Skip to main content
Log in

The wobbler mouse

A neurodegeneration jigsaw puzzle

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Various mutations in humans and animals lead to the selective and progressive degeneration of motoneurons, resulting in muscular weakness, subsequent paralysis, and death (1–3). Amyotrophic lateral sclerosis (ALS) is the most common adult human motoneuron disease, but the vast majority of sporadic and familial cases of ALS are still of unknown origin (4). Murine models of motoneuron diseases, derived from spontaneous mutations in the colonies, have been known for half a century. Prior to the first identifications of the mutated proteins in human ALS, they have largely been used to explore the disease etiology. The chromosomal localization of these mutations does not favor a genetic similarity between these murine models and the few human forms of the disease for which the mutation or the chromosomal localization is known. Yet the fact that most human ALS cases are of unknown etiology and the recent discovery of molecules with no known role in motoneuron survival (5–7), indicate that these murine mutants may still contribute to the understanding of motoneuronal degenerative processes. This can be exemplified by the work performed on the wobbler mouse, one of the oldest and most extensively studied models, which is reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Price D.L., Cleveland D.W., and Koliatsos V.E. (1994) Motor neurone disease and animal models. Neurobiol Disease 1, 3–11.

    Article  CAS  Google Scholar 

  2. Bruijn L.I. and Cleveland D.W. (1996) Mechanisms of selective motor neuron death in ALS: insights from transgenic mouse models of motor neuron disease. J Neuropathol. Appl. Neurobiol. 22, 373–387.

    CAS  Google Scholar 

  3. Brahe C. and Bertini E. (1996) Spinal muscular atrophies: recent insights and impact on molecular diagnosis. J. Mol. Med. 74, 555–562.

    Article  PubMed  CAS  Google Scholar 

  4. Cleveland D.W. and Rothstein J.D. (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806–819.

    Article  PubMed  CAS  Google Scholar 

  5. Oosthuyse B., Moons L., Storkebaum E., H H.B., Nuyens D., Brusselmans K., Dorpe J.V., et al. (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet. 28, 131–138.

    Article  PubMed  CAS  Google Scholar 

  6. Yang Y., Hentati A., Deng H.X., Dabbagh O., Sasaki T., Hirano M., et al. (2001) The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat. Genet. 20, 160–165.

    Article  CAS  Google Scholar 

  7. Hadano S., Hand C.K., Osuga H., Yanagisawa Y., Otomo A., Devon R.S., et al. (2001) A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat. Genet. 29, 166–173.

    Article  PubMed  CAS  Google Scholar 

  8. Falconer D.S. (1956) Mouse News Lett. 15, 23.

    Google Scholar 

  9. Lefebvre S., Bürglen L., Reboullet S., Clermont O., Burlet P., Violet L., et al. (1995) Identification and characterization of a spinal muscular atrophy determining gene. Cell 80, 155–165.

    Article  PubMed  CAS  Google Scholar 

  10. Pioro E.P., Wang Y., Moore J.K., Ng T.C., Trapp B.D., Klinkosz B., et al. (1998) Neuronal pathology in the wobbler mouse brain revealed by in vivo proton magnetic resonance spectroscopy and immunocytochemistry. Neuroreport 9, 3041–3046.

    Article  PubMed  CAS  Google Scholar 

  11. Andrews J.M., Gardner M.B., Wolfgram F.D., Ellison G.W., Porter D.D., and Brandkamp W.W. (1974) Studies on a murin form of spontaneous lower motor neuron degeneration- the wobbler (wr) mouse. Am. J. Pathol. 76, 63–78.

    PubMed  CAS  Google Scholar 

  12. Kaupmann K., Simon-Chazottes D., Guénet J.L., and Jockush H. (1992) Wobbler, a mutation affecting motoneuron survival and gonadal functions in the mouse, maps to proximal chromosome 11. Genomics 13, 39–43.

    Article  PubMed  CAS  Google Scholar 

  13. Korthaus D., Wedemeyer N., Lengeling A., Ronsiek M., Jockusch H., and Schmitt-John T. (1997) Integrated variation hybrid map of human chromosome 2p13: possible involvement of Dynactin in neuromuscular diseases. Genomics 43, 242–244.

    Article  PubMed  CAS  Google Scholar 

  14. Resch K., Korthaus D., Wedemeyer N., Lengeling A., Ronsiek M., Thiel C., et al. (1998) Homology between human chromosome 2p13.3 and the wobbler critical region on mouse chromosome 11: comparative high-resolution mapping of STS and EST loci on YAC/BAC contigs. Mamm. Genome 9, 893–898.

    Article  PubMed  CAS  Google Scholar 

  15. Wedemeyer N., Lengeling A., Ronsiek M., Korthaus D., Baer K., Wuttke M., et al. (1996) YAC contigs of the Rab1 and wobbler (wr) spinal muscular atrophy gene region on proximal mouse chromosome 11 and of the homologous region on human chromosome 2p. Genomics 32, 447–454.

    Article  PubMed  CAS  Google Scholar 

  16. Fuchs S., Resch K., Thiel C., Ulbrich M., Platzer M., Jockusch H., et al. (2002) Comparative transcription map of the wobbler critical region on mouse chromosome 11 and the homologous region on human chromosome 2p13–14. BMC Genet. 3, 14–20.

    Article  PubMed  Google Scholar 

  17. Nabetani A., I I.H., Morisaki H., Oshimura M., and T T.M. (1997) Mouse U2af1-rs1 is a neomorphic imprinted gene. Mol. Cell. Biol. 17, 789–798.

    PubMed  CAS  Google Scholar 

  18. Cheng S.D., Peng H.L., and Chang H.Y. (1997) Localization of the human UGP2 gene encoding the muscle isoform of UDPglucose pyrophosphorylase to 2p13–p14 by fluorescence in situ hybridization. Genomics 1, 414–416.

    Article  Google Scholar 

  19. Yu K.Y., Kwon H.J., Norman D.A., Vig E., Goebl M.G., and Harrington M.A. (2002) Cutting edge: mouse pellino-2 modulates IL-1 and lipopolysaccharide signaling. J. Immunol. 169, 4075–4078.

    PubMed  CAS  Google Scholar 

  20. Resch K., Jockusch H., and Schmitt-John T. (2001) Assignment of homologous genes, Peli1/PELI1 and Peli2/PELI2, for the Pelle adaptor protein Pellino to mouse chromosomes 11 and 14 and human chromosomes 2p13.3 and 14q21, respectively, by physical and radiation hybrid mapping. Cytogenet. Cell Genet. 92, 172–174.

    Article  PubMed  CAS  Google Scholar 

  21. Boyl P.P., M M.S., Annino A., Barbera J.P., Acampora D., and Simeone A. (2001) Otx genes in the development and evolution of the vertebrate brain. Int. J. Dev. Neurosci. 19, 353–363.

    Article  PubMed  CAS  Google Scholar 

  22. Stenner-Liewen F., Luo G., Sahin U., Tureci O., Koslovski M., Kautz I., et al. (2000) Definition of tumor-associated antigens in hepatocellular carcinoma. Cancer Epidemiol. Biomark. Prev. 9, 285–290.

    CAS  Google Scholar 

  23. Korthaus D., Wedemeyer N., Wiegand C., and Jockusch H. (1996) The gene for cytoplasmic malate dehydrogenase, Mor2, is closely linked to the wobbler spinal muscular atrophy gene (wr). Mamm. Genome 7, 250.

