Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 2, 2006

Specificity of human cathepsin S determined by processing of peptide substrates and MHC class II-associated invariant chain

  • Thomas Rückrich , Jens Brandenburg , Alexander Cansier , Margret Müller , Stefan Stevanović , Klaus Schilling , Bernd Wiederanders , Alexander Beck , Arthur Melms , Michael Reich , Christoph Driessen and Hubert Kalbacher
From the journal Biological Chemistry

Abstract

Cathepsin S (CatS) is a lysosomal cysteine protease of the papain family, the members of which possess relatively broad substrate specificities. It has distinct roles in major histocompatibility complex (MHC) class II-associated peptide loading and in antigen processing in both the MHC class I and class II pathways. It may therefore represent a target for interference with antigen presentation, which could be of value in the therapy of (auto)immune diseases. To obtain more detailed information on the specificity of CatS, we mapped its cleavage site preferences at subsites S3–S1′ by in vitro processing of a peptide library. Only five amino acid residues at the substrate's P2 position allowed for cleavage by CatS under time-limited conditions. Preferences for groups of amino acid residues were also observed at positions P3, P1 and P1′. Based on these results, we developed highly CatS-sensitive peptides. After processing of MHC class II-associated invariant chain (Ii), a natural protein substrate of CatS, we identified CatS cleavage sites in Ii of which a majority matched the amino acid residue preference data obtained with peptides. These observed cleavage sites in Ii might be of relevance for its in vivo processing by CatS.

:

Corresponding author

References

Beck, H., Schwarz, G., Schröter, C.J., Deeg, M., Baier, D., Stevanović, S., Weber, E., Driessen, C., and Kalbacher, H. (2001). Cathepsin S and an asparagine-specific endoprotease dominate the proteolytic processing of human myelin basic protein in vitro. Eur. J. Immunol.31, 3726–3736.10.1002/1521-4141(200112)31:12<3726::AID-IMMU3726>3.0.CO;2-OSearch in Google Scholar

Brömme, D., Steinert, A., Friebe, S., Fittkau, S., Wiederanders, B., and Kirschke, H. (1989). The specificity of bovine spleen cathepsin S. Biochem. J.264, 475–481.10.1042/bj2640475Search in Google Scholar

Brömme, D., Bonneau, P.R., Lachance, P., and Storer, A.C. (1994). Engineering the S2 subsite specificity of human cathepsin S to a cathepsin L- and cathepsin B-like specificity. J. Biol. Chem.269, 30238–30242.10.1016/S0021-9258(18)43803-3Search in Google Scholar

Burster, T., Beck, A., Tolosa, E., Marin-Esteban, V., Rötzschke, O., Falk, K., Lautwein, A., Reich, M., Brandenburg, J., Schwarz, G., et al. (2004). Cathepsin G, and not the asparagine-specific endoprotease, controls the processing of myelin basic protein in lysosomes from human B lymphocytes. J. Immunol.172, 5495–5503.10.4049/jimmunol.172.9.5495Search in Google Scholar

Cresswell, P. (1996). Invariant chain structure and MHC class II function. Cell84, 505–507.10.1016/S0092-8674(00)81025-9Search in Google Scholar

Fiebiger, E., Meraner, P., Weber, E., Fang, I.-F., Stingl, G., Ploegh, H., and Maurer, D. (2001). Cytokines regulate proteolysis in major histocompatibility complex class II-dependent antigen presentation by dendritic cells. J. Exp. Med.193, 881–892.10.1084/jem.193.8.881Search in Google Scholar

Greenbaum, D., Medzihradszky, K.F., Burlingame, A., and Bogyo, M. (2000). Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol.7, 569–581.10.1016/S1074-5521(00)00014-4Search in Google Scholar

Guermonprez, P., Saveanu, L., Kleijmeer, M., Davoust, J., van Endert, P., and Amigorena, S. (2003). ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature425, 397–402.10.1038/nature01911Search in Google Scholar

Harris, J.L., Backes, B.J., Leonetti, F., Mahrus, S., Ellman, J.A., and Craik, C.S. (2000). Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. USA97, 7754–7759.10.1073/pnas.140132697Search in Google Scholar

