, Bartolini B, et al. Modulation of hyaluronan synthase activity in cellular membrane fractions. J Biol Chem 2009;284:30684–94.10.1074/jbc.M109.040386Search in Google Scholar

36. Bourguignon LY, Gilad E, Peyrollier K. Heregulin-mediated ErbB2-ERK signaling activates hyaluronan synthases leading to CD44-dependent ovarian tumor cell growth and migration. J Biol Chem 2007;282:19426–41.10.1074/jbc.M610054200Search in Google Scholar

37. Vigetti D, Clerici M, Deleonibus S, Karousou E, Viola M, Moretto P, et al. Hyaluronan synthesis is inhibited by adenosine monophosphate-activated protein kinase through the regulation of HAS2 activity in human aortic smooth muscle cells. J Biol Chem 2011;286:7917–24.10.1074/jbc.M110.193656Search in Google Scholar

38. Yamane T, Kobayashi-Hattori K, Oishi Y. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-alpha-dependent pathway in human dermal fibroblasts. Biochem Biophys Res Commun 2011;415:235–8.10.1016/j.bbrc.2011.09.151Search in Google Scholar

39. Vigetti D, Karousou E, Viola M, Deleonibus S, De Luca G, Passi A. Hyaluronan: biosynthesis and signaling. Biochim Biophys Acta 2014;1840:2452–9.10.1016/j.bbagen.2014.02.001Search in Google Scholar

40. Nardini M, Ori M, Vigetti D, Gornati R, Nardi I, Perris R. Regulated gene expression of hyaluronan synthases during Xenopus laevis development. Gene Expr Patterns 2004;4:303–8.10.1016/j.modgep.2003.10.006Search in Google Scholar

41. Vigetti D, Viola M, Gornati R, Ori M, Nardi I, Passi A, et al. Molecular cloning, genomic organization and developmental expression of the Xenopus laevis hyaluronan synthase 3. Matrix Biol 2003;22:511–7.10.1016/S0945-053X(03)00082-9Search in Google Scholar

42. Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A, Jr., et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 2000;106:349–60.10.1172/JCI10272Search in Google Scholar

43. Arranz AM, Perkins KL, Irie F, Lewis DP, Hrabe J, Xiao F, et al. Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J Neurosci 2014;34:6164–76.10.1523/JNEUROSCI.3458-13.2014Search in Google Scholar

44. Mack JA, Feldman RJ, Itano N, Kimata K, Lauer M, Hascall VC, et al. Enhanced inflammation and accelerated wound closure following tetraphorbol ester application or full-thickness wounding in mice lacking hyaluronan synthases Has1 and Has3. J Invest Dermatol 2012;132:198–207.10.1038/jid.2011.248Search in Google Scholar

45. Tien JY, Spicer AP. Three vertebrate hyaluronan synthases are expressed during mouse development in distinct spatial and temporal patterns. Dev Dyn 2005;233:130–41.10.1002/dvdy.20328Search in Google Scholar

46. Hamerman D, Todaro GJ, Green H. The production of hyaluronate by spontaneously established cell lines and viral transformed lines of fibroblastic origin. Biochim Biophys Acta 1965;101:343–51.10.1016/0926-6534(65)90013-8Search in Google Scholar

47. Hopwood JJ, Dorfman A. Glycosaminoglycan synthesis by cultured human skin fibroblasts after transformation with simian virus 40. J Biol Chem 1977;252:4777–85.10.1016/S0021-9258(17)40123-2Search in Google Scholar

48. Jacobson A, Brinck J, Briskin MJ, Spicer AP, Heldin P. Expression of human hyaluronan synthases in response to external stimuli. Biochem J 2000;348(Pt 1):29–35.10.1042/bj3480029Search in Google Scholar

49. Li Y, Li L, Brown TJ, Heldin P. Silencing of hyaluronan synthase 2 suppresses the malignant phenotype of invasive breast cancer cells. Int J Cancer 2007;120:2557–67.10.1002/ijc.22550Search in Google Scholar PubMed

50. Itano N, Sawai T, Atsumi F, Miyaishi O, Taniguchi S, Kannagi R, et al. Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J Biol Chem 2004;279:18679–87.10.1074/jbc.M313178200Search in Google Scholar PubMed

51. Meyer K, Rapport MM. Hyaluronidases. Adv Enzymol Relat Subj Biochem 1952;13:199–236.10.1002/9780470122587.ch6Search in Google Scholar PubMed