    Article  PubMed  CAS  Google Scholar 

  24. Des Portes V., Coulpier M., Melki J., and Dreyfus P.A. (1994) Early detection of mouse wobbler mutation: a model of pathological motoneurone death. Neuroreport 5, 1861–1864.

    Article  PubMed  CAS  Google Scholar 

  25. Ishiyama T., Klinkosz B., Pioro E.P., and Mitsumoto H. (1997) Genetic transfert of the wobbler gene to a C57BL/6J X NZB hybrid stock: natural history of the motor neuron disease and the response to CNTF and BDNF cotreatment. Exp Neurol. 148, 247–255.

    Article  PubMed  CAS  Google Scholar 

  26. Rathke-Hartlieb S., Schmidt V.C., Jockusch H., Schmitt-John T., and Bartsch J.W. (1999) Spatiotemporal progression of neurodegeneration and glia activation in the wobbler neuropathy of the mouse. Neuroreport 10, 3411–3416.

    Article  PubMed  CAS  Google Scholar 

  27. Ulbrich M., Schmidt V.C., Ronsiek M., Mussmann A., Bartsch J.W., Augustin M., et al. (2002) Genetic modifiers that aggravate the neurological phenotype of the wobbler mouse. Neuroreport 13, 535–539.

    Article  PubMed  Google Scholar 

  28. Leestma J.E. and Sepsenwol S. (1980) Sperm tail axoneme alterations in the wobbler mouse. J. Reprod. Fert. 58, 267–270.

    Article  CAS  Google Scholar 

  29. Heimann P., Laage S., and Jockusch H. (1991) Defect of sperm assembly in a neurological mutant of the mouse, wobbler (wr). Differentiation 47, 77–83.

    Article  PubMed  CAS  Google Scholar 

  30. Augustin M., Heimann P., Rathke S., and Jockusch H. (1997) Spinal muscular atrophy gene wobbler of the mouse: evidence from the chimeric spinal cord and testis for cell-autonomous function. Dev. Dyn. 209, 286–295.

    Article  PubMed  CAS  Google Scholar 

  31. Stoppini L., Buchs P.A., and Muller D. (1991) A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182.

    Article  PubMed  CAS  Google Scholar 

  32. Dockery P., Tang Y., Morais M., and Vacca-Galloway L.L. (1997) Neuron volume in the ventral horn in wobbler mouse motoneuron disease: a light microscope stereological study. J. Anat. 191, 89–98.

    Article  PubMed  Google Scholar 

  33. Duchen L.W. and Strich S.J. (1968) An hereditary motor neurone disease with progressive denervation of muscle in the mouse: the mutant wobbler. J. Neurol. Neurosurg. Psychiat. 31, 535–542.

    PubMed  CAS  Google Scholar 

  34. Pollin M.M., McHanwell S., and Slater C.R. (1990) Loss of motor neurons from the median nerve motor nucleus of the mutant mouse wobbler. J. Neurocytol. 19, 29–38.

    Article  PubMed  CAS  Google Scholar 

  35. Rothstein J.D., Jin L., Dykes-Hoberg M., and Kuncl R.W. (1993) Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl. Acad. Sci. USA 90, 6591–6595.

    Article  PubMed  CAS  Google Scholar 

  36. Meccariello R., Gobellis G., Berruti G., Junier M.P., Ceriani M., Boillée S., et al. (2002) Mouse sperm cell-specific DnaJ first homologue: an evolutionarily concerved protein for spermiogenesis. Biol. Reprod. 66, 1328–1335.

    Article  PubMed  CAS  Google Scholar 

  37. Berruti G., Perego L., Borgonovo B., and Martegani E. (1998) MSJ-1, a new member of the DNAJ family of proteins, is a male germ cell-specific gene product. Exp. Cell Res. 239, 430–441.

    Article  PubMed  CAS  Google Scholar 

  38. Berruti G. and Martegani E. (2001) Msj-1, a mouse testis-specific dnaj protein, is highly expressed in haploid male germ cells and interacts with the testis-specific heat shock protein hsp70-2. Biol. Reprod. 65, 488–495.

    Article  PubMed  CAS  Google Scholar 

  39. Bose P., Fielding R., Ameis K.M., and Vacca-Galloway L.L. (1998) A novel behavioral method to detect motoneuron disease in wobbler mice aged three to seven days old. Brain Res. 813, 334–342.

    Article  PubMed  CAS  Google Scholar 

  40. Bose P., Fielding R., and Vacca-Galloway L.L. (1999) Effects of assisted feeding on wobbler mouse motoneuron disease and serotoninergic and peptidergic sprouting in the cervical spinal horn. Brain Res. Bull. 48, 429–439.

    Article  PubMed  CAS  Google Scholar 

  41. Coulpier M., Junier M.P., Peschanski M., and Dreyfus P.A. (1996) Bcl-2 sensitivity differenciates two pathways for motoneuronal death in the wobbler mouse. J. Neurosci. 16, 5897–5904.

    PubMed  CAS  Google Scholar 

  42. Smith J.P., Hicks P.M., Ortiz L.R., Martinez M.J., and Mandler R.N. (1995) Quantitative measurement of muscle strength in the mouse. J. Neurosci. Methods 62, 15–19.

    Article  PubMed  CAS  Google Scholar 

  43. Ikeda K. and Mitsumoto H. (1993) In vivo and in vitro muscle tensions in wobbler mouse motor neuron disease. Muscle Nerve 16, 979–981.

    PubMed  CAS  Google Scholar 

  44. Andrews J.M. (1975) The fine structure of the cervical spinal cord, ventral root and brachial nerves in the wobbler (wr) mouse. J. Neuropathol. Exp. Neurol. 34, 12–27.

    PubMed  CAS  Google Scholar 

  45. Blondet B., Carpentier G., Ait-Ikhlef A., Murawsky M., and Rieger F. (2002) Motoneuron morphological alterations before and after the onset of the disease in the wobbler mouse. Brain Res. 930, 53–57.

    Article  PubMed  CAS  Google Scholar 

  46. Mitsumoto H. and Bradley W.G. (1982) Murin motor neuron disease (the wobbler mouse): degeneration and regeneration of the lower motor neuron. Brain 105, 811–834.

    Article  PubMed  Google Scholar 

  47. Blondet B., Aït-Ikhlef A., Murawsky M., and Rieger F. (2001) Transient DNA fragmentation in nervous system during the early course of a murine neurodegenerative disease. Neurosci. Lett. 305, 202–206.

    Article  PubMed  CAS  Google Scholar 

  48. Carpenter S. (1968) Proximal axonal enlargement in motor neuron disease. Neurology 18, 841–851.

    PubMed  CAS  Google Scholar 

  49. Chou S.M. and Fakadej A.V. (1971) Ultrastructure of chromatolytic motor neurons and anterior spinal roots in a case of Werdnig-Hoffman disease. J. Neuropathol. Exp. Neurol. 30, 368–379.

    PubMed  CAS  Google Scholar 

  50. Hirano A., Donnenfeld H., Sasaki S., and Nakano I. (1984) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 43, 461–470.

    PubMed  CAS  Google Scholar 

  51. Hirano A., Nakano I., Kurland L.T., Mulder D.W., Holley P.W., and Saccomanno G. (1984) Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 43, 471–480.

    PubMed  CAS  Google Scholar 

  52. Rouleau G.A., Clark A.W., Rooke K., Pramatorava A., Krizus A., Suchowersky O., et al. (1996) SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann. Neurol. 39, 128–131.