Honey, K. and Rudensky, A.Y. (2003). Lysosomal cysteine proteases regulate antigen presentation. Nat. Rev. Immunol.3, 472–482.10.1038/nri1110Search in Google Scholar

Hsieh, C.-S., deRoos, P., Honey, K., Beers, C., and Rudensky, A. (2002). A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J. Immunol.168, 2618–2625.10.4049/jimmunol.168.6.2618Search in Google Scholar

Lautwein, A., Burster, T., Lennon-Duménil, A.-M., Overkleeft, H.S., Weber, E., Kalbacher, H., and Driessen, C. (2002). Inflammatory stimuli recruit cathepsin activity to late endosomal compartments in human dendritic cells. Eur. J. Immunol.32, 3348–3357.10.1002/1521-4141(200212)32:12<3348::AID-IMMU3348>3.0.CO;2-SSearch in Google Scholar

Lautwein, A., Kraus, M., Reich, M., Burster, T., Brandenburg, J., Overkleeft, H.S., Schwarz, G., Kammer, W., Weber, E., Kalbacher, H., et al. (2004). Human B lymphoblastoid cells contain distinct patterns of cathepsin activity in endocytic compartments and regulate MHC class II transport in a cathepsin S independent manner. J. Leukoc. Biol.75, 844–855.10.1189/jlb.0803367Search in Google Scholar

Lennon-Duménil, A.-M., Bakker, A.H., Wolf-Bryant, P., Ploegh, H.L., and Lagaudrière-Gesbert, C. (2002a). A closer look at proteolysis and MHC class II-restricted antigen presentation. Curr. Opin. Immunol.14, 15–21.10.1016/S0952-7915(01)00293-XSearch in Google Scholar

Lennon-Duménil, A.-M., Bakker, A.H., Maehr, R., Fiebiger, E., Overkleeft, H.S., Rosemblatt, M., Ploegh, H.L., and Lagaudrière-Gesbert, C. (2002b). Analysis of protease activity in live antigen-presenting cells shows regulation of the phagosomal proteolytic contents during dendritic cell activation. J. Exp. Med.196, 529–539.10.1084/jem.20020327Search in Google Scholar

Manoury, B., Hewitt, E.W., Morrice, N., Dando, P.M., Barrett, A.J., and Watts, C. (1998). An asparaginyl endopeptidase processes a microbial antigen for class II MHC presentation. Nature396, 695–699.10.1038/25379Search in Google Scholar

McGrath, M.E., Palmer, J.T., Brömme, D., and Somoza, J.R. (1998). Crystal structure of human cathepsin S. Protein Sci.7, 1294–1302.10.1002/pro.5560070604Search in Google Scholar

Nakagawa, T.Y. and Rudensky, A.Y. (1999). The role of lysosomal proteases in MHC class II-mediated antigen processing and presentation. Immunol. Rev.172, 121–129.10.1111/j.1600-065X.1999.tb01361.xSearch in Google Scholar

Neumann, J., Schach, N., and Koch, N. (2001). Glycosylation signals that separate the trimerization from the MHC class II-binding domain control intracellular degradation of invariant chain. J. Biol. Chem.276, 13469–13475.10.1074/jbc.M010629200Search in Google Scholar

Pauly, T.A., Sulea, T., Ammirati, M., Sivaraman, J., Danley, D.E., Griffor, M.C., Kamath, A.V., Wang, I.-K., Laird, E.R., Seddon, A.P., et al. (2003). Specificity determinants of human cathepsin S revealed by crystal structures of complexes. Biochemistry 42, 3203–3213.10.1021/bi027308iSearch in Google Scholar

Plüger, E.B.E., Boes, M., Alfonso, C., Schröter, C.J., Kalbacher, H., Ploegh, H.L., and Driessen, C. (2002). Specific role for cathepsin S in the generation of antigenic peptides in vivo. Eur. J. Immunol.32, 467–476.10.1002/1521-4141(200202)32:2<467::AID-IMMU467>3.0.CO;2-YSearch in Google Scholar