52. Wang W, Wang J, Li F. Hyaluronidase and chondroitinase. In: Atassi M, editor. Protein reviews advances in experimental medicine and biology, vol. 925. Singapore: Springer, 2016:75–87.10.1007/5584_2016_54Search in Google Scholar

53. Gmachl M, Sagan S, Ketter S, Kreil G. The human sperm protein PH-20 has hyaluronidase activity. FEBS Lett 1993;336:545–8.10.1016/0014-5793(93)80873-SSearch in Google Scholar

54. Csoka AB, Frost GI, Heng HH, Scherer SW, Mohapatra G, Stern R. The hyaluronidase gene HYAL1 maps to chromosome 3p21.2-p21.3 in human and 9F1-F2 in mouse, a conserved candidate tumor suppressor locus. Genomics 1998;48:63–70.10.1006/geno.1997.5158Search in Google Scholar

55. Csoka AB, Frost GI, Stern R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol 2001;20:499–508.10.1016/S0945-053X(01)00172-XSearch in Google Scholar

56. Miller KA, Shao M, Martin-DeLeon PA. Hyalp1 in murine sperm function: evidence for unique and overlapping functions with other reproductive hyaluronidases. J Androl 2007;28:67–76.10.2164/jandrol.106.000356Search in Google Scholar

57. Comtesse N, Maldener E, Meese E. Identification of a nuclear variant of MGEA5, a cytoplasmic hyaluronidase and a beta-N-acetylglucosaminidase. Biochem Biophys Res Commun 2001;283:634–40.10.1006/bbrc.2001.4815Search in Google Scholar

58. Lepperdinger G, Mullegger J, Kreil G. Hyal2 – less active, but more versatile? Matrix Biol 2001;20:509–14.10.1016/S0945-053X(01)00170-6Search in Google Scholar

59. Hofinger ES, Hoechstetter J, Oettl M, Bernhardt G, Buschauer A. Isoenzyme-specific differences in the degradation of hyaluronic acid by mammalian-type hyaluronidases. Glycoconj J 2008;25:101–9.10.1007/s10719-007-9058-8Search in Google Scholar PubMed

60. Natowicz MR, Short MP, Wang Y, Dickersin GR, Gebhardt MC, Rosenthal DI, et al. Clinical and biochemical manifestations of hyaluronidase deficiency. N Engl J Med 1996;335:1029–33.10.1056/NEJM199610033351405Search in Google Scholar PubMed

61. Lepperdinger G, Strobl B, Kreil G. HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. J Biol Chem 1998;273:22466–70.10.1074/jbc.273.35.22466Search in Google Scholar PubMed

62. Rai SK, Duh FM, Vigdorovich V, Danilkovitch-Miagkova A, Lerman MI, Miller AD. Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation. Proc Natl Acad Sci USA 2001;98:4443–8.10.1073/pnas.071572898Search in Google Scholar PubMed PubMed Central

63. Stern R, Jedrzejas MJ. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev 2006;106:818–39.10.1021/cr050247kSearch in Google Scholar PubMed PubMed Central

64. Chowdhury B, Hemming R, Hombach-Klonisch S, Flamion B, Triggs-Raine B. Murine hyaluronidase 2 deficiency results in extracellular hyaluronan accumulation and severe cardiopulmonary dysfunction. J Biol Chem 2013;288:520–8.10.1074/jbc.M112.393629Search in Google Scholar PubMed PubMed Central

65. Jadin L, Wu X, Ding H, Frost GI, Onclinx C, Triggs-Raine B, et al. Skeletal and hematological anomalies in HYAL2-deficient mice: a second type of mucopolysaccharidosis IX? FASEB J 2008;22:4316–26.10.1096/fj.08-111997Search in Google Scholar PubMed

66. Csoka AB, Scherer SW, Stern R. Expression analysis of six paralogous human hyaluronidase genes clustered on chromosomes 3p21 and 7q31. Genomics 1999;60:356–61.10.1006/geno.1999.5876Search in Google Scholar PubMed

67. Atmuri V, Martin DC, Hemming R, Gutsol A, Byers S, Sahebjam S, et al. Hyaluronidase 3 (HYAL3) knockout mice do not display evidence of hyaluronan accumulation. Matrix Biol 2008;27:653–60.10.1016/j.matbio.2008.07.006Search in Google Scholar PubMed