    Article  PubMed  CAS  Google Scholar 

  53. Dal Canto M.C. and Gurney M.E. (1994) Development of central nervous system pathology in murine transgenic model of human amyotrophic lateral sclerosis. Am. J. Pathol. 145, 1271–1279.

    Google Scholar 

  54. Dal Canto M.C. and Gurney M.E. (1995) Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 676, 25–40.

    Article  Google Scholar 

  55. Dal Canto M.C. and Gurney M.E. (1997) A low expressor line of transgenic mice carrying a mutant human Cu,Zn superoxide dismutase (SOD1)gene develops pathological changes that most closely ressemble those in human amyotrophic lateral sclerosis. Acta Neuropathol. 93, 537–550.

    Article  Google Scholar 

  56. Tu P.-H., Raju P., Robinson K.A., Gurney M.E., Trojanowski J.Q., and Lee V.M.-Y. (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology ressembling human amyotrophic lateral sclerosis lesions. Proc. Natl. Acad. Sci. USA 93, 3155–3160.

    Article  PubMed  CAS  Google Scholar 

  57. Callahan L.M., Wylen E.L., Messer A., and Mazurkiewicz J.E. (1991) Neurofilament distribution is altered in the mnd (motor neuron degeneration) mouse. J. Neuropathol. Exp. Neurol. 50, 491–504.

    PubMed  CAS  Google Scholar 

  58. Al-Chalabi A., Andersen P.M., Nilsson P., Chioza B., Andersson J.L., Russ C., et al. (1999) Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum. Mol. Genet. 8, 157–164.

    Article  PubMed  CAS  Google Scholar 

  59. Pernas-Alonso R., Schaffner A.E., Perrone-Capano C., Orlando A., Morelli F., Hansen C.T., et al. (1996) Early upregulation of medium neurofilament gene expression in developing spinal cord of the wobbler mouse mutant. Brain Res. Mol. Brain Res. 38, 267–275.

    Article  PubMed  CAS  Google Scholar 

  60. Pernas-Alonso R., Perrone-Capano C., Volpicelli F., and Porzio U.D. (2001) Regionalized neurofilament accumulation and motoneuron degeneration are linked phenotypes in wobbler neuromuscular disease. Neurobiol. Dis. 8, 581–589.

    Article  PubMed  CAS  Google Scholar 

  61. Williamson T.L., Bruijn L.I., Zhu Q., Anderson K.L., Anderson S.D., Julien J.-P., et al. (1998) Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxyde dismutase 1 mutant. Proc. Natl. Acad. Sci. USA 95, 9631–9636.

    Article  PubMed  CAS  Google Scholar 

  62. Morrison B.M., Shu I.-W., Wilcox A.L., Gordon J.W., and Morrison J.H. (2000) Early and selective pathology of light chain neurofilament in the spinal cord and sciatic nerve of G86R mutant superoxide dismutase transgenic mice. Exp. Neurol. 165, 207–220.

    Article  PubMed  CAS  Google Scholar 

  63. Kong J. and Xu Z. (2000) Overexpression of neurofilament subunit NF-L and NF-H extends survival of a mouse model for amyotrophic lateral sclerosis. Neurosci. Lett. 281, 72–74.

    Article  PubMed  CAS  Google Scholar 

  64. Coté F., Collard J.F. and Julien J.P. (1993) Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73, 35–46.

    Article  PubMed  Google Scholar 

  65. Xu Z., Cork L.C., Griffin J.W., and Cleveland D.W. (1993) Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 73, 23–33.

    Article  PubMed  CAS  Google Scholar 

  66. Julien J.P. (1997) Neurofilaments and motor neurone disease. Trends Cell Biol. 7, 243–249.

    Article  CAS  PubMed  Google Scholar 

  67. Braak H. and Braak E. (2000) Pathoanatomy of parkinson’s disease. J. Neurol. 247, II3-II10.

    Article  PubMed  Google Scholar 

  68. Ince P.G., Lowe J., and Shaw P.J. (1998) Amyotrophic lateral sclerosis: current issues in classification, pathogenesisi and molecular pathology. Neuropathol. Appl. Neurobiol. 24, 104–107.

    Article  PubMed  CAS  Google Scholar 

  69. Ince P.G., Tomkins J., Slade J.Y., Thatcher N.M., and Shaw P.J. (1998) Amyotrophic lateral sclerosis associated with genetic abnormalities in the gene encoding Cu/Zn superoxide dismutase: molecular pathology of five new cases, and comparison with previous reports and 73 sporadic cases of ALS. J Neuropathol. Exp. Neurol. 57, 895–904.

    PubMed  CAS  Google Scholar 

  70. Lansbury Jr P.T. and Kosik K.S. (2000) Neurodegeneration: new clues on inclusions. Chem. Biol. 7, R9-R12.

    Article  PubMed  CAS  Google Scholar 

  71. Sieradzan K.A. and Mann D.M. (2001) The selective vulnerability of nerve cells in Huntington’s disease. Neuropathol. Appl. Neurobiol. 27, 1–21.

    Article  PubMed  CAS  Google Scholar 

  72. Welch W.J. and Gambetti P. (1998) Chaperoning brain diseases. Nature 392, 23–24.

    Article  PubMed  CAS  Google Scholar 

  73. Paulson H.L. (1999) Protein fate in neurodegenerative proteinopathies: polyglutamine diseases join (mis)fold. Am. J. Hum. Genet. 64, 339–345.

    Article  PubMed  CAS  Google Scholar 

  74. Sherman M.Y. and Goldberg A.L. (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15–32.

    Article  PubMed  CAS  Google Scholar 

  75. Bercovich B., Stankovski I., Mayer A., Blumenfeld N., Laszlo A., Schwartz A.L., et al. (1997) Ubiquitin-dependant degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J. Biol. Chem. 272, 9002–9010.

    Article  PubMed  CAS  Google Scholar 

  76. Cutforth T. and Rubin G.M. (1994) Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinasa in Drosophila. Cell 77, 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  77. Cyr D.M., Langer T., and Douglas M.G. (1994) DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biol. Sci. 19, 176–181.

    Article  CAS  Google Scholar 

  78. Hayes S.A. and Dice J.F. (1996) Roles of molecular chaperones in protein degradation. J. Cell Biol. 132, 255–258.

    Article  PubMed  CAS  Google Scholar 

  79. Kimura Y., Yahara I., and Lindquist S. (1995) Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways. Science 268, 1362–1365.

    Article  PubMed  CAS  Google Scholar 

  80. Wigley W.C., Fabunmi R.P., Lee M.G., Marino C.R., Muallem S., DeMartino G.N., and Thomas P.J. (1999) Dynamic association of proteasomal machinery with centrosome. J Cell Biol. 145, 481–490.

    Article  PubMed  CAS  Google Scholar 

  81. Cummings C.J., Mancini M.A., Antalffy B., DeFranco D.B., Orr H.T., and Zoghbi H.Y. (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19, 148–154.

    Article  PubMed  CAS  Google Scholar 

  82. Chai Y., Koppenhafer S.L., Bonini N.M., and Paulson H.L. (1999) Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J. Neurosci. 19, 10,338–10,347.

    CAS  Google Scholar 

  83. Bruening W., Roy J., Giasson B., Figlewicz D.A., Mushynski W.E., and Durham H.D. (1999) Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J. Neurochem. 72, 693–699.

    Article  PubMed  CAS  Google Scholar 

  84. Stenoien D.L., Cummings C.J., Adams H.P., Mancini M.G., Patel K., DeMartino G.N., et al. (1999) Polyglutamine-expanded androgen receptors forms aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by HDJ-2 chaperone. Hum. Mol. Genet. 8, 731–741.

