Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 8, 2015

Rapid detection of Mmalton α1-antitrypsin deficiency allele by real-time PCR and melting curves in whole blood, serum and dried blood spot samples

  • Irene Belmonte , Luciana Montoto , Marc Miravitlles , Miriam Barrecheguren , Cristina Esquinas , Esther Rodríguez , Marina Giralt and Francisco Rodríguez-Frías EMAIL logo

Abstract

Background: α1-Antitrypsin deficiency (AATD) is an autosomal codominant disorder associated with a high risk of developing lung and liver disease. The most common deficient alleles are known as Z and S. However, another deficient variant, called Mmalton, which causes a deficiency similar to variant Z, is considered to be the second cause of severe AATD in Spain. Nevertheless, the Mmalton allele is not recognizable by usual diagnostic techniques and therefore, its real prevalence is underestimated. We describe a rapid real-time PCR and melting curves assay designed for the detection of Mmalton AATD.

Methods: We tested the applicability of this new technique for the identification of the Mmalton allele in AATD screening using whole blood, dried blood spot (DBS) and serum samples. Mmalton heterozygote and homozygote samples and samples without this allele were included in the study.

Results: This new assay is able to detect homozygous and heterozygous genotypes in the same reaction and in a single step, giving matching results with those obtained by SERPINA1 gene sequencing.

Conclusions: This technology is optimal for working with small amounts of DNA, such as in DBS and even with residual DNA present in serum samples, allowing improvement in routine algorithms of AATD diagnosis or large-scale screening. This method will be useful for obtaining more in depth knowledge of the real incidence of the Mmalton variant.


Corresponding author: Francisco Rodríguez-Frías, PhD, Liver Pathology Unit, Hospital Universitari Vall d’Hebron, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain, Phone: +34 932 746100, Fax: +34 934 893895, E-mail: ; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; and CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Nacional de Salud Carlos III, Madrid, Spain

Acknowledgments

This study was supported in part by a grant from Fundación Catalana de Pneumología (FUCAP 2014) and through funding from Grifols to the Catalan Center for Research in Alpha-1 antitrypsin deficiency of the Vall d’Hebron Research Institute in the Vall d’Hebron University Hospital, Barcelona, Spain.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Miravitlles M. Alpha-1-antitrypsin and other proteinase inhibitors. Curr Opin Pharmacol 2012;12:309–14.10.1016/j.coph.2012.02.004Search in Google Scholar

2. Janciauskiene S, Ferrarotti I, Laenger F, Jonigk D, Luisetti M. Clinical utility gene card for: α-1-antitrypsin deficiency. Eur J Hum Genet 2011;19:1–3.10.1038/ejhg.2010.246Search in Google Scholar

3. Knappstein S, Ide T, Schmidt MA, Heusipp G. Alpha 1-antitrypsin binds to and interferes with functionality of EspB from atypical and typical enteropathogenic Escherichia coli strains. Infect Immun 2004;72:4344–50.10.1128/IAI.72.8.4344-4350.2004Search in Google Scholar

4. Lee JH, Brantly M. Molecular mechanisms of alpha1-antitrypsin null alleles. Respir Med 2000;94(Suppl C):S7–11.10.1053/rmed.2000.0851Search in Google Scholar

5. Janciauskiene SM, Bals R, Koczulla R, Vogelmeier C, Köhnlein T, Welte T. The discovery of α1-antitrypsin and its role in health and disease. Respir Med 2011;105:1129–39.10.1016/j.rmed.2011.02.002Search in Google Scholar

6. Lomas DA. Twenty years of polymers: a personal perspective on alpha-1 antitrypsin deficiency. COPD 2013;10(Suppl 1):17–25.10.3109/15412555.2013.764401Search in Google Scholar

7. Blanco I, de Serres FJ, Fernandez-Bustillo E, Lara B, Miravitlles M. Estimated numbers and prevalence of PI*S and PI*Z alleles of alpha1-antitrypsin deficiency in European countries. Eur Respir J 2006;27:77–84.10.1183/09031936.06.00062305Search in Google Scholar

8. Carroll TP, Connor CA, Reeves EP, Mcelvaney NG. Alpha-1 antitrypsin deficiency – a genetic risk factor for COPD. In: Kian-Chung O, editor. Chronic obstructive pulmonary disease – current concepts and practice. Rijeka, Croatia: Intech 2012: 179–98.Search in Google Scholar

9. Rodriguez-Frias F, Miravitlles M, Vidal R, Camos S, Jardi R. Rare alpha-1-antitrypsin variants: are they really so rare? Ther Adv Respir Dis 2012;6:79–85.10.1177/1753465811434320Search in Google Scholar

10. Ferrarotti I, Baccheschi J, Zorzetto M, Tinelli C, Corda L, Balbi B, et al. Prevalence and phenotype of subjects carrying rare variants in the Italian registry for alpha1-antitrypsin deficiency. J Med Genet 2005;42:282–7.10.1136/jmg.2004.023903Search in Google Scholar

