Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 24, 2015

Evaluation of the expressions pattern of miR-10b, 21, 200c, 373 and 520c to find the correlation between epithelial-to-mesenchymal transition and melanoma stem cell potential in isolated cancer stem cells

  • Motahareh Rajabi Fomeshi , Marzieh Ebrahimi EMAIL logo , Seyed Javad Mowla , Pardis Khosravani , Javad Firouzi and Hamid Khayatzadeh

Abstract

Small non-coding RNAs named microRNAs (miRNAs) modulate some functions and signaling pathways in skin epithelial cells and melanocytes. They also function as oncogenes or tumor suppressors in malignancies and tumor metastasis. We investigated the expression patterns of miRNAs, including miR-10b, 21, 200c, 373 and 520c, which regulate epithelial-to-mesenchymal transition (EMT) and metastasis in isolated cancer stem cells (CSCs) and non- CSCs. Six melanoma cell lines were tested for the expressions of stem cell markers. Melanoma stem cells were enriched via fluorescence-activated cell sorting (FACS) using the CD133 cell surface marker or spheroid culture. They were then characterized based on colony and sphere formation, and the expressions of stemness and EMT regulator genes and their invasion potential were assessed using real-time qRT-PCR and invasion assay. Our results indicate that cells enriched via sphere formation expressed all the stemness-related genes and had an enhanced number of colonies, spheres and invaded cells compared to cells enriched using the CD133 cell surface marker. Moreover, miRNAs controlling metastasis increased in the melanospheres. This may be related to the involvement of CSCs in the metastatic process. However, this must be further confirmed through the application of knockdown experiments. The results show that sphere formation is a useful method for enriching melanoma stem cells. Melanospheres were found to upregulate miR-10b, 21, 200c, 373 and 520c, so we suggest that they may control both metastasis and stemness potential.

References

1. Schatton, T. and Frank, M.H. Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res. 21 (2008) 39-55. DOI: 10.1111/j.1755-148X.2007.00427.x.10.1111/j.1755-148X.2007.00427.xSearch in Google Scholar PubMed PubMed Central

2. Welte, Y., Adjaye, J., Lehrach, H.R. and Regenbrecht, C.R. Cancer stem cells in solid tumors: elusive or illusive? Cell. Commun. Signal. 8 (2010) 6-16. DOI: 10.1186/1478-811X-8-6.10.1186/1478-811X-8-6Search in Google Scholar PubMed PubMed Central

3. Al Dhaybi, R., Sartelet, H., Powell, J. and Kokta, V. Expression of CD133+ cancer stem cells in childhood malignant melanoma and its correlation with metastasis. Mod. Pathol. 23 (2010) 376-380. DOI: 10.1038/ modpathol.2009.163.Search in Google Scholar

4. Mizrak, D., Brittan, M. and Alison, M. CD133: molecule of the moment. J. Pathol. 214 (2008) 3-9.Search in Google Scholar

5. Monzani, E., Facchetti, F., Galmozzi, E., Corsini, E., Benetti, A., Cavazzin, C., Gritti, A., Piccinini, A., Porro, D., Santinami, M., Invernici, G., Parati, E., Alessandri, G. and La Porta, C.A. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur. J. Cancer 43 (2007) 935-946.Search in Google Scholar

6. Hernandez, D., Miquel-Serra, L., Docampo, M. J., Marco-Ramell, A. and Bassols, A. Role of versican V0/V1 and CD44 in the regulation of human melanoma cell behavior. Int. J. Mol. Med. 27 (2011) 269-275. DOI: 10.3892/ijmm.2010.577.10.3892/ijmm.2010.577Search in Google Scholar PubMed

7. Fang, D., Nguyen, T.K., Leishear, K., Finko, R., Kulp, A.N., Hotz, S., Van Belle, P.A., Xu, X., Elder, D.E. and Herlyn, M. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65 (2005) 9328-9337.Search in Google Scholar

8. Chandrasekaran, S. and DeLouise, L.A. Enriching and characterizing cancer stem cell sub-populations in the WM115 melanoma cell line. Biomaterials 32 (2011) 9316-9327. DOI: 10.1016/j.biomaterials.2011.08.056.10.1016/j.biomaterials.2011.08.056Search in Google Scholar PubMed

9. Boonyaratanakornkit, J.B., Yue, L., Strachan, L.R., Scalapino, K.J., LeBoit, P.E., Lu, Y., Leong, S.P., Smith, J.E. and Ghadially, R. Selection of tumorigenic melanoma cells using ALDH. J. Invest. Dermatol. 130 (2010) 2799-2808. DOI: 10.1038/jid.2010.237.10.1038/jid.2010.237Search in Google Scholar PubMed PubMed Central