    Article  PubMed  CAS  Google Scholar 

  85. Warrick J.M., Chan H.Y.E., Gray-Board G.L., Chai Y., Paulson H.L., and Bonini N.M. (1999) Supression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23, 425–428.

    Article  PubMed  CAS  Google Scholar 

  86. Jana N.R., Tanaka M., Wang G.H., and Nukina N. (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum. Mol. Genet. 9, 2009–2018.

    Article  PubMed  CAS  Google Scholar 

  87. Kobayashi Y., Kume A., Li M., Doyu M., Hata M., Ohtsuka K., et al. (2000) Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cell expressing truncated androgen receptor protein with expanded polyglutamine tract. J. Biol. Chem. 275, 8772–8778.

    Article  PubMed  CAS  Google Scholar 

  88. Shinder G.A., Lacourse M.C., Minotti S., and Durham H.D. (2001) Mutant Cu/Zn- superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J. Biol. Chem. 276, 12,791–12,796.

    Article  CAS  Google Scholar 

  89. Lee D.H., Sherman M.Y., and Goldberg A.L. (1996) Involvement of the molecular chaperone Ydj1 in the ubiquitin-dependent degradation of short-lived and abnormal proteins in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 4773–4781.

    PubMed  CAS  Google Scholar 

  90. Ohba M. (1997) Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae. FEBS Lett. 409, 307–311.

    Article  PubMed  CAS  Google Scholar 

  91. Pioro E.P., Ishiyama T., Klinkosz B., et al. (1996) Soc. Neurosci. Abstr. 22, 1942.

    Google Scholar 

  92. Boillée S., Berruti G., Meccariello R., Grannec G., Razan F., Pierantoni R., et al. (2002) Early defect in the expression of mouse sperm DnaJ 1, a member of the DNAJ/heat shock protein 40 chaperone protein family, in the spinal cord of the wobbler mouse, a murine model of motoneuronal degeneration. Neuroscience 113, 825–835.

    Article  PubMed  Google Scholar 

  93. Pieri I., Cifuentes-Diaz C., Oudinet J.P., Blondet B., Rieger F., Gonin S., et al. (2001) Modulation of HSP25 expression during anterior horn motor neuron degeneration in the paralyse mouse mutant. J Neurosci. Res. 65, 247–253.

    Article  PubMed  CAS  Google Scholar 

  94. Junier M.P., Legendre P., Esguerra C.V., Tinel M., Coulpier M., Dreyfus P.A., et al. (1998) Regulation of growth factor gene expression in degenerating motoneurons of the murine mutant wobbler: a cellular patch-sampling/RT-PCR study. Mol. Cell Neurosci. 12, 168–177.

    Article  PubMed  CAS  Google Scholar 

  95. Tsuzaka K., Ishiyama T., Pioro E.P., and Mitsumoto H. (2001) Role of brain-derived neurotrophic factor in wobbler mouse motor neuron disease. Muscle Nerve 24, 474–480.

    Article  PubMed  CAS  Google Scholar 

  96. Junier M., Coulpier M., Forestier N.L., Cadusseau J., Suzuki F., Peschanski M., et al. (1994) Transforming Growth Factor α (TGFα) expression in degenerating motoneurons of the murine mutant wobbler: a neuronal signal for astrogliosis? J. Neurosci. 14, 4206–4216.

    PubMed  CAS  Google Scholar 

  97. Henderson C.E., Camu W., Mettling C., Gouin A., Poulsen K., Karihaloo M., et al. (1993) Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363, 266–270.

    Article  PubMed  CAS  Google Scholar 

  98. Koliatsos V.E., Clatterbuck R.E., Winslow J.W., Cayouette M.H., and Price D.L. (1993) Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron 10, 359–367.

    Article  PubMed  CAS  Google Scholar 

  99. Friedman B., Kleinfeld D., Ip N.Y., Verge V.M.K., Moulton R., Boland P., et al. (1995) BDNF and NT-4/5 neurotrophic influences on injured adult spinal motor neuron. J. Neurosci. 15, 1044–1056.

    PubMed  CAS  Google Scholar 

  100. Junier M.P. (2000) What role(s) for the TGFα in the central nervous system? Prog. Neurobiol. 62, 443–473.

    Article  PubMed  CAS  Google Scholar 

  101. Rabchevsky A.G., Weinitz J.M., Coulpier M., Fages C., Tinel M., and Junier M.P. (1998) A role for transforming growth factor alpha as an inducer of astrogliosis. J. Neurosci. 18, 10,541–10,552.

    CAS  Google Scholar 

  102. Boillée S., Cadusseau J., Couplier M., Grannec G., and Junier M.P. (2001) Transforming growth factor α: a promoter of motoneuron survival of potential biological relevance. J. Neurosci. 21, 7079–7088.

    PubMed  Google Scholar 

  103. Lisovoski F., Blot S., Lacombe J.P., Dreyfus P.A., and Junier M.P. (1997) Transforming growth factor alpha expression as a response of murine motor neurons to axonal injury and mutation-induced degeneration. J. Neuropathol. Exp. Neurol. 56, 459–471.

    PubMed  CAS  Google Scholar 

  104. Kobayashi N.R., Bedard A.M., Hincke M.T., and Tetzlaff W. (1996) Increased expression of BDNF and trkB mRNA in rat facial motoneurons after axotomy. Eu. J. Neurosci. 8, 1018–1029.

    Article  CAS  Google Scholar 

  105. Kou S.Y., Chiu A.Y., and Patterson P.H. (1995) Differential regulation of motor neuron survival and choline acetyltransferase expression following axotomy. J. Neurobiol. 27, 561–572.

    Article  PubMed  CAS  Google Scholar 

  106. Lowrie M.B. and Vrbova G. (1992) Dependence of postnatal motoneurones on their targets: review and hypothesis. Trends Neurosci. 15, 80–84.

    Article  PubMed  CAS  Google Scholar 

  107. Schlomann U., Rathke-Hartlieb S., Yamamoto S., Jockusch H., and Bartsch J.W. (2000) Tumor Necrosis Factor α induces a metalloprotease-Disintegrin, ADAM8 (CD 156): implications for neuron-glia interactions during neurodegeneration. J. Neurosci. 20, 7964–7971.

    PubMed  CAS  Google Scholar 

  108. Pernas-Alonso R., Schaffner A.E., Hansen C.T., Barker J.L., and Porzio U.d. (1995) Acetylcholine esterase and peripherin mRNA level decrease in wobbler mouse. Neuroreport 6, 597–600.

    Article  PubMed  CAS  Google Scholar 

  109. Popper P., Farber D.B., Micevych P.E., Minoofar K., and Bronstein J.M. (1997) TRPM-2 expression and Tunel staining in neurodegenerative disease: studies in the wobbler and rd mice. Exp. Neurol. 143, 246–254.

    Article  PubMed  CAS  Google Scholar 

  110. Gonzalez Deniselle M.C., Gonzales S.L., Lima A.E., Wilkin G., and Nicola A.F.D. (1999) The 21-aminosteroid U-74389F attenuates hyperexpression of GAP-43 and NAPDH-diaphorase in the spinal cord of wobbler mouse, a model for amyotrophic lateral scerosis. Neurochem. Res. 24, 1–8.

