Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 19, 2014

Serum reference intervals of homoarginine, ADMA, and SDMA in the Study of Health in Pomerania

  • Dorothee Atzler EMAIL logo , Edzard Schwedhelm , Matthias Nauck , Till Ittermann , Rainer H. Böger and Nele Friedrich

Abstract

Background: Low circulating homoarginine as well as high levels of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) have been associated with impaired cardiovascular (CV) outcome and mortality in patients at risk and in the general population. The present study aimed to formulate reference intervals for serum homoarginine, ADMA, and SDMA to improve risk stratification between healthy individuals and individuals at risk.

Methods: We determined age- and sex-specific reference intervals for homoarginine, ADMA, and SDMA in a subgroup of 1359 healthy participants (no diabetes mellitus, CV disease, increased blood pressure, elevated blood lipids, chronic kidney disease stadium III or IV, or a body mass index >30) of the Study of Health in Pomerania (SHIP) using quantile regression analyses. Homoarginine, ADMA, and SDMA serum concentrations were measured using liquid chromatography-tandem mass spectrometry.

Results: Median age of the investigated cohort was 36 (25th; 75th percentile 28; 47) years, with 62% women. Median serum concentrations of homoarginine, ADMA, and SDMA were 2.63 (2.08; 3.32) μmol/L, 0.64 (0.57; 0.73) μmol/L, and 0.43 (0.37; 0.49) μmol/L, respectively. Serum levels of homoarginine, ADMA, and SDMA showed material age- and sex-related differences (p<0.05 for all). Overall reference ranges were 1.41–5.00 and 1.20–5.53 μmol/L (2.5th; 97.5th percentile; for men and women, respectively) for homoarginine, 0.41–0.95 and 0.43–0.96 μmol/L for ADMA, and 0.30–0.67 and 0.27–0.63 μmol/L for SDMA.

Conclusions: We formulated for the first time homoarginine, ADMA, and SDMA reference intervals in serum. These reference intervals might be useful for individual CV risk stratification.


Corresponding author: Dorothee Atzler, PhD, Department of Cardiovascular Medicine, Wellcome Trust Center for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK, E-mail:

Acknowledgments

We gratefully thank Mariola Kastner and Anna Steenpaß for their excellent technical assistance. D.A. acknowledges the support of the European Union under a Marie Curie Intra-European Fellowship for Career Development. The contributions to data collection made by field workers, study physicians, ultrasound technicians, interviewers, and computer assistants are gratefully acknowledged.

Conflict of interest statement

Authors’ conflict of interest disclosure: The authors stated that there are no conflicts of interest regarding the publication of this article.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

References

1. Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 2012;10:4–18.10.2174/157016112798829760Search in Google Scholar PubMed

2. Bretscher LE, Li H, Poulos TL, Griffith OW. Structural characterization and kinetics of nitric-oxide synthase inhibition by novel N5-(iminoalkyl)- and N5-(iminoalkenyl)-ornithines. J Biol Chem 2003;278:46789–97.10.1074/jbc.M306787200Search in Google Scholar PubMed

3. Atzler D, Rosenberg M, Anderssohn M, Choe CU, Lutz M, Zugck C, et al. Homoarginine – an independent marker of mortality in heart failure. Int J Cardiol 2013;168:4907–9.10.1016/j.ijcard.2013.07.099Search in Google Scholar PubMed

4. Choe CU, Atzler D, Wild PS, Carter AM, Böger RH, Ojeda F, et al. Homoarginine levels are regulated by L-arginine:glycine amidinotransferase and affect stroke outcome: results from human and murine studies. Circulation 2013;128:1451–61.10.1161/CIRCULATIONAHA.112.000580Search in Google Scholar PubMed

5. Drechsler C, Meinitzer A, Pilz S, Krane V, Tomaschitz A, Ritz E, et al. Homoarginine, heart failure, and sudden cardiac death in haemodialysis patients. Eur J Heart Fail 2011;13:852–9.10.1093/eurjhf/hfr056Search in Google Scholar PubMed PubMed Central