10. Dou, J., Wen, P., Hu, W., Li, Y., Wu, Y., Liu, C., Zhao, F., Hu, K., Wang, J., Jiang, C., He, X. and Gu, N. Identifying tumor stem-like cells in mouse melanoma cell lines by analyzing the characteristics of side population cells. Cell. Biol. Int. 33 (2009) 807-815. DOI: 10.1016/j.cellbi.2009.05.003.10.1016/j.cellbi.2009.05.003Search in Google Scholar PubMed

11. Quintana, E., Shackleton, M., Foster, H.R., Fullen, D.R., Sabel, M.S., Johnson, T.M. and Morrison, S.J. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18 (2010) 510-523. DOI: 10.1016/j.ccr.2010.10.012.10.1016/j.ccr.2010.10.012Search in Google Scholar PubMed PubMed Central

12. Quintana, E., Shackleton, M., Sabel, M.S., Fullen, D.R., Johnson, T.M. and Morrison, S.J. Efficient tumour formation by single human melanoma cells. Nature 456 (2008) 593-598. DOI: 10.1038/nature07567.10.1038/nature07567Search in Google Scholar PubMed PubMed Central

13. Girouard, S.D. and Murphy, G.F. Melanoma stem cells: not rare, but well done. Lab. Invest. 91 (2011) 647-664. DOI: 10.1038/labinvest.2011.50.10.1038/labinvest.2011.50Search in Google Scholar PubMed

14. Iwatsuki, M., Mimori, K., Yokobori, T., Ishi, H., Beppu, T., Nakamori, S., Baba, H. and Mori, M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 101 (2010) 293-299. DOI: 10.1111/j.1349-7006.2009.01419.x.10.1111/j.1349-7006.2009.01419.xSearch in Google Scholar PubMed

15. Tomaskovic-Crook, E., Thompson, E.W. and Thiery, J.P. Epithelial to mesenchymal transition and breast cancer. Breast Cancer Res. 11 (2009) 213. DOI: 10.1186/bcr2416.10.1186/bcr2416Search in Google Scholar PubMed PubMed Central

16. Larue, L. and Bellacosa, A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 24 (2005) 7443-7454.Search in Google Scholar

17. Micalizzi, D.S., Farabaugh, S.M. and Ford, H.L. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J. Mammary Gland Biol. Neoplasia 15 (2010) 117-134. DOI: 10.1007/s10911-010-9178-9.10.1007/s10911-010-9178-9Search in Google Scholar PubMed PubMed Central

18. Lamy, P., Andersen, C.L., Dyrskjot, L., Torring, N., Orntoft, T. and Wiuf, C. Are microRNAs located in genomic regions associated with cancer? Br. J. Cancer 95 (2006) 1415-1418.Search in Google Scholar

19. Martello, G., Rosato, A., Ferrari, F., Manfrin, A., Cordenonsi, M., Dupont, S., Enzo, E., Guzzardo, V., Rondina, M., Spruce, T., Parenti, A.R., Daidone, M.G., Bicciato, S. and Piccolo, S. A microRNA targeting dicer for metastasis control. Cell 141 (2010) 1195-1207. DOI: 10.1016/j.cell.2010.05.017.10.1016/j.cell.2010.05.017Search in Google Scholar PubMed

20. Wang, Z., Li, Y., Ahmad, A., Azmi, A.S., Kong, D., Banerjee, S. and Sarkar, F.H. Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. Drug Resist. Updat. 13 (2010) 109-118. DOI: 10.1016/j.drup.2010.07.001.10.1016/j.drup.2010.07.001Search in Google Scholar PubMed PubMed Central

21. Suh, M.R., Lee, Y., Kim, J.Y., Kim, S.K., Moon, S.H., Lee, J.Y., Cha, K.Y., Chung, H.M., Yoon, H.S., Moon, S.Y., Kim, V.N. and Kim, K.S. Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270 (2004) 488-498.Search in Google Scholar

22. Le, X.F., Merchant, O., Bast, R.C. and Calin, G.A. The roles of microRNAs in the cancer invasion-metastasis cascade. Cancer Microenviron. 3 (2010) 137-147. DOI: 10.1007/s12307-010-0037-4.10.1007/s12307-010-0037-4Search in Google Scholar PubMed PubMed Central

23. Wright, J.A., Richer, J.K.and Goodall, G.J. MicroRNAs and EMT in mammary cells and breast cancer. J. Mammary Gland Biol. Neoplasia 15 (2010) 213-223. DOI: 10.1007/s10911-010-9183-z.10.1007/s10911-010-9183-zSearch in Google Scholar PubMed