68. Cherr GN, Meyers SA, Yudin AI, VandeVoort CA, Myles DG, Primakoff P, et al. The PH-20 protein in cynomolgus macaque spermatozoa: identification of two different forms exhibiting hyaluronidase activity. Dev Biol 1996;175:142–53.10.1006/dbio.1996.0102Search in Google Scholar PubMed

69. Kimura M, Kim E, Kang W, Yamashita M, Saigo M, Yamazaki T, et al. Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization. Biol Reprod 2009;81:939–47.10.1095/biolreprod.109.078816Search in Google Scholar PubMed

70. Deng X, He Y, Martin-Deleon PA. Mouse Spam1 (PH-20): evidence for its expression in the epididymis and for a new category of spermatogenic-expressed genes. J Androl 2000;21:822–32.Search in Google Scholar

71. Beech DJ, Madan AK, Deng N. Expression of PH-20 in normal and neoplastic breast tissue. J Surg Res 2002;103:203–7.10.1006/jsre.2002.6351Search in Google Scholar PubMed

72. Zhang H, Martin-DeLeon PA. Mouse Spam1 (PH-20) is a multifunctional protein: evidence for its expression in the female reproductive tract. Biol Reprod 2003;69:446–54.10.1095/biolreprod.102.013854Search in Google Scholar PubMed

73. Madan AK, Yu K, Dhurandhar N, Cullinane C, Pang Y, Beech DJ. Association of hyaluronidase and breast adenocarcinoma invasiveness. Oncol Rep 1999;6:607–9.10.3892/or.6.3.607Search in Google Scholar

74. Kaneiwa T, Mizumoto S, Sugahara K, Yamada S. Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence. Glycobiology 2010;20:300–9.10.1093/glycob/cwp174Search in Google Scholar

75. Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem 2004;279:26991–7007.10.1074/jbc.M311838200Search in Google Scholar

76. Stern R. Hyaluronidases in cancer biology. In: Stern R, editor. Hyaluronan in cancer biology. 1st ed. San Diego, CA, USA: Academic Press, 2008:207–20.10.1016/B978-012374178-3.10012-2Search in Google Scholar

77. Chao KL, Muthukumar L, Herzberg O. Structure of human hyaluronidase-1, a hyaluronan hydrolyzing enzyme involved in tumor growth and angiogenesis. Biochemistry 2007;46:6911–20.10.1021/bi700382gSearch in Google Scholar

78. Jedrzejas MJ, Stern R. Structures of vertebrate hyaluronidases and their unique enzymatic mechanism of hydrolysis. Proteins 2005;61:227–38.10.1002/prot.20592Search in Google Scholar

79. Markovic-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Muller U, Schirmer T. Crystal structure of hyaluronidase, a major allergen of bee venom. Structure 2000;8:1025–35.10.1016/S0969-2126(00)00511-6Search in Google Scholar

80. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990;61:1303–13.10.1016/0092-8674(90)90694-ASearch in Google Scholar

81. Teriete P, Banerji S, Noble M, Blundell CD, Wright AJ, Pickford AR, et al. Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44. Mol Cell 2004;13:483–96.10.1016/S1097-2765(04)00080-2Search in Google Scholar

82. Banerji S, Wright AJ, Noble M, Mahoney DJ, Campbell ID, Day AJ, et al. Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat Struct Mol Biol 2007;14:234–9.10.1038/nsmb1201Search in Google Scholar PubMed

83. Vuorio J, Vattulainen I, Martinez-Seara H. Atomistic fingerprint of hyaluronan-CD44 binding. PLoS Comput Biol 2017;13:e1005663.10.1371/journal.pcbi.1005663Search in Google Scholar

84. Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function, and association with the malignant process. Adv Cancer Res 1997;71:241–319.10.1016/S0065-230X(08)60101-3Search in Google Scholar

85. Noble PW. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol 2002;21:25–9.10.1016/S0945-053X(01)00184-6Search in Google Scholar

86. Gao F, Yang CX, Mo W, Liu YW, He YQ. Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin Invest Med 2008;31:E106–16.10.25011/cim.v31i3.3467Search in Google Scholar PubMed

87. Wang YZ, Cao ML, Liu YW, He YQ, Yang CX, Gao F. CD44 mediates oligosaccharides of hyaluronan-induced proliferation, tube formation and signal transduction in endothelial cells. Exp Biol Med (Maywood) 2011;236:84–90.10.1258/ebm.2010.010206Search in Google Scholar PubMed