    Article  PubMed  CAS  Google Scholar 

  111. Gonzalez Deniselle M.C., Grillo C.A., Gonzalez S., Roig P., and Nicola A.F.D. (1999) Evidence for down-regulation of GAP-43 mRNA in wobbler mouse spinal motoneurons by corticosterone and a 21-aminosteroid. Brain Res. 841, 78–84.

    Article  PubMed  CAS  Google Scholar 

  112. Clowry G.L. and mcHanwell S. (1996) Expression of nitric oxide synthase by motor neurones in the spinal cord of the mutant mouse wobbler. Neurosci. Lett. 215, 177–180.

    Article  PubMed  CAS  Google Scholar 

  113. Salcedo R.M., Festoff B.W., and Citron B.A. (1998) Quantitative Reverse Transcriptase PCR to gauge increased protease-activated receptor 1 (PAR-1) mRNA copy numbers in the wobbler mutant mouse. J. Mol. Neurosci. 10, 113–119.

    PubMed  CAS  Google Scholar 

  114. Turgeon V.L., Lloyd E.D., Wang S., Festoff B.W., and Houenou L.J. (1998) Thrombin perturbs neurite outgrowth and induces apoptotic cell death in enriched chick spinal motoneuron cultures through caspase activation. J. Neurosci. 18, 6882–6891.

    PubMed  CAS  Google Scholar 

  115. Festoff B.W., D’Andrea M.R., Citron B.A., Rm R.M.S., Smirnova I.V., and Andrade-Gordon P. (2000) Motor neuron cell death in wobbler mutant mice follows overexpression of the G-protein-coupled, protease-activated receptor for thrombin. Mol. Med. 6, 410–429.

    PubMed  CAS  Google Scholar 

  116. Murakami T., Mastaglia F.L., and Bradley W.G. (1980) Reduced protein synthesis in the spinal anterior horn neurons in wobbler mouse mutant. Exp. Neurol. 67, 423–432.

    Article  PubMed  CAS  Google Scholar 

  117. Murakami T., Mastaglia F.L., Mann D.M.A., and Bradley W.G. (1981) Abnormal RNA metabolism in spinal motor neurons in the wobbler mouse. Muscle Nerve 4, 407–412.

    Article  PubMed  CAS  Google Scholar 

  118. Brooks B.R., Lust W.D., Andrews J.M., and Engel W.K. (1978) Decreased spinal cord cGMP in murin (wobbler) spontaneous lower motor neuron degeneration. Arch. Neurol. 35, 590–591.

    PubMed  CAS  Google Scholar 

  119. Krieger C., Perry T.L., Hansen S., and Honoré T. (1991) The wobbler mouse: amino acid contents in brain and spinal cord. Brain Res. 551, 142–144.

    Article  PubMed  CAS  Google Scholar 

  120. Hirsch H.E., Andrews J.M., and Parks M.E. (1974) Acid hydrolases and other enzymes in secondary demyelination: a quantitative histochemical study in the wobbler mouse. J. Neurochem. 23, 935–941.

    Article  PubMed  CAS  Google Scholar 

  121. Court J.A., McDermott J.R., Gibson A.M., Marshall E., Bloxham C.A., Perry R.H., et al. (1987) Raised Thyrotropin-Releasing Hormone, pyroglutamyl aminopeptidase, and proline endopeptidase are present in the spinal cord of wobbler mice but not in human motor neurone disease. J. Neurochem. 49, 1084–1090.

    Article  PubMed  CAS  Google Scholar 

  122. Chelmicka-Schorr E., Sportiello M., Antel J.P., and Arnason B.G.W. (1982) Acid protease activity in spinal cord and muscle in wobbler mouse. J. Neurol. Sci. 56, 141–145.

    Article  PubMed  CAS  Google Scholar 

  123. Gonzalez Deniselle M.C., Gonzalez S., Piroli G., Ferrini M., Lima A.E., and Nicola A.F.D. (1997) Glucocorticoid receptors and actions in the spinal cord of the wobbler mouse, a model for neurodegenerative disease. J. Steroid Biochem. Mol. Biol. 60, 205–213.

    Article  PubMed  CAS  Google Scholar 

  124. Yung K.K.L., Tang F., Fielding R., Du Y.H., and Vacca-Galloway L.L. (1992) Alteration in the levels of thyrotropin releasing hormone, substance P and enkephalins in the spinal cord, brainstem, hypothalamus and midbrain of the wobbler mouse at different stages of the motoneuron disease. Neuroscience 50, 209–222.

    Article  PubMed  CAS  Google Scholar 

  125. Yung K.K.L., Tang F., and Vacca-Galloway L.L. (1994) Alterations in acetylcholinesterase and choline acetyltransferase activities and neuropeptide levels in the ventral spinal cord of the wobbler mouse during inherited motoneuron disease. Brain Res. 638, 337–342.

    Article  PubMed  CAS  Google Scholar 

  126. Tang F., Cheung A. and Vacca-Galloway L.L. (1990) Measurement of neuropeptides in the brain and spinal cord of wobbler mouse: a model for motoneuron disease. Brain Res. 518, 329–333.

    Article  PubMed  CAS  Google Scholar 

  127. Yung K.K.L., Tang F., and Vacca-Galloway L.L. (1992) Decrease of enkephalins in cerebellum during wobbler mouse motoneuron disease. Brain Res. 599, 175–180.

    Article  PubMed  CAS  Google Scholar 

  128. Deng Y.P., Li X.S., Zhang S.H., and Vacca-Galloway L.L. (1996) Changes in receptor levels from thyrotropin releasing hormone, serotonin, and substance P in cervical spinal cord of wobbler mouse: a quantitative autoradiography study during early and late stages of the motoneuron disease. Brain Res. 725, 49–60.

    PubMed  CAS  Google Scholar 

  129. Tomiyama M., Kannari K., Nunomura J., Oyama Y., Takebe K., and Matsunaga M. (1994) Quantitative autoradiographic distribution of glutamate receptors in the cervical segment of the spinal cord of wobbler mouse. Brain Res. 650, 353–357.

    Article  PubMed  CAS  Google Scholar 

  130. Blondet B., Barlovatz-Meimon G., Festoff B.W., Soria C., Soria J., Rieger F., et al. (1992) Plasminogen activators in the neuromuscular system of the wobbler mutant mouse. Brain Res. 580, 303–310.

    Article  PubMed  CAS  Google Scholar 

  131. Shi J. and Vacca-Galloway L.L. (1993) Thyrotropin-releasing hormone (TRH) neurons sprout in cervical spinal cord of wobbler mouse. Brain Res. 626, 83–89.

    Article  PubMed  CAS  Google Scholar 

  132. Zhang Y.Q. and Vacca-Galloway L.L. (1992) Decreased immunoreactive (IR) calcitonin gene-related peptide correlates with sprouting of IR-peptidergic and serotoninergic neuronal processes in spinal cord and brain nuclei from the wobbler mouse during motoneuron disease. Brain Res. 587, 169–177.

    Article  PubMed  CAS  Google Scholar 

  133. Shultz L.D., Sweet H.O., Davisson M.T., and Coman D.R. (1982) “Wasted”, a new mutant of the mouse with abnormalities characteristic of ataxia telangiectasia. Nature 297, 402–404.

    Article  PubMed  CAS  Google Scholar 

  134. Chambers D.M., Peters J., and Abbott C.M. (1998) The lethal mutation of the mouse wasted (wst) is a deletion that abolishes expression of a tissue-specific isoform of translation elongation factor 1alpha, encoded by the Eef1a2 gene. Proc. Natl. Acad. Sci. USA 95, 4463–4468.