24. Zimmerer, R.M., Korn, P., Demougin, P., Kampmann, A., Kokemüller, H., Eckardt, A.M., Gellrich, N.C. and Tavassol, F. Functional features of cancer stem cells in melanoma cell lines. Cancer Cell Int. 13 (2013) 13-78. DOI: 10.1186/1475-2867-13-78. 10.1186/1475-2867-13-78Search in Google Scholar PubMed PubMed Central

25. El-Khattouti, A., Selimovic, D., Haïkel, Y., Megahed, M., Gomez, C.R. and Hassan, M. Identification and analysis of CD133(+) melanoma stem-like cells conferring resistance to taxol: An insight into the mechanisms of their resistance and response. Cancer Lett. 343 (2014) 123-133. DOI: 10.1016/j.canlet. 2013.09.024.Search in Google Scholar

26. Magnoni, C., Giudice, S., Pellacani, G., Bertazzoni, G., Longo, C., Veratti, E., Morini, D., Benassi, L., Vaschieri, C., Azzoni, P., De Pol, A., Seidenari, S., Tomasi, A., Pollio, A. and Ponti, G. Stem cell properties in cell cultures from different stage of melanoma progression. Appl. Immunohistochem. Mol. Morphol. 22 (2014) 171-181. DOI: 10.1097/PAI.0b013e31828ff701.10.1097/PAI.0b013e31828ff701Search in Google Scholar PubMed

27. Lorico, A., Mercapide, J. and Rappa, G. Prominin-1 (CD133) and metastatic melanoma: current knowledge and therapeuticperspectives. Adv. Exp. Med. Biol. 777 (2013) 197-211. DOI: 10.1007/978-1-4614-5894-4_13.10.1007/978-1-4614-5894-4_13Search in Google Scholar PubMed

28. Welte, Y., Davies, C., Schäfer, R. and Regenbrecht, C.R. Patient derived cell culture and isolation of CD133+ putative cancer stem cells from melanoma. J. Vis. Exp. 13 (2013) e50200. DOI: 10.3791/50200.10.3791/50200Search in Google Scholar PubMed PubMed Central

29. Ramgolam, K., Lauriol, J., Lalou, C., Lauden, L., Michel, L., de la Grange, P., Khatib, A.M., Aoudjit, F., Charron, D., Alcaide-Loridan, C. and Al-Daccak, R. Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function. PLoS One 6 (2011) e18784. DOI: 10.1371/journal.pone.0018784.10.1371/journal.pone.0018784Search in Google Scholar PubMed PubMed Central

30. Sharma, B.K., Manglik, V., O’Connell, M., Weeraratna, A., McCarron, E.C., Broussard, J.N., Divito, K.A., Simbulan-Rosenthal, C.M., Rosenthal, D.S. and Zapas, J.L. Clonal dominance of CD133+ subset population as risk factor in tumor progression and disease recurrence of human cutaneous melanoma. Int. J. Oncol. 41 (2012) 1570-1576. DOI: 10.3892/ ijo.2012.1590.Search in Google Scholar

31. González-Herrero, I., Romero-Camarero, I., Cañueto, J., CardeñosoÁlvarez, E., Fernández-López, E., Pérez-Losada, J., Sánchez-García, I. and Román-Curto C. CD133+ cell content correlates with tumour growth in melanomas from skin with chronic sun-induced damage. Br. J. Dermatol. 169 (2013) 830-837. DOI: 10.1111/bjd.12428.10.1111/bjd.12428Search in Google Scholar PubMed

32. Mo, J., Sun, B., Zhao, X., Gu, Q., Dong, X., Liu, Z., Ma, Y., Zhao, N., Liu, Y., Chi, J. and Sun, R. The in vitro spheroid culture induces a more highly differentiated but tumorigenic population from melanoma cell lines. Melanoma Res. 23 (2013) 254-263. DOI: 10.1097/CMR. 0b013e32836314e3Search in Google Scholar

33. Mueller, D.W., Rehli, M. and Bosserhoff, A.K. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J. Invest. Dermatol. 129 (2009) 1740-1751. DOI: 10.1038/jid.2008.452.10.1038/jid.2008.452Search in Google Scholar PubMed

34. Stark, M.S., Tyagi, S., Nancarrow, D.J., Boyle, G.M., Cook, A.L., Whiteman, D.C., Parsons, P.G., Schmidt, C., Sturm, R.A. and Hayward, N.K. Characterization of the melanoma mirnaome by deep sequencing. PLoS One 5 (2010) p. e9685. DOI: 10.1371/journal.pone.0009685.10.1371/journal.pone.0009685Search in Google Scholar PubMed PubMed Central