88. Termeer CC, Hennies J, Voith U, Ahrens T, Weiss JM, Prehm P, et al. Oligosaccharides of hyaluronan are potent activators of dendritic cells. J Immunol 2000;165:1863–70.10.4049/jimmunol.165.4.1863Search in Google Scholar PubMed

89. Yang C, Cao M, Liu H, He Y, Xu J, Du Y, et al. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering. J Biol Chem 2012;287:43094–107.10.1074/jbc.M112.349209Search in Google Scholar PubMed PubMed Central

90. Slomiany MG, Dai L, Bomar PA, Knackstedt TJ, Kranc DA, Tolliver L, et al. Abrogating drug resistance in malignant peripheral nerve sheath tumors by disrupting hyaluronan-CD44 interactions with small hyaluronan oligosaccharides. Cancer Res 2009;69:4992–8.10.1158/0008-5472.CAN-09-0143Search in Google Scholar PubMed PubMed Central

91. Khaldoyanidi S, Moll J, Karakhanova S, Herrlich P, Ponta H. Hyaluronate-enhanced hematopoiesis: two different receptors trigger the release of interleukin-1beta and interleukin-6 from bone marrow macrophages. Blood 1999;94:940–9.10.1182/blood.V94.3.940.415k27_940_949Search in Google Scholar

92. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005;11:1173–9.10.1038/nm1315Search in Google Scholar PubMed

93. Liang J, Jiang D, Griffith J, Yu S, Fan J, Zhao X, et al. CD44 is a negative regulator of acute pulmonary inflammation and lipopolysaccharide-TLR signaling in mouse macrophages. J Immunol 2007;178:2469–75.10.4049/jimmunol.178.4.2469Search in Google Scholar

94. Bourguignon LY, Gilad E, Brightman A, Diedrich F, Singleton P. Hyaluronan-CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem 2006;281:14026–40.10.1074/jbc.M507734200Search in Google Scholar

95. Bourguignon LY, Singleton PA, Zhu H, Zhou B. Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J Biol Chem 2002;277:39703–12.10.1074/jbc.M204320200Search in Google Scholar

96. Sherman L, Sleeman J, Herrlich P, Ponta H. Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol 1994;6:726–33.10.1016/0955-0674(94)90100-7Search in Google Scholar

97. Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol 2015;6:201. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25999946.10.3389/fimmu.2015.00201Search in Google Scholar PubMed PubMed Central

98. Hardwick C. Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility [published erratum appears in J Cell Biol 1992 Aug;118(3):753]. J Cell Biol 1992;117:1343–50.10.1083/jcb.117.6.1343Search in Google Scholar PubMed PubMed Central

99. Toole BP. Hyaluronan in morphogenesis. Semin Cell Dev Biol 2001;12:79–87.10.1006/scdb.2000.0244Search in Google Scholar PubMed

100. Turley EA, Noble PW, Bourguignon LY. Signaling properties of hyaluronan receptors. J Biol Chem 2002;277:4589–92.10.1074/jbc.R100038200Search in Google Scholar PubMed

101. Toole BP. Hyaluronan in morphogenesis. J Intern Med 1997;242:35–40.10.1046/j.1365-2796.1997.00171.xSearch in Google Scholar PubMed

102. Sugahara KN. Hyaluronan fragments: informational polymers commandeered by cancers. In: Stern R, editor. Hyaluronan in cancer biology. San Diego, CA, USA: Academic Press, 2009:221–54.10.1016/B978-012374178-3.10013-4Search in Google Scholar

103. Nagy JI, Hossain MZ, Lynn BD, Curpen GE, Yang S, Turley EA. Increased connexin-43 and gap junctional communication correlate with altered phenotypic characteristics of cells overexpressing the receptor for hyaluronic acid-mediated motility. Cell Growth Differ 1996;7:745–51.Search in Google Scholar

104. Gares SL, Pilarski LM. Beta1-integrins control spontaneous adhesion and motility of human progenitor thymocytes and regulate differentiation-dependent expression of the receptor for hyaluronan-mediated motility. Scand J Immunol 1999;50:626–34.10.1046/j.1365-3083.1999.00638.xSearch in Google Scholar

105. Hall CL, Yang B, Yang X, Zhang S, Turley M, Samuel S, et al. Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras transformation. Cell 1995;82:19–28.10.1016/0092-8674(95)90048-9Search in Google Scholar

