Skip to main content
Log in

The role of orphan nuclear receptor in thymocyte differentiation and lymphoid organ development

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

T lymphocytes differentiate in the thymus through several phenotypically distinct stages that are tightly regulated by multiple nuclear transcription factors. Immature CD4+CD8+ double positive (DP) thymocytes make up a majority of the population in the thymus, and exhibit several phenotypic features distinct from mature T cells. DP thymocytes express only about 10% of surface TCR that are found on mature T cells and do not proliferate and produce IL-2 in response to stimulation. Several critical events of T lymphocyte maturation such as TCRα gene recombination, positive and negative selection, and CD4/CD8 lineage commitment occur around the DP stage. Recent studies from our group and others on the orphan nuclear receptor RORγ and its thymus-specific isoform RORγt support a critical role for this nuclear receptor in the regulation of DP thymocyte function. In addition, RORγ is required for the development of lymph nodes and Peyer's patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clevers H, Ferrier P: Transcriptional control during T-cell development. Curr Opin Immunol 1998;10:166–171.

    Article  PubMed  CAS  Google Scholar 

  2. Kuo CT, Leiden JM: Transcriptional regulation of T lymphocyte development and function. Annu Rev Immunol 1999;17:149–187.

    Article  PubMed  CAS  Google Scholar 

  3. Calnan BJ, Szychowski, S, Chan FK, Cado D, Winoto A: A role for the orphansteroid receptor Nur77 in apoptosis accompany ingantigen-induced negative selection. Immunity 1995;3:273–282.

    Article  PubMed  CAS  Google Scholar 

  4. Zhou T, Cheng J, Yang P, Wang, Z, Liu C, Su X, et al.: Inhibition of Nur77/Nurrl leads to inefficient clonal deletion of self-reactive T cells. J Exp Med 1996;183:1879–1892.

    Article  PubMed  CAS  Google Scholar 

  5. He YW, Beers C, Deftos ML, Ojala EW, Forbush KA, Bevan MJ: Down regulation of the orphan nuclear receptor ROR gammat is essential for T lymphocyte maturation. J Immunol 2000;164:5668–5674.

    PubMed  CAS  Google Scholar 

  6. Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, et al.: Requirement for ROR gamma in thymocyte survival and lymphoid organ development. Science 2000;288:2369–2373.

    Article  PubMed  CAS  Google Scholar 

  7. Godfrey, DI, Zlotnik A: Control points in early T-cell development. Immunol Today 1993;14:547–553.

    Article  PubMed  CAS  Google Scholar 

  8. Godfrey DI, Kennedy J, Suda T, Zlotnik A: A developmental pathway involving four phenotypically and functionally distinct subsets of CD3CD4CD8 triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 1993;150:4244–4252.

    PubMed  CAS  Google Scholar 

  9. Wu L, Li CL, Shortman K: Thymic dendritic cell precursors: relation-ship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J Exp Med 1996;184:903–911.

    Article  PubMed  CAS  Google Scholar 

  10. Mallick CA, Dudley EC, Viney JL, Owen MJ, Hayday AC: Rearrangement and diversity of T cell receptorbeta chain genes in thymocytes: a critical role for the beta chain in development. Cell 1993;73:513–519.

    Article  PubMed  CAS  Google Scholar 

  11. Godfrey DI, Kennedy J, Mombaerts P, Tonegawa S, Zlotnik A: Onset of TCR-betagene rearrangement and role of TCR-beta expression during CD3-CD4-CD8-thymocyte differentiation. J Immunol 1994;152:4783–4792.

    PubMed  CAS  Google Scholar 

  12. Petrie HT, Livak F, Burtrum D, Mazel S: T cell receptor gene recombination patterns and mechanisms: cell death, rescue, and T cell production. J Exp Med 1995;182:121–127.

    Article  PubMed  CAS  Google Scholar 

  13. Fehling HJ, Krotkova A, Saint-Ruf C, von Boehmer H: Crucial role of the pre-T-cell receptoral phagene in development of alpha beta but not gamma delta T cells. Nature 1995;375:795–798.