11. Curiel DT, Holmes MD, Okayama H, Brantly ML, Vogelmeier C, Travis WD, et al. Molecular basis of the liver and lung disease associated with the alpha 1-antitrypsin deficiency allele Mmalton. J Biol Chem 1989;264:13938–45.10.1016/S0021-9258(18)80090-4Search in Google Scholar

12. Molina J, Flor X, García R, Timiraos R, Tirado-Conde G, Miravitlles M. The IDDEA project: a strategy for the detection of alpha-1 antitrypsin deficiency in COPD patients in the primary care setting. Ther Adv Respir Dis 2011;5:237–43.10.1177/1753465811404919Search in Google Scholar PubMed

13. Miravitlles M, Herr C, Ferrarotti I, Jardi R, Rodriguez-Frias F, Luisetti M, et al. Laboratory testing of individuals with severe alpha1-antitrypsin deficiency in three European centres. Eur Respir J 2010;35:960–8.10.1183/09031936.00069709Search in Google Scholar PubMed

14. Fraizer GC, Harrold TR, Hofker MH, Cox DW. In-frame single codon deletion in the Mmalton deficiency allele of alpha 1-antitrypsin. Am J Hum Genet 1989;44:894–902.Search in Google Scholar

15. Lodewyckx L, Vandevyver C, Vandervorst C, Van Steenbergen W, Raus J, Michiels L. Mutation detection in the alpha-1 antitrypsin gene (PI) using denaturing gradient gel electrophoresis. Hum Mutat 2001;18:243–50.10.1002/humu.1180Search in Google Scholar PubMed

16. Cox DW, Billingsley GD. Rare deficiency types of alpha 1-antitrypsin: electrophoretic variation and DNA haplotypes. Am J Hum Genet 1989;44:844–54.Search in Google Scholar

17. Rodriguez F, Jardí R, Costa X, Cotrina M, Galimany R, Vidal R, et al. Rapid screening for alpha1-antitrypsin deficiency in patients with chronic obstructive pulmonary disease using dried blood specimens. Am J Respir Crit Care Med 2002;166:814–7.10.1164/rccm.2203025Search in Google Scholar PubMed

18. Rodríguez-Frías F, Vila-Auli B, Homs-Riba M, Vidal-Pla R, Calpe-Calpe JL, Jardi-Margalef R. Diagnosis of alpha-1 antitrypsin deficiency: limitations of rapid diagnostic laboratory tests. Arch Bronconeumol 2011;47:415–7.10.1016/j.arbres.2011.02.005Search in Google Scholar PubMed

19. Orru G, Faa G, Montaldo C, Pusceddu G, Piras V, Coni P. Rapid PCR real-time genotyping of M-Malton a 1-antitrypsin deficiency alleles by molecular beacons. Diagn Mol Pathol 2005;14:237–42.10.1097/01.pas.0000178221.44474.b3Search in Google Scholar PubMed

20. Lay MJ, Wittwer CT. Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin Chem 1997;43:2262–7.10.1093/clinchem/43.12.2262Search in Google Scholar

21. Costa X, Jardi R, Rodriguez F, Miravitlles M, Cotrina M, Gonzalez C, et al. Simple method for alpha1-antitrypsin deficiency screening by use of dried blood spot specimens. Eur Respir J 2000;15:1111–5.10.1034/j.1399-3003.2000.01521.xSearch in Google Scholar PubMed

22. Poon KS, Ho SS, Tang JW, Chua CW, Chiu L, Koay ES. Targeting both rs12979860 and rs8099917 polymorphisms with a single-tube high-resolution melting assay for IL28B genotyping. J Clin Microbiol 2012;50:3353–5.10.1128/JCM.01718-12Search in Google Scholar PubMed PubMed Central

23. De la Roza C, Rodríguez-Frías F, Lara B, Vidal R, Jardí R, Miravitlles M. Results of a case-detection programme for alpha1-antitrypsin deficiency in COPD patients. Eur Respir J 2005;26:616–22.10.1183/09031936.05.00007305Search in Google Scholar PubMed

24. Snyder MR, Katzmann JA, Butz ML, Wiley C, Yang P, Dawson DB, et al. Diagnosis of alpha-1-antitrypsin deficiency: an algorithm of quantification, genotyping, and phenotyping. Clin Chem 2006;52:2236–42.10.1373/clinchem.2006.072991Search in Google Scholar PubMed

Received: 2015-3-27
Accepted: 2015-6-9
Published Online: 2015-7-8
Published in Print: 2016-2-1

©2016 by De Gruyter

Downloaded on 5.6.2024 from https://www.degruyter.com/document/doi/10.1515/cclm-2015-0297/html
Scroll to top button