    Article  PubMed  CAS  Google Scholar 

  135. Gilmore E.C., Nowakowski R.S., Caviness V.S.J., and Herrup K. (2000) Cell birth, cell death, cell diversity and DNA breaks: how do they all fit togather? Trends Neurosci. 23, 100–105.

    Article  PubMed  CAS  Google Scholar 

  136. Bird M.T., Jr E.S., Koestner A., and Reinglass J. (1971) The wobbler mouse mutant: an animal model of hereditary motor system disease. Acta Neuropathol. (Berl). 19, 39–50.

    Article  CAS  Google Scholar 

  137. Scidmore M.A., Okamura H.H., and Rose M.D. (1993) Genetic interactions between KAR2 and SEC63, encoding eukaryotic homologues of DnaK and DnaJ in the endoplasmic reticulum. Mol. Biol. Cell 4, 1145–1159.

    PubMed  CAS  Google Scholar 

  138. Sanders S.L., Whitfield K.M., Vogel J.P., Rose M.D., and Schekman R.W. (1992) Sec61p and BIP directly facilitate polypeptide translocation into the ER. Cell 69, 353–365.

    Article  PubMed  CAS  Google Scholar 

  139. Oda K., Wada I., Takami N., Fujiwara T., Misumi Y., and Ikehara Y. (1996) Bip/GRP78 but not calnexin associates with a precursor of glycosylphosphatidylinositol- anchored protein. Biochem. J. 316, 623–630.

    PubMed  CAS  Google Scholar 

  140. Blot S., Poirier C., and Dreyfus P.A. (1995) The mouse mutation muscle deficient (mdf) is characterized by a progressive motoneuron disease. J. Neuropathol. Exp. Neurol. 54, 812–825.

    Article  PubMed  CAS  Google Scholar 

  141. Woloschak G.E., Rodriguez M., and Krco C.J. (1987) Characterization of immunologic and neuropathologic abnormalities in wasted mice. J. Immunol. 138, 2493–2499.

    PubMed  CAS  Google Scholar 

  142. Mitsumoto H., McQuarrie I.G., Kurahashi K., and Sunohara N. (1990) Histometric characteristics and regenerative capacity in wobbler mouse motor neuron disease. Brain 113, 497–507.

    Article  PubMed  Google Scholar 

  143. La Vail J.H., Koo E.H., and Dekker N.P. (1987) Motoneuron loss in the abducens nucleus of wobbler mice. Brain Res. 404, 127–132.

    Article  Google Scholar 

  144. Biscoe T.J. and Lewkowicz S.J. (1982) Quantitative light and electron microscopic studies on the ventral roots of the wobbler mutant mouse. Q. J. Exp. Physiol. 67, 543–555.

    PubMed  CAS  Google Scholar 

  145. Lewkowicz S.J. (1979) Studies on the localization of the lesion in the wobbler mutant mouse. J. Physiol. (Lond). 289, 39P.

    Google Scholar 

  146. Mitsumoto H. and Gambetti P. (1986) Impaired slow axonal transport in wobbler mouse motor neuron disease. Ann Neurol. 19, 36–43.

    Article  PubMed  CAS  Google Scholar 

  147. Mitsumoto H., Kurahashi K., Jacob J.M., and McQuarrie I.G. (1993) Retardation of fast axonal transport in wobbler mice. Muscle Nerve 16, 542–547.

    Article  PubMed  CAS  Google Scholar 

  148. Mitsumoto H., Ferut A.L., Kurahashi K., and McQuarrie I.G. (1990) Impairment of retrograde axonal transport in wobbler mouse motor neuron disease. Muscle Nerve 13, 121–126.

    Article  PubMed  CAS  Google Scholar 

  149. Mitsumoto H. (1985) Axonal regeneration in wobbler motor neuron disease: quantitative histologic and axonal transport studies. Muscle Nerve 8, 44–51.

    Article  PubMed  CAS  Google Scholar 

  150. Mitsumoto H. and Boggs A.L. (1987) Vacuolated anterior horn cells in wobbler mouse motor neuron disease: peripheral axons and regenerative capacity. J. Neuropathol. Exp. Neurol. 46, 214–222.

    PubMed  CAS  Google Scholar 

  151. Ma W. and Vacca-Galloway L.L. (1992) Spiny interneurons identified in the normal mouse spinal cord show alteration in the wobbler mouse: a model for inherited motoneuron disease. Restorative Neurology and Neuroscience 4, 381–392.

    Google Scholar 

  152. Campbell M.J. (1971) Ultrastructural observations on the wobbler mouse. J. Neuropathol. Exp. Neurol. 31, 190.

    Google Scholar 

  153. Leigh P.N. and Swash M. (1991) Cytoskeletal pathology in motor neuron disease. Adv. Neurol. 56, 115–124.

    PubMed  CAS  Google Scholar 

  154. Lowe J., Mayer R.J., and Landon M. (1993) Ubiquitin in neurodegenerative diseases. Brain Pathol. 3, 55–65.

    PubMed  CAS  Google Scholar 

  155. Kuan C.-Y., Roth K.A., Flavell R.A., and Rakic P. (2000) Mechanisms of programed cell death in the developping brain. Trends Neurosci. 23, 291–297.

    Article  PubMed  CAS  Google Scholar 

  156. Merry D.E. and Korsmeyer S.J. (1997) Bcl-2 gene family in the nervous system. Annu. Rev. Neurosci. 20, 245–267.

    Article  PubMed  CAS  Google Scholar 

  157. Cory S. and Adams J.M. (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647–656.

    Article  PubMed  CAS  Google Scholar 

  158. Martinou J.C., Dubois-Dauphin M., Staple J.K., Rodriguez I., Frankowski H., Missotten M., et al. (1994) Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13, 1017–1030.

    Article  PubMed  CAS  Google Scholar 

  159. Aït-Ikhlef A., Murawsky M., Blondet B., Hantaz-Ambroise D., Martinou J.C., and Rieger F. (1995) The motoneuron degeneration in the wobbler mouse is independent of the overexpression of a Bcl2 transgene in neurons. Neurosci. Lett. 199, 163–166.

    Article  PubMed  Google Scholar 

  160. Gehrmann J., Schoen S.W., and Kreutzberg G.W. (1991) Lesion of the rat entorhinal cortex leads to rapid microglial reaction in the dentate gyrus. A light and electron microscopical study. Acta Neuropathol. 82, 442–455.

    Article  PubMed  CAS  Google Scholar 

  161. Gehrmann J., Gehrmann B.B.R., Gehrmann C.W., Gehrmann A.H.K., and Gehrmann W.K.G. (1995) Reactive microglia in cerebral ischaemia: an early mediator of tissue damage? Neuropathol. Appl. Neurobiol. 21, 277–289.

    PubMed  CAS  Google Scholar 

  162. Chu-Wang I.W. and Oppenheim R.W. (1978) Cell death of motoneurons in the chick spinal cord. J. Comp. Neurol. 177, 33–58.

    Article  PubMed  CAS  Google Scholar 

  163. Pilar G. and Landmesser L. (1976) Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia. J. Cell Biol. 68, 339–356.

    Article  PubMed  CAS  Google Scholar 

  164. Clarke P.G.H. (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol. 181, 195–213.

    Article  PubMed  CAS  Google Scholar 

  165. Oppenheim R.W., Flavell R.A., Vinsant S., Prevette D., Kuan C.-Y., and Rakic P. (2001) Programmed cell death of developping mammalian neurons after genetic deletion of caspases. J. Neurosci. 21, 4752–4760.