6. März W, Meinitzer A, Drechsler C, Pilz S, Krane V, Kleber ME, et al. Homoarginine, cardiovascular risk, and mortality. Circulation 2010;122:967–75.10.1161/CIRCULATIONAHA.109.908988Search in Google Scholar PubMed

7. Pilz S, Meinitzer A, Tomaschitz A, Drechsler C, Ritz E, Krane V, et al. Low homoarginine concentration is a novel risk factor for heart disease. Heart 2011;97:1222–7.10.1136/hrt.2010.220731Search in Google Scholar PubMed

8. Pilz S, Teerlink T, Scheffer PG, Meinitzer A, Rutters F, Tomaschitz A, et al. Homoarginine and mortality in an older population: the Hoorn study. Eur J Clin Invest 2014;44:200–8.10.1111/eci.12208Search in Google Scholar PubMed

9. Tomaschitz A, Meinitzer A, Pilz S, Rus-Machan J, Genser B, Drechsler C, et al. Homoarginine, kidney function and cardiovascular mortality risk. Nephrol Dial Transplant 2014;29:663–71.10.1093/ndt/gft512Search in Google Scholar PubMed

10. Pope AJ, Karuppiah K, Cardounel AJ. Role of the PRMT-DDAH-ADMA axis in the regulation of endothelial nitric oxide production. Pharmacol Res 2009;60:461–5.10.1016/j.phrs.2009.07.016Search in Google Scholar PubMed PubMed Central

11. Vallance P, Leone A, Calver A, Collier J, Moncada S. Endogenous dimethylarginine as an inhibitor of nitric oxide synthesis. J Cardiovasc Pharmacol 1992;20(Suppl 12):S60–2.10.1097/00005344-199204002-00018Search in Google Scholar PubMed

12. Closs EI, Basha FZ, Habermeier A, Förstermann U. Interference of L-arginine analogues with L-arginine transport mediated by the y+ carrier hCAT-2B. Nitric Oxide 1997;1:65–73.10.1006/niox.1996.0106Search in Google Scholar PubMed

13. Strobel J, Mieth M, Endress B, Auge D, König J, Fromm MF, et al. Interaction of the cardiovascular risk marker asymmetric dimethylarginine (ADMA) with the human cationic amino acid transporter 1 (CAT1). J Mol Cell Cardiol 2012;53:392–400.10.1016/j.yjmcc.2012.06.002Search in Google Scholar PubMed

14. Böger RH, Maas R, Schulze F, Schwedhelm E. Asymmetric dimethylarginine (ADMA) as a prospective marker of cardiovascular disease and mortality – an update on patient populations with a wide range of cardiovascular risk. Pharmacol Res 2009;60:481–7.10.1016/j.phrs.2009.07.001Search in Google Scholar PubMed

15. Böger RH, Sullivan LM, Schwedhelm E, Wang TJ, Maas R, Benjamin EJ, et al. Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation 2009;119:1592–600.10.1161/CIRCULATIONAHA.108.838268Search in Google Scholar PubMed PubMed Central

16. Gore MO, Lüneburg N, Schwedhelm E, Ayers CR, Anderssohn M, Khera A, et al. Symmetrical dimethylarginine predicts mortality in the general population: observations from the Dallas heart study. Arterioscler Thromb Vasc Biol 2013;33:2682–8.10.1161/ATVBAHA.113.301219Search in Google Scholar PubMed

17. Maas R, Quitzau K, Schwedhelm E, Spieker L, Rafflenbeul W, Steenpass A, et al. Asymmetrical dimethylarginine (ADMA) and coronary endothelial function in patients with coronary artery disease and mild hypercholesterolemia. Atherosclerosis 2007;191:211–9.10.1016/j.atherosclerosis.2006.03.024Search in Google Scholar PubMed

18. Meinitzer A, Kielstein JT, Pilz S, Drechsler C, Ritz E, Boehm BO, et al. Symmetrical and asymmetrical dimethylarginine as predictors for mortality in patients referred for coronary angiography: the Ludwigshafen Risk and Cardiovascular Health study. Clin Chem 2011;57:112–21.10.1373/clinchem.2010.150854Search in Google Scholar PubMed