Reimann, J. and Schirmbeck, R. (1999). Alternative pathways for processing exogenous and endogenous antigens that can generate peptides for MHC class I-restricted presentation. Immunol. Rev.172, 131–152.10.1111/j.1600-065X.1999.tb01362.xSearch in Google Scholar

Riese, R.J., Wolf, P.R., Brömme, D., Natkin, L.R., Villadangos, J.A., Ploegh, H.L., and Chapman, H.A. (1996). Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity4, 357–366.10.1016/S1074-7613(00)80249-6Search in Google Scholar

Saegusa, K., Ishimaru, N., Yanagi, K., Arakaki, R., Ogawa, K., Saito, I., Katunuma, N., and Hayashi, Y. (2002). Cathepsin S inhibitor prevents autoantigen presentation and autoimmunity. J. Clin. Invest.110, 361–369.10.1172/JCI0214682Search in Google Scholar

Schechter, I. and Berger, A. (1968). On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun.27, 157–162.Search in Google Scholar

Shen, L., Sigal, L.J., Boes, M., and Rock, K.L. (2004). Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity21, 155–165.10.1016/j.immuni.2004.07.004Search in Google Scholar

Thurmond, R.L., Sun, S., Sehon, C.A., Baker, S.M., Cai, H., Gu, Y., Jiang, W., Riley, J.P., Williams, K.N., Edwards, J.P., and Karlsson, L. (2005). Identification of a potent and selective noncovalent cathepsin S inhibitor. J. Pharmacol. Exp. Ther.308, 268–276.Search in Google Scholar

Tolosa, E., Li, W., Yasuda, Y., Wienhold, W., Denzin, L.K., Lautwein, A., Driessen, C., Schnorrer, P., Weber, E., Stevanović, S., et al. (2003). Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J. Clin. Invest.112, 517–526.10.1172/JCI200318028Search in Google Scholar

Trombetta, E.S., Ebersold, M., Garrett, W., Pypaert, M., and Mellman, I. (2003). Activation of lysosomal function during dendritic cell maturation. Science299, 1400–1403.10.1126/science.1080106Search in Google Scholar

Turk, V., Turk, B., and Turk, D. (2001). Lysosomal cysteine proteases: facts and opportunities. EMBO J.20, 4629–4633.10.1093/emboj/20.17.4629Search in Google Scholar

Van Swieten, P.F., Maehr, R., Van Den Nieuwendijk, A.M., Kessler, B.M., Reich, M., Wong, C.S., Kalbacher, H., Leeuwenburgh, M.A., Driessen, C., Van Der Marel, G.A., et al. (2004). Development of an isotope-coded activity-based probe for the quantitative profiling of cysteine proteases. Bioorg. Med. Chem. Lett.14, 3131–3134.10.1016/j.bmcl.2004.04.046Search in Google Scholar

Villadangos, J.A., Riese, R.J., Peters, C., Chapman, H.A., and Ploegh, H.L. (1997). Degradation of mouse invariant chain: roles of cathepsins S and D and the influence of major histocompatibility complex polymorphism. J. Exp. Med.186, 549–560.10.1084/jem.186.4.549Search in Google Scholar

Villadangos, J.A., Bryant, R.A.R., Deussing, J., Driessen, C., Lennon-Duménil, A.-M., Riese, R.J., Roth, W., Saftig, P., Shi, G.-P., Chapman, H.A., et al. (1999). Proteases involved in MHC class II antigen presentation. Immunol. Rev.172, 109–120.10.1111/j.1600-065X.1999.tb01360.xSearch in Google Scholar

Yang, H., Kala, M., Scott, B.J., Goluszko, E., Chapman, H.A., and Christadoss, P. (2005). Cathepsin S is required for murine autoimmune myasthenia gravis pathogenesis. J. Immunol.174, 1729–1737.10.4049/jimmunol.174.3.1729Search in Google Scholar PubMed

Published Online: 2006-11-02
Published in Print: 2006-10-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 5.6.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.188/html
Scroll to top button