    Article  PubMed  CAS  Google Scholar 

  14. Nikolic-Zugic J, Bevan MJ: Thymocytes expressing CD8 differentiate into CD4+ cells, following intrathymic injection. Proc-Natl Acad Sci USA 1988;85:8633–8637.

    Article  PubMed  CAS  Google Scholar 

  15. Goldrath AW, Bevan MJ: Selecting and maintaining a diverse T-cell repertoire. Nature 1999;402:255–262.

    Article  PubMed  CAS  Google Scholar 

  16. Jameson SC, Bevan MJ: T-cell selection. Curr Opin Immunol 1998;10:214–219.

    Article  PubMed  CAS  Google Scholar 

  17. Keefe R, Dave V, Allman D, Wiest D, Kappes DJ: Regulation of lineage commitment distinct from positive selection. Science 1999;286:1149–1153.

    Article  PubMed  CAS  Google Scholar 

  18. von Boehmer H: CD4/CD8 lineage commitment: back to instruction? J Exp Med 1996;183:713–715.

    Article  Google Scholar 

  19. Yasutomo K, Doyle C, Miele L, Germain RN: The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature 2000;404:506–510.

    Article  PubMed  CAS  Google Scholar 

  20. Hernandez-Hoyos G, Sohn SJ, Rothenberg EV, Alberolla-Ila J: Lck activity controls CD4/CD8 T cell lineage commitment. Immunity 2000;12:313–322.

    Article  PubMed  CAS  Google Scholar 

  21. Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, Georgopoulos K: Selective defects in the development of the fetal and adult lymphoid system in mice with an 1 karos null mutation. Immunity 1996;5:537–549.

    Article  PubMed  CAS  Google Scholar 

  22. Morgan B, Sun L, Avitahl N, Andrikopoulos K, Ikeda T, Gonzales E, et al.: Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. Embo J 1997;16:2004–2013.

    Article  PubMed  CAS  Google Scholar 

  23. Ting CN, Olson MC, Barton KP, Leiden JM: Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 1996;384:474–478.

    Article  PubMed  CAS  Google Scholar 

  24. Allen RD, 3rd, Bender TP, Siu G: c-Myb is essential for early T cell development. Genes Dev 1999;13:1073–1078.

    PubMed  CAS  Google Scholar 

  25. Tomita K, Hattori M, Nakamura E, Nakanishi S, Minato N, Kageyama R: The bHLH gene Hesl is essential for expansion of early T cell precursors. Genes Dev 1999;13:1203–1210.

    PubMed  CAS  Google Scholar 

  26. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR, Aguet M: Deficient T cell fate specification in mice with an induced inactivation of Notchl. Immunity 1999;10:547–558.

    Article  PubMed  CAS  Google Scholar 

  27. Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R: Redundant regulation of T cell differentiation and TCR alpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity 1998;8:11–20.

    Article  PubMed  CAS  Google Scholar 

  28. Schilham MW, Moerer P, Cumano A, Clevers HC: Sox-4 facilitates thymocyte differentiation. Eur J Immunol 1997;27:1292–1295.

    Article  PubMed  CAS  Google Scholar 

  29. Barndt R, Dai MF, Zhuang Y: A novel role for HEB downstream or parallel to the pre-TCR signaling pathway during alpha beta thymopoiesis. J Immunol 1999;163:3331–3343.

    PubMed  CAS  Google Scholar 

  30. Rivera RR, Johns CP, Quan J, Johnson RS, Murre C: Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity 2000;12:17–26.

    Article  PubMed  CAS  Google Scholar 

  31. Bain G, Quong MW, Soloff RS, Hedrick SM, Murre C: Thymocyte maturation is regulated by the activity of the helix-loop-helix protein, E47. J Exp Med 1999;190:1605–1616.

    Article  PubMed  CAS  Google Scholar 

  32. Hettmann T, DiDonato J, Karin M, Leiden JM: An essential role for nuclear factor kappaB in promoting double positive thymocyte apoptosis. J Exp Med 1999;189: 145–158.