19. Schwedhelm E, Maas R, Tan-Andresen J, Schulze F, Riederer U, Böger RH. High-throughput liquid chromatographic-tandem mass spectrometric determination of arginine and dimethylated arginine derivatives in human and mouse plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2007;851:211–9.10.1016/j.jchromb.2006.11.052Search in Google Scholar PubMed

20. El-Khoury JM, Bunch DR, Reineks E, Jackson R, Steinle R, Wang S. A simple and fast liquid chromatography-tandem mass spectrometry method for measurement of underivatized L-arginine, symmetric dimethylarginine, and asymmetric dimethylarginine and establishment of the reference ranges. Anal Bioanal Chem 2012;402:771–9.10.1007/s00216-011-5462-9Search in Google Scholar PubMed

21. Pecchini P, Malberti F, Mieth M, Quinn R, Tripepi G, Mallamaci F, et al. Measuring asymmetric dimethylarginine (ADMA) in CKD: a comparison between enzyme-linked immunosorbent assay and liquid chromatography-electrospray tandem mass spectrometry. J Nephrol 2012;25:1016–22.10.5301/jn.5000085Search in Google Scholar PubMed

22. Atzler D, Mieth M, Maas R, Böger RH, Schwedhelm E. Stable isotope dilution assay for liquid chromatography-tandem mass spectrometric determination of L-homoarginine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2011;879:2294–8.10.1016/j.jchromb.2011.06.016Search in Google Scholar PubMed

23. Tsikas D, Schubert B, Gutzki FM, Sandmann J, Frölich JC. Quantitative determination of circulating and urinary asymmetric dimethylarginine (ADMA) in humans by gas chromatography-tandem mass spectrometry as methyl ester tri(N-pentafluoropropionyl) derivative. J Chromatogr B Analyt Technol Biomed Life Sci 2003;798:87–99.10.1016/j.jchromb.2003.09.001Search in Google Scholar PubMed

24. Di Gangi IM, Chiandetti L, Gucciardi A, Moret V, Naturale M, Giordano G. Simultaneous quantitative determination of N(G),N(G)-dimethyl-L-arginine or asymmetric dimethylarginine and related pathway’s metabolites in biological fluids by ultrahigh-performance liquid chromatography/electrospray ionization-tandem mass spectrometry. Anal Chim Acta 2010;677:140–8.10.1016/j.aca.2010.08.011Search in Google Scholar PubMed

25. Schulze F, Wesemann R, Schwedhelm E, Sydow K, Albsmeier J, Cooke JP, et al. Determination of asymmetric dimethylarginine (ADMA) using a novel ELISA assay. Clin Chem Lab Med 2004;42:1377–83.10.1515/CCLM.2004.257Search in Google Scholar PubMed

26. Schwedhelm E. Quantification of ADMA: analytical approaches. Vasc Med 2005;10(Suppl 1):S89–95.10.1177/1358836X0501000113Search in Google Scholar PubMed

27. Schwedhelm E, Xanthakis V, Maas R, Sullivan LM, Atzler D, Lüneburg N, et al. Plasma symmetric dimethylarginine reference limits from the Framingham offspring cohort. Clin Chem Lab Med 2011;49:1907–10.10.1515/cclm.2011.679Search in Google Scholar PubMed PubMed Central

28. Schwedhelm E, Xanthakis V, Maas R, Sullivan LM, Schulze F, Riederer U, et al. Asymmetric dimethylarginine reference intervals determined with liquid chromatography-tandem mass spectrometry: results from the Framingham offspring cohort. Clin Chem 2009;55:1539–45.10.1373/clinchem.2009.124263Search in Google Scholar PubMed PubMed Central

29. John U, Greiner B, Hensel E, Ludemann J, Piek M, Sauer S, et al. Study of Health In Pomerania (SHIP): a health examination survey in an east German region: objectives and design. Soz Praventivmed 2001;46:186–94.10.1007/BF01324255Search in Google Scholar PubMed

30. Völzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, Friedrich N, et al. Cohort profile: the Study of Health in Pomerania. Int J Epidemiol 2011;40:294–307.10.1093/ije/dyp394Search in Google Scholar PubMed