106. Hall CL, Wang C, Lange LA, Turley EA. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J Cell Biol 1994;126:575–88.10.1083/jcb.126.2.575Search in Google Scholar PubMed PubMed Central

107. Kouvidi K, Berdiaki A, Nikitovic D, Katonis P, Afratis N, Hascall VC, et al. Role of receptor for hyaluronic acid-mediated motility (RHAMM) in low molecular weight hyaluronan (LMWHA)-mediated fibrosarcoma cell adhesion. J Biol Chem 2011;286:38509–20.10.1074/jbc.M111.275875Search in Google Scholar PubMed PubMed Central

108. Savani RC, Cao G, Pooler PM, Zaman A, Zhou Z, DeLisser HM. Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J Biol Chem 2001;276:36770–8.10.1074/jbc.M102273200Search in Google Scholar PubMed

109. Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 1999;144:789–801.10.1083/jcb.144.4.789Search in Google Scholar PubMed PubMed Central

110. Prevo R, Banerji S, Ferguson DJ, Clasper S, Jackson DG. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 2001;276:19420–30.10.1074/jbc.M011004200Search in Google Scholar PubMed

111. Jang JY, Koh YJ, Lee SH, Lee J, Kim KH, Kim D, et al. Conditional ablation of LYVE-1+ cells unveils defensive roles of lymphatic vessels in intestine and lymph nodes. Blood 2013;122:2151–61.10.1182/blood-2013-01-478941Search in Google Scholar PubMed

112. Huang SS, Liu IH, Smith T, Shah MR, Johnson FE, Huang JS. CRSBP-1/LYVE-l-null mice exhibit identifiable morphological and functional alterations of lymphatic capillary vessels. FEBS Lett 2006;580:6259–68.10.1016/j.febslet.2006.10.028Search in Google Scholar PubMed PubMed Central

113. Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res 2010;339:237–46.10.1007/s00441-009-0821-ySearch in Google Scholar PubMed

114. Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB. The interaction of versican with its binding partners. Cell Res 2005;15:483–94.10.1038/sj.cr.7290318Search in Google Scholar

115. Wight TN. Arterial remodeling in vascular disease: a key role for hyaluronan and versican. Front Biosci 2008;13:4933–7.10.2741/3052Search in Google Scholar

116. Roughley PJ. The structure and function of cartilage proteoglycans. Eur Cell Mater 2006;12:92–101.10.22203/eCM.v012a11Search in Google Scholar

117. Jaworski DM, Kelly GM, Hockfield S. Intracranial injury acutely induces the expression of the secreted isoform of the CNS-specific hyaluronan-binding protein BEHAB/brevican. Exp Neurol 1999;157:327–37.10.1006/exnr.1999.7062Search in Google Scholar

118. Deb TB, Datta K. Molecular cloning of human fibroblast hyaluronic acid-binding protein confirms its identity with P-32, a protein co-purified with splicing factor SF2. Hyaluronic acid-binding protein as P-32 protein, co-purified with splicing factor SF2. J Biol Chem 1996;271:2206–12.10.1074/jbc.271.4.2206Search in Google Scholar

119. Ghosh I, Chattopadhaya R, Kumar V, Chakravarty BN, Datta K. Hyaluronan binding protein-1: a modulator of sperm-oocyte interaction. Soc Reprod Fertil Suppl 2007;63:539–43.Search in Google Scholar

120. Zhou B, Oka JA, Singh A, Weigel PH. Purification and subunit characterization of the rat liver endocytic hyaluronan receptor. J Biol Chem 1999;274:33831–4.10.1074/jbc.274.48.33831Search in Google Scholar

121. Harris EN, Weigel JA, Weigel PH. The human hyaluronan receptor for endocytosis (HARE/Stabilin-2) is a systemic clearance receptor for heparin. J Biol Chem 2008;283:17341–50.10.1074/jbc.M710360200Search in Google Scholar

122. Hirose Y, Saijou E, Sugano Y, Takeshita F, Nishimura S, Nonaka H, et al. Inhibition of Stabilin-2 elevates circulating hyaluronic acid levels and prevents tumor metastasis. Proc Natl Acad Sci USA 2012;109:4263–8.10.1073/pnas.1117560109Search in Google Scholar

123. Huang L, Yoneda M, Kimata K. A serum-derived hyaluronan-associated protein (SHAP) is the heavy chain of the inter alpha-trypsin inhibitor. J Biol Chem 1993;268:26725–30.10.1016/S0021-9258(19)74373-7Search in Google Scholar