    Article  PubMed  CAS  Google Scholar 

  33. Deftos ML, He YW, Ojala EW, Bevan MJ: Correlating notch signaling with thymocyte maturation. Immunity 1998;9:777–786.

    Article  PubMed  CAS  Google Scholar 

  34. Robey E, Chang D, Itano A, Cado D, Alexander H, Lans D, et al.: An activated form of Notch influences the choice between CD4 and CD8T cell lineages. Cell 1996;87: 483–492.

    Article  PubMed  CAS  Google Scholar 

  35. Laudet V: Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol 1997; 19:207–226.

    Article  PubMed  CAS  Google Scholar 

  36. Hirose T, Smith RJ, Jetten AM: ROR gamma: the third member of ROR/RZR orphan receptor subfamily that is highly expressed in skeletal muscle. Biochem Biophys Res Commun 1994;205: 1976–1983.

    Article  PubMed  CAS  Google Scholar 

  37. Medvedev A, Yan ZH, Hirose T, Giguere V, Jetten AM: Cloning of a cDNA encoding the murine orphan receptor RZR/ROR gamma and characterization of its response element. Gene 1996;181:199–206.

    Article  PubMed  CAS  Google Scholar 

  38. Ortiz MA, Piedrafita FJ, Pfahl M, Maki R: TOR: a new orphan receptor expressed in the thymus that can modulate retinoid and thyroid hormone signals. Mol Endocrinol 1995;9:1679–1691.

    Article  PubMed  CAS  Google Scholar 

  39. Giguere V, Tini M, Flock G, Ong E, Evans RM, Otulakowski G: Isoform-specific amino-terminal domains dictate DNA-binding: properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev 1994;8: 538–553.

    Article  PubMed  CAS  Google Scholar 

  40. Carlberg C, Hooft van Huijsduijnen R, Staple JK, DeLamarter JF, Becker-Andre M: RZRs: A new family of retinoid-related orphan receptors that function as both monomers and homodimers. Mol Endocrinol 1994;8:757–770.

    Article  PubMed  CAS  Google Scholar 

  41. He YW, Deftos ML, Ojala EW, Bevan MJ: RORgamma t, a novel isoform of an orphan receptor, negatively regulates, Fas ligand expression and IL-2 production in T cells. Immunity 1998;9:797–806.

    Article  PubMed  CAS  Google Scholar 

  42. Villey I, de Chasseval R, de Villartay JP: ROR gamma T, a thymus-specific isoform of the orphan nuclear receptor ROR gamma/TOR, is up-regulated by signaling through the pre-T cell receptor and binds to the TEA promoter. Eur J Immunol 1999;29:4072–4080.

    Article  PubMed  CAS  Google Scholar 

  43. Kontgen F, Grumont RJ, Strasser A, Metcalf D, Li R, Tarlinton D, Gerondakis S: Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev 1995;9:1965–1977.

    Article  PubMed  CAS  Google Scholar 

  44. Liou HC, Jin Z, Tumang J, Andjelic S, Smith KA, Liou ML: c-Rel is crucial for lymphocyte proliferation but dispensable for T cell effector function. Int Immunol 1999;11:361–371.

    Article  PubMed  CAS  Google Scholar 

  45. Bluestone JA, Pardoll D, Sharrow SO, Fowlkes BJ: Characterization of murine thymocytes with CD3-associated T-cell receptor structures. Nature 1987;326:82–84.

    Article  PubMed  CAS  Google Scholar 

  46. Havran WL, Poenie M, Kimura J, Tsien R, Weiss A, Allison JP: Expression and function of the CD3-antigen receptor on murine CD4+8+thymocytes. Nature 1987; 330:170–173.

    Article  PubMed  CAS  Google Scholar 

  47. Fischer M, MacNeil I, Suda T, Cupp JE, Shortman K, Zlotnik A: Cytokine production by mature and immature thymocytes. J Immunol 1991;146:3452–3456.

    PubMed  CAS  Google Scholar 

  48. Krangel MS, Hemandez-Munain C, Lauzurica P, McMurry M, Roberts JL, Zhong XP: Developmental regulation of V(D)J recombination at the TCR alpha/delta locus. Immunol Rev 1998;165:131–147.