    PubMed  CAS  Google Scholar 

  166. Boillée S., Viala L., Peschanski M., and Dreyfus P.A. (2001) Differential microglial response to progressive neurodegeneration in the murine mutant wobbler. Glia 33, 277–287.

    Article  PubMed  Google Scholar 

  167. Benowitz L.I. and Routtenberg A. (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20, 84–91.

    Article  PubMed  CAS  Google Scholar 

  168. Melki J., Blondet B., Pinçon-Raymond M., Dreyfus P., and Rieger F. (1991) Generalized molecular defects of the neuromuscular junction in skeletal muscle of the wobbler mutant mouse. Neurochem. Int. 18, 425–433.

    Article  CAS  PubMed  Google Scholar 

  169. Reiter R.J. (1995) Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J. 9, 526–533.

    PubMed  CAS  Google Scholar 

  170. Liu P.K., Robertson C.S., and Valadka A. (2002) The association between neuronal nitric oxide synthase and neuronal sensitivity in the brain after brain injury. Ann. NY Acad. Sci. 962, 226–241.

    Article  PubMed  CAS  Google Scholar 

  171. Beal M.F., Ferrante R.J., Browne S.E., Matthews R.T., Kowall N.W., and Brown R.H. Jr (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. 42, 646–654.

    Article  Google Scholar 

  172. Brown R.H.J. (1995) Superoxide dismutase in familial amyotrophic lateral sclerosis: models for gain of function. Curr. Opin. Neurobiol. 5, 841–846.

    Article  PubMed  CAS  Google Scholar 

  173. Bowling A., Schulz J.B., Brown R.H.J., and Beal M.F. (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J. Neurochem. 61, 2322–2325.

    Article  PubMed  CAS  Google Scholar 

  174. Moore P.K. and Handy R.L. (1997) Selective inhibitors of neuronal nitric oxide synthase—is no NOS really good NOS for the nervous system? Trends Pharmacol. Sci. 18, 204–211.

    PubMed  CAS  Google Scholar 

  175. Clowry G.J. (1993) Axotomy induces NAPDH diaphorase activity in neonatal but not adult motoneurones. Neuroreport 5, 361–364.

    Article  PubMed  CAS  Google Scholar 

  176. Wu W. (1993) Expression of nitric oxide synthase (NOS) in injured CNS neurons as shown by histochemistry for NAPDH-diaphorase. Exp. Neurol. 120, 1–7.

    Article  Google Scholar 

  177. Wu Y., Li Y., Liu H., and Wu W. (1995) Induction of nitric oxide synthase and motoneuron death in newborn and early postnatal rats following spinal root avulsion. Neurosci. Lett. 194, 109–112.

    Article  PubMed  CAS  Google Scholar 

  178. Wu W. and Li L. (1993) Inhibition of nitric oxide synthase reduces motoneuron death due to spinal root avulsion. Neurosci. Lett. 153, 121–124.

    Article  PubMed  CAS  Google Scholar 

  179. Wu W., Han K., Li L., and Schinco F.P. (1994) Implantation of PNS graft inhibits the induction of neuronal nitric oxide synthase and enhances the survival of spinal motoneurons following root avulsion. Exp. Neurol. 129, 335–339.

    Article  PubMed  CAS  Google Scholar 

  180. Wu W., Liuzzi F.J., Schinco F.P., Depto A.S., Li Y., Mong J.A., et al. (1994) Neuronal nitric oxide synthase is induced in spinal neurons by traumatic injury. Neuroscience, 61, 719–726.

    Article  PubMed  CAS  Google Scholar 

  181. Ikeda K., Iwasaki Y., and Kinoshita M. (1998) Neuronal nitric oxide synthase inhibitor, 7-nitroindazole, delays motor dysfunction and spinal motoneuron degeneration in the wobbler mouse. J. Neurol. Sci. 160, 9–15.

    Article  PubMed  CAS  Google Scholar 

  182. Ikeda K., Kinoshita M., Iwasaki Y., Tagaya N., and Shiojima T. (1995) Lecithinized superoxide dismutase retards wobbler mouse motoneuron disease. Neuromusc. Disord. 5, 383–390.

    Article  PubMed  CAS  Google Scholar 

  183. Henderson J.T., Javaheri M., Kopko S., and Roder J.C. (1996) Reduction of lower motor neuron degeneration in wobbler mice by N-Acetyl-L-Cysteine. J. Neurosci. 16, 7574–7582.

    PubMed  CAS  Google Scholar 

  184. Eddleston M. and Mucke L. (1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54, 15–36.

    Article  PubMed  CAS  Google Scholar 

  185. Ridet J.L., Malhotra S.K., Privat A., and Gage F.H. (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends. Neurosci. 20, 570–577.

    Article  PubMed  CAS  Google Scholar 

  186. Marty S., Dusart I., and Peschanski M. (1991) Glial changes following an excitotoxic lesion in the CNS — I. Microglia/macrophages. Neuroscience 45, 529–539.

    Article  PubMed  CAS  Google Scholar 

  187. Norenberg M.D. (1994) Astrocyte responses to CNS injury. J. Neuropathol. Exp. Neurol. 53, 213–220.

    PubMed  CAS  Google Scholar 

  188. Streit W.J., Walter S.A., and Pennell N.A. (1999) Reactive microgliosis. Prog. Neurobiol. 57, 563–581.

    Article  PubMed  CAS  Google Scholar 

  189. Laage S., Zobel G., and Jockusch H. (1988) Astrocyte overgrowth in the brain stem and spinal cord of mice affected by spinal atrophy, wobbler. Dev. Neurosci. 10, 190–198.

    PubMed  CAS  Google Scholar 

  190. Hantaz-Ambroise D., Blondet B., Murawsky M., and Rieger F. (1994) Abnormal astrocyte differentiation and defective cellular interactions in wobbler mouse spinal cord. J. Neurocytol. 23, 179–192.

    Article  PubMed  CAS  Google Scholar 

  191. Dahl D. and Bigmani A. (1974) Heterogeneity of the glial fibrillary acidic protein in gliosed human brains. J. Neurol. Sci. 23, 551–563.

    Article  PubMed  CAS  Google Scholar 

  192. Bignami A. and Dahl D. (1976) The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte-specific protein (GFAP) in mammalian and submammalian vertebrates. Neuropathol. Appl. Neurobiol. 2, 99–111.

    Google Scholar 

  193. Eng L.F. (1988) Regulation of glial intermediate filaments in astrogliosis. In The Biochemical Pathology of Astrocytes (Norenberg M.D., Hertz L., and Schousboe A., eds.), Alan R. Liss, New York, NY, pp. 79–90.

    Google Scholar 

  194. Mesulam M.M. (1978) Tetrametyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J. Histochem. Cytochem. 26, 106–117.

    PubMed  CAS  Google Scholar 

  195. Aït-Ikhlef A., Hantaz-Ambroise D., Jacque C., Belkadi L., and Rieger F. (1999) Astrocyte proliferation induced by wobbler astrocyte conditioned medium is blocked by Tumor Necrosis Factor-α (TNF-α) and interleukin-1β (IL-1β) neutralizing antibodies in vitro. Cell Mol. Biol. 45, 393–400.

    PubMed  Google Scholar 

  196. Lukes A., Mun-Bryce S., Mun-Bryce M.L., and Mun-Bryce G.A.R. (1999) Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Mol. Neurobiol. 19, 267–284.