124. Lee TH, Wisniewski HG, Vilcek J. A novel secretory tumor necrosis factor-inducible protein (TSG-6) is a member of the family of hyaluronate binding proteins, closely related to the adhesion receptor CD44. J Cell Biol 1992;116:545–57.10.1083/jcb.116.2.545Search in Google Scholar PubMed PubMed Central

125. Lauer ME, Cheng G, Swaidani S, Aronica MA, Weigel PH, Hascall VC. Tumor necrosis factor-stimulated gene-6 (TSG-6) amplifies hyaluronan synthesis by airway smooth muscle cells. J Biol Chem 2013;288:423–31.10.1074/jbc.M112.389882Search in Google Scholar PubMed PubMed Central

126. Yoshida H, Nagaoka A, Kusaka-Kikushima A, Tobiishi M, Kawabata K, Sayo T, et al. KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc Natl Acad Sci USA 2013;110:5612–7.10.1073/pnas.1215432110Search in Google Scholar PubMed PubMed Central

127. Evensen NA, Kuscu C, Nguyen HL, Zarrabi K, Dufour A, Kadam P, et al. Unraveling the role of KIAA1199, a novel endoplasmic reticulum protein, in cancer cell migration. J Natl Cancer Inst 2013;105:1402–16.10.1093/jnci/djt224Search in Google Scholar PubMed PubMed Central

128. Shostak K, Zhang X, Hubert P, Goktuna SI, Jiang Z, Klevernic I, et al. NF-kappaB-induced KIAA1199 promotes survival through EGFR signalling. Nat Commun 2014;5:5232.10.1038/ncomms6232Search in Google Scholar PubMed PubMed Central

129. Brecht M, Mayer U, Schlosser E, Prehm P. Increased hyaluronate synthesis is required for fibroblast detachment and mitosis. Biochem J 1986;239:445–50.10.1042/bj2390445Search in Google Scholar PubMed PubMed Central

130. Turley EA, Bowman P, Kytryk MA. Effects of hyaluronate and hyaluronate binding proteins on cell motile and contact behaviour. J Cell Sci 1985;78:133–45.10.1242/jcs.78.1.133Search in Google Scholar PubMed

131. Heldin P, Pertoft H. Synthesis and assembly of the hyaluronan-containing coats around normal human mesothelial cells. Exp Cell Res 1993;208:422–9.10.1006/excr.1993.1264Search in Google Scholar PubMed

132. Knudson CB, Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J 1993;7:1233–41.10.1096/fasebj.7.13.7691670Search in Google Scholar

133. Ozzello L, Lasfargues EY, Murray MR. Growth-promoting activity of acid mucopolysaccharides on a strain of human mammary carcinoma cells. Cancer Res 1960;20:600–4.Search in Google Scholar

134. Camenisch TD, Schroeder JA, Bradley J, Klewer SE, McDonald JA. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med 2002;8:850–5.10.1038/nm742Search in Google Scholar PubMed

135. Li Y, Toole BP, Dealy CN, Kosher RA. Hyaluronan in limb morphogenesis. Dev Biol 2007;305:411–20.10.1016/j.ydbio.2007.02.023Search in Google Scholar PubMed PubMed Central

136. Matsumoto K, Li Y, Jakuba C, Sugiyama Y, Sayo T, Okuno M, et al. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb. Development 2009;136:2825–35.10.1242/dev.038505Search in Google Scholar

137. Liu J, Li Q, Kuehn MR, Litingtung Y, Vokes SA, Chiang C. Sonic hedgehog signaling directly targets hyaluronic acid synthase 2, an essential regulator of phalangeal joint patterning. Dev Biol 2013;375:160–71.10.1016/j.ydbio.2012.12.018Search in Google Scholar

138. Riehl TE, Ee X, Stenson WF. Hyaluronic acid regulates normal intestinal and colonic growth in mice. Am J Physiol Gastrointest Liver Physiol 2012;303:G377–88.10.1152/ajpgi.00034.2012Search in Google Scholar

139. Goncharova V, Serobyan N, Iizuka S, Schraufstatter I, de Ridder A, Povaliy T, et al. Hyaluronan expressed by the hematopoietic microenvironment is required for bone marrow hematopoiesis. J Biol Chem 2012;287:25419–33.10.1074/jbc.M112.376699Search in Google Scholar