    Article  PubMed  CAS  Google Scholar 

  49. Sleckman BP, Bardon CG, Ferrini R, Davidson L, Alt FW: Function of the TCR alpha enhancer in alphabeta and gammadelta T cells. Immunity 1997;7:505–515.

    Article  PubMed  CAS  Google Scholar 

  50. Villey I, Caillol D, Selz F, Ferrier P, de Villartay JP: Defect in rearrangement of the most 5′ TCR-J alpha following targeted deletion of T early alpha (TEA): implications for TCR alpha locus accessibility. Immunity 1996;5: 331–342.

    Article  PubMed  CAS  Google Scholar 

  51. Maguire JE, McCarthy SA, Singer A, Singer DS: Inverse correlation between steady-state RNA and cell surface T cell receptor levels. Faseb J 1990;4:3131–3134.

    PubMed  CAS  Google Scholar 

  52. Kearse KP, Roberts JL, Munitz TI, Wiest DL, Nakayama T, Singer A: Developmental regulation of alpha beta T cell antigen receptor expression results from differential stability of nascent TCR alpha proteins within the end oplasmic reticulum of immature and mature T cells. Embo J 1994;13:4504–4514.

    PubMed  CAS  Google Scholar 

  53. Kearse KP, Takahama Y, Punt JA, Sharrow SO, Singer A: Early molecular events induced by T cell receptor (TCR) signaling in immature CD4+ CD8+ thymocytes: increased synthesis of TCR-alpha protein is anearly response to TCR signaling that compensates for TCR-alpha instability, improves TCR assembly, and parallels other indicators of positive selection. J Exp Med 1995;181:193–202.

    Article  PubMed  CAS  Google Scholar 

  54. Shortman K, Vremec D, Egerton M: The kinetics of T cell antigen receptor expression by subgroups of CD4+8+thy mocytes: delineation of CD4+8+3(2+) thymnocytes as post-selection intermediates leading to mature T cells. J Exp Med 1991;173:323–332.

    Article  PubMed  CAS  Google Scholar 

  55. Moore NC, Girdlestone J, Anderson G, Owen JJ, Jenkinson EJ: Stimulation of thymocytes before and after positive selection results in the induction of different NF-kappa B/Rel protein complexes. J Immunol 1995;155:4653–4660.

    PubMed  CAS  Google Scholar 

  56. Rincon M, Flavell RA: Regulation of AP-1 and NFAT transcription factors during thymic selecion of T cells. Mol Cell Biol 1996;16: 1074–1084.

    PubMed  CAS  Google Scholar 

  57. Grillot DA, Merino R, Nunez G: Bcl-X1 displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J Exp Med 1995;182:1973–1983.

    Article  PubMed  CAS  Google Scholar 

  58. Mebius RF, Rennert P, Weissman IL: Developing lymph nodes collect CD4+CD3LTbeta+ cells that candifferentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 1997;7:493–504.

    Article  PubMed  CAS  Google Scholar 

  59. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P: Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 1999;397:702–706.

    Article  PubMed  CAS  Google Scholar 

  60. Alimzhanov MB, Kuprash DV, Kosco-Vilbois MH, Luz A, Turetskaya RL, Tarakhovsky A, et al. Banormal development of secondary lymphoid tissues in lymphotox in beta-deficient mice Proc Natl Acad Sci USA 1997;94: 9302–9307.

    Article  PubMed  CAS  Google Scholar 

  61. Futterer A, Mink K, Nuz A, Kosco-Vilbois MH, Pfeffer K: The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 1998;9:59–70.

    Article  PubMed  CAS  Google Scholar 

  62. Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA: Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity 1997;6:491–500.

    Article  PubMed  CAS  Google Scholar 

  63. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397: 315–323.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YW. The role of orphan nuclear receptor in thymocyte differentiation and lymphoid organ development. Immunol Res 22, 71–82 (2000). https://doi.org/10.1385/IR:22:2-3:71

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:22:2-3:71

Key Words

Navigation