31. Keil U, Stieber J, Doring A, Chambless L, Hartel U, Filipiak B, et al. The cardiovascular risk factor profile in the study area Augsburg. Results from the first MONICA survey 1984/85. Acta Med Scand Suppl 1988;728:119–28.Search in Google Scholar

32. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999;130:461–70.10.7326/0003-4819-130-6-199903160-00002Search in Google Scholar PubMed

33. Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 2003;139:137–47.10.7326/0003-4819-139-2-200307150-00013Search in Google Scholar PubMed

34. Koenker R. Quantile regression. Cambridge: Cambridge University Press, 2005.10.1017/CBO9780511754098Search in Google Scholar

35. Stone CJ, Koo, C. Additive spline in statistics. Proceedings of the Statistical Computing Section of the American Statistical Association. Washington, DC: American Statistical Association, 1985:45–8.Search in Google Scholar

36. Schulze F, Carter AM, Schwedhelm E, Ajjan R, Maas R, von Holten RA, et al. Symmetric dimethylarginine predicts all-cause mortality following ischemic stroke. Atherosclerosis 2010;208:518–23.10.1016/j.atherosclerosis.2009.06.039Search in Google Scholar PubMed

37. Meinitzer A, Puchinger M, Winklhofer-Roob BM, Rock E, Ribalta J, Roob JM, et al. Reference values for plasma concentrations of asymmetrical dimethylarginine (ADMA) and other arginine metabolites in men after validation of a chromatographic method. Clin Chim Acta 2007;384:141–8.10.1016/j.cca.2007.07.006Search in Google Scholar PubMed

38. Drechsler C, Kollerits B, Meinitzer A, März W, Ritz E, König P, et al. Homoarginine and progression of chronic kidney disease: results from the Mild to Moderate Kidney Disease Study. PLoS One 2013;8:e63560.10.1371/journal.pone.0063560Search in Google Scholar PubMed PubMed Central

39. Pilz S, Tomaschitz A, Meinitzer A, Drechsler C, Ritz E, Krane V, et al. Low serum homoarginine is a novel risk factor for fatal strokes in patients undergoing coronary angiography. Stroke 2011;42:1132–4.10.1161/STROKEAHA.110.603035Search in Google Scholar PubMed

40. Horowitz JD, Heresztyn T. An overview of plasma concentrations of asymmetric dimethylarginine (ADMA) in health and disease and in clinical studies: methodological considerations. J Chromatogr B Analyt Technol Biomed Life Sci 2007;851:42–50.10.1016/j.jchromb.2006.09.023Search in Google Scholar PubMed

41. Teerlink T. HPLC analysis of ADMA and other methylated L-arginine analogs in biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 2007;851:21–9.10.1016/j.jchromb.2006.07.024Search in Google Scholar PubMed

42. Hov GG, Sagen E, Bigonah A, Asberg A. Health-associated reference values for arginine, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) measured with high-performance liquid chromatography. Scand J Clin Lab Invest 2007;67:868–76.10.1080/00365510701429836Search in Google Scholar PubMed

43. Sydow K, Fortmann SP, Fair JM, Varady A, Hlatky MA, Go AS, et al. Distribution of asymmetric dimethylarginine among 980 healthy, older adults of different ethnicities. Clin Chem 2010;56:111–20.10.1373/clinchem.2009.136200Search in Google Scholar PubMed

44. Schulze F, Maas R, Freese R, Schwedhelm E, Silberhorn E, Böger RH. Determination of a reference value for N(G), N(G)-dimethyl-L-arginine in 500 subjects. Eur J Clin Invest 2005;35:622–6.10.1111/j.1365-2362.2005.01561.xSearch in Google Scholar PubMed


Supplemental Material

The online version of this article (DOI 10.1515/cclm-2014-0314) offers supplementary material, available to authorized users.


Received: 2014-3-23
Accepted: 2014-5-27
Published Online: 2014-6-19
Published in Print: 2014-12-1

©2014 by De Gruyter

Downloaded on 27.5.2024 from https://www.degruyter.com/document/doi/10.1515/cclm-2014-0314/html
Scroll to top button