35. Jukic, D.M., Rao, U.N., Kelly, L., Skaf, J.S., Drogowski, L.M., Kirkwood, J.M. and Panelli, M.C. Microrna profiling analysis of differences between the melanoma of young adults and older adults. J. Transl. Med. 8 (2010) 27-49. DOI: 10.1186/1479-5876-8-2710.1186/1479-5876-8-27Search in Google Scholar PubMed PubMed Central

36. Tang, J., Ahmad, A. and Sarkar, F.H. The Role of microRNAs in breast cancer migration, invasion and metastasis. Int. J. Mol. Sci. 13 (2012) 13414-13437. DOI: 10.3390/ijms131013414.10.3390/ijms131013414Search in Google Scholar PubMed PubMed Central

37. Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S. and Mo, Y.Y. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18 (2008) 350-359. DOI: 10.1038/cr.2008.24.10.1038/cr.2008.24Search in Google Scholar PubMed

38. Jurmeister, S., Baumann, M., Balwierz, A., Keklikoglou, I., Ward, A., Uhlmann, S., Zhang, J.D., Wiemann, S. and Sahin, Ö. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actinregulatory proteins FHOD1 and PPM1F. Mol. Cell. Biol. 32 (2012) 633-651. DOI: 10.1128/MCB.06212-11.10.1128/MCB.06212-11Search in Google Scholar PubMed PubMed Central

39. Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., Egan, D. A., Li, A., Huang, G., Klein-Szanto, A.J., Gimotty, P.A., Katsaros, D., Coukos, G., Zhang, L., Pure, E. and Agami, R. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell. Biol. 10 (2008) 202-210. DOI: 10.1038/ncb1681.10.1038/ncb1681Search in Google Scholar PubMed

40. Ma, L., Teruya-Feldstein J. and Weinberg, R.A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449 (2007) 682-688.Search in Google Scholar

41. Jin, H., Yu, Y., Chrisler, W.B., Xiong, Y., Hu, D. and Lei, C. Delivery of microRNA-10b with polylysine nanoparticles for inhibition of breast cancer cell wound healing. Breast Cancer (Auckl) 6 (2012) 9-19. DOI: 10.4137/BCBCR.S8513.10.4137/BCBCR.S8513Search in Google Scholar PubMed PubMed Central

42. Guessous, F., Alvarado-Velez, M., Marcinkiewicz, L., Zhang, Y., Kim, J., Heister, S., Kefas, B., Godlewski, J., Schiff, D., Purow, B. and Abounader, R. Oncogenic effects of miR-10b in glioblastoma stem cells. J. Neurooncol. 112 (2013) 153-163. DOI: 10.1007/s11060-013-1047-0.10.1007/s11060-013-1047-0Search in Google Scholar PubMed PubMed Central

43. Gabriely, G., Wurdinger, T., Kesari, S., Esau, C.C., Burchard, J., Linsley, P.S. and Krichevsky, A.M. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol. Cell Biol. 28 (2008) 5369-5380. DOI: 10.1128/MCB.00479-08.10.1128/MCB.00479-08Search in Google Scholar PubMed PubMed Central

44. Han, M., Liu, M., Wang, Y., Chen, X., Xu, J., Sun, Y., Zhao, L., Qu, H., Fan, Y. and Wu, C. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One 7 (2012) e39520. DOI: 10.1371/journal.pone. 0039520. Search in Google Scholar

45. Yang, K., Handorean, A.M. and Iczkowski, K.A. MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. Int. J. Clin. Exp. Pathol. 2 (2009) 361-369.Search in Google Scholar

46. Cochrane, D.R., Howe, E.N., Spoelstra, N.S. and Richer, J.K. Loss of miR-200c: A marker of aggressiveness and chemoresistance in female reproductive cancers. J. Oncol. 2010 (2010) 821717-821729. DOI: 10.1155/2010/821717.10.1155/2010/821717Search in Google Scholar PubMed PubMed Central

47. Elson-Schwab, I., Lorentzen, A. and Marshall, C.J. MicroRNA-200 family members differentially regulate morphological plasticity and mode of melanoma cell invasion. PLoS One 5 (2010) e13176.10.1371/journal.pone.0013176Search in Google Scholar PubMed PubMed Central

48. Xu, Y., Brenn, T., Brown, E.R., Doherty, V. and Melton, D.W. Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br. J. Cancer 106 (2012) 553-561. DOI: 10.1038/ bjc.2011.568. Search in Google Scholar

Received: 2015-5-8
Accepted: 2015-5-8
Published Online: 2015-7-24
Published in Print: 2015-9-1

© University of Wrocław, Poland

Downloaded on 2.6.2024 from https://www.degruyter.com/document/doi/10.1515/cmble-2015-0025/html
Scroll to top button