140. Gao F, Liu Y, He Y, Yang C, Wang Y, Shi X, et al. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol 2010;29:107–16.10.1016/j.matbio.2009.11.002Search in Google Scholar

141. Meran S, Thomas DW, Stephens P, Enoch S, Martin J, Steadman R, et al. Hyaluronan facilitates transforming growth factor-beta1-mediated fibroblast proliferation. J Biol Chem 2008;283:6530–45.10.1074/jbc.M704819200Search in Google Scholar

142. Kozlova I, Ruusala A, Voytyuk O, Skandalis SS, Heldin P. IQGAP1 regulates hyaluronan-mediated fibroblast motility and proliferation. Cell Signal 2012;24:1856–62.10.1016/j.cellsig.2012.05.013Search in Google Scholar

143. Kavalkovich KW, Boynton RE, Murphy JM, Barry F. Chondrogenic differentiation of human mesenchymal stem cells within an alginate layer culture system. In Vitro Cell Dev-An 2002;38:457–66.10.1290/1071-2690(2002)038<0457:CDOHMS>2.0.CO;2Search in Google Scholar

144. Jenkins RH, Thomas GJ, Williams JD, Steadman R. Myofibroblastic differentiation leads to hyaluronan accumulation through reduced hyaluronan turnover. J Biol Chem 2004;279:41453–60.10.1074/jbc.M401678200Search in Google Scholar

145. Takahashi Y, Li L, Kamiryo M, Asteriou T, Moustakas A, Yamashita H, et al. Hyaluronan fragments induce endothelial cell differentiation in a CD44- and CXCL1/GRO1-dependent manner. J Biol Chem 2005;280:24195–204.10.1074/jbc.M411913200Search in Google Scholar

146. Iocono JA, Bisignani GJ, Krummel TM, Ehrlich HP. Inhibiting the differentiation of myocardiocytes by hyaluronic acid. J Surg Res 1998;76:111–6.10.1006/jsre.1998.5305Search in Google Scholar

147. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131–42.10.1038/nrm1835Search in Google Scholar

148. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009;19:156–72.10.1038/cr.2009.5Search in Google Scholar

149. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014;15:178–96.10.1038/nrm3758Search in Google Scholar

150. Markwald RR, Fitzharris TP, Bank H, Bernanke DH. Structural analyses on the matrical organization of glycosaminoglycans in developing endocardial cushions. Dev Biol 1978;62:292–316.10.1016/0012-1606(78)90218-XSearch in Google Scholar

151. Morris-Wiman J, Brinkley L. Rapid changes in the extracellular matrix accompany in vitro palatal shelf remodelling. Anat Embryol (Berl) 1993;188:75–85.10.1007/BF00191453Search in Google Scholar PubMed

152. Zoltan-Jones A, Huang L, Ghatak S, Toole BP. Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J Biol Chem 2003;278:45801–10.10.1074/jbc.M308168200Search in Google Scholar PubMed

153. Zhang Y, Thant AA, Machida K, Ichigotani Y, Naito Y, Hiraiwa Y, et al. Hyaluronan-CD44s signaling regulates matrix metalloproteinase-2 secretion in a human lung carcinoma cell line QG90. Cancer Res 2002;62:3962–5.Search in Google Scholar

154. Ghatak S, Misra S, Toole BP. Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. J Biol Chem 2005;280:8875–83.10.1074/jbc.M410882200Search in Google Scholar PubMed

155. DeSouza LV, Matta A, Karim Z, Mukherjee J, Wang XS, Krakovska O, et al. Role of moesin in hyaluronan induced cell migration in glioblastoma multiforme. Mol Cancer 2013;12:74.10.1186/1476-4598-12-74Search in Google Scholar PubMed PubMed Central

156. Itano N, Sawai T, Miyaishi O, Kimata K. Relationship between hyaluronan production and metastatic potential of mouse mammary carcinoma cells. Cancer Res 1999;59:2499–504.Search in Google Scholar

157. Chanmee T, Ontong P, Itano N. Hyaluronan: a modulator of the tumor microenvironment. Cancer Lett 2016;375:20–30.10.1016/j.canlet.2016.02.031Search in Google Scholar PubMed

Received: 2017-10-27
Accepted: 2018-1-8
Published Online: 2018-2-14
Published in Print: 2018-3-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.6.2024 from https://www.degruyter.com/document/doi/10.1515/dmpt-2017-0031/html
Scroll to top button