    PubMed  CAS  Google Scholar 

  197. Rathke-Hartlieb S., Budde P., Ewert S., Schlomann U., Staege M.S., Jockusch H., et al. (2000) Elevated expression of membrane type 1 metalloproteinase (MT1-MMP) in reactive astrocytes following neurodegeneration in mouse central nervous system. FEBS Lett. 481, 227–234.

    Article  PubMed  CAS  Google Scholar 

  198. Rothstein J.D. (1996) Excitotoxicity hypothesis. Neurology 47, S19-S25.

    PubMed  CAS  Google Scholar 

  199. Choi D.W. (1992) Excitotoxic cell death. J. Neurobiol. 23, 1261–1276.

    Article  PubMed  CAS  Google Scholar 

  200. Blondet B., Hantaz-Ambroise D., Aït-Ikhlief A., Cambier D., Murawsky M., and Rieger F. (1995) Astrocytosis in wobbler mouse spinal cord involves a population of astrocytes which is glutamine synthetase-negative. Neurosci. Lett. 183, 179–182.

    Article  PubMed  CAS  Google Scholar 

  201. Bigini P., Bastone A., and Mennini T. (2001) Glutamate transporters in the spinal cord of the wobbler mouse. Neuroreport 12, 1815–1820.

    Article  PubMed  CAS  Google Scholar 

  202. Gonzalez Deniselle M.C., Lavista-Llanos S., Ferrini M.G., Lima A.E., Roldan A.G., and Nicola A.F.D. (1999) In vitro differences between astrocytes of control and wobbler mice spinal cord. Neurochem. Res. 24, 1535–1541.

    Article  CAS  Google Scholar 

  203. Aït-Ikhlef A., Hantaz-Ambroise D., Henderson C.E., and Rieger F. (2000) Influence of factors secreted by wobbler astrocytes on neuronal and motoneuronal survival. J. Neurosci. Res. 59, 100–106.

    Article  PubMed  Google Scholar 

  204. Pramatarova A., Laganiere J., Roussel J., Brisebois K., and Rouleau G.A. (2001) Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J. Neurosci. 21, 3369–3374.

    PubMed  CAS  Google Scholar 

  205. Gong Y.H., Parsadanian A.S., Andreeva A., Snider W.D., and Elliott J.L. (2000) Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J. Neurosci. 20, 660–665.

    PubMed  CAS  Google Scholar 

  206. Zhu Y., Romero M.I., Ghosh P., Ye Z., Charnay P., Rushing E.J., et al. (2001) ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev. 15, 859–876.

    Article  PubMed  CAS  Google Scholar 

  207. Kalla R., Liu Z., Xu S., Koppius A., Imai Y., Kloss C.U.A., et al. (2001) Microglia and the early phase of immune surveillance in the axotomized facial motor nucleus: impaired microglial activation and lymphocyte recruitment but no effect on neuronal survival or axonal regeneration in macrophage-colony stimulating factor-deficient mice. J. Comp. Neurol. 436, 182–201.

    Article  PubMed  CAS  Google Scholar 

  208. Giulian D., Corpuz M., Chapman S., Mansouri M., and Robertson C. (1993) Reactive mononuclear phagocytes release neurotoxins after ischemic and traumatic injury to the central nervous system. J. Neurosci. Res. 36, 681–693.

    Article  PubMed  CAS  Google Scholar 

  209. Fawcett J.W. and Geller H.M. (1998) Regeneration in the CNS: optimism mounts. Trends Neurosci. 21, 179–180.

    Article  PubMed  CAS  Google Scholar 

  210. Mallat M. and Chamak B. (1994) Brain macrophages: neurotoxic or neurotrophic effector cells? J. Leukoc. Biol. 56, 416–422.

    PubMed  CAS  Google Scholar 

  211. Kreutzberg G.W. (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312–318.

    Article  PubMed  CAS  Google Scholar 

  212. Baulac M., Rieger F., and Meninger V. (1983) The loss of motorneurons corresponding to specific muscles in the wobbler mutant mouse. Neurosci. Lett. 37, 99–104.

    Article  PubMed  CAS  Google Scholar 

  213. Ma W. and Vacca-Galloway L.L. (1991) Reduced branching and length of dendrites detected in cervical spinal cord motoneurons of wobbler mouse, a model for inherited motoneuron disease. J. Comp. Neurol. 311, 210–222

    Article  PubMed  CAS  Google Scholar 

  214. Newbery H.J. and Abbott C.M. (2001) Of mice, men and motor neurons. Trends Genet. 17, S2-S6.

    Article  PubMed  CAS  Google Scholar 

  215. Frugier T., Nicole S., Cifuente-Diaz C., and Melki J. (2002) The molecular bases of spinal muscular atrophy. Curr. Opin. Gen. Dev. 12, 294–298.

    Article  CAS  Google Scholar 

  216. Jessell T.M. (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29.

    Article  PubMed  CAS  Google Scholar 

  217. Lee S.K. and Pfaff S.L. (2001) Transcriptional networks regulating neuronal identity in the developing spinal cord. Nat. Neurosci. 4, 1183–1191.

    Article  PubMed  CAS  Google Scholar 

  218. La Vail J.H. and Irons K.P. (1988) Abnormal neuromuscular junctions in the lateral rectus of wobbler mice. Brain Res. 463, 78–89.

    Article  Google Scholar 

  219. Toursel T., Bastide B., Stevens L., Rieger F., and Mounier Y. (2000) Alterations in contractile properties and expression of myofibrillar proteins in wobbler mouse muscle. Exp. Neurol. 162, 311–320.

    Article  PubMed  CAS  Google Scholar 

  220. Sedehizade F., Klocke R., and Jockusch H. (1997) Expression of nerve-regulated genes in muscles of mouse mutants affected by spinal muscular atrophies and muscular dystrophies. Muscle Nerve 20, 186–194.

    Article  PubMed  CAS  Google Scholar 

  221. Smith M.E. and Hughes S. (1994) POMC neuropeptides and their receptors in the neuromuscular system of wobbler mice. J. Neurochem. Sci. 124 Suppl, 56–58.

    Google Scholar 

  222. Hughes S. and Smith M.E. (1989) Proopiomelanocortin-derived peptides in mice with motoneurone disease. Neurosci. Lett. 103, 169–173.

    Article  PubMed  CAS  Google Scholar 

  223. Mandler R.N. and Baca J.M. (1992) Muscle lactate dehydrogenase activity is decreased in murin motor neuron disease. Brain Res. 576, 337–338.

    Article  PubMed  CAS  Google Scholar 

  224. Harris J.B. and Ward M.R. (1974) A comparative study of “denervation” in muscles from mice with inherited progressive neuromuscular disorders. Exp. Neurol. 42, 169–180.

    Article  PubMed  CAS  Google Scholar 

  225. Abe K., Morita S., Kikuchi T., and Itoyama Y. (1997) Protective effect of a novel free radical scavenger, OPC-14117, on wobbler mouse motor neuron disease. J. Neurosci. Res. 48, 63–70.

    Article  PubMed  CAS  Google Scholar 

  226. Mitsumoto H., Ikeda K., Holmlund T., Geene T., Cedarbaum J.M., Wong V., et al. (1994) The effects of Ciliary Neurotrophic Factor on motor dysfunction in wobbler mouse motor neuron disease. Ann. Neurol. 36, 142–148.

    Article  PubMed  CAS  Google Scholar 

  227. Ikeda K., Wong V., Holmlund T.H., Geene T., Cedarbaum J.M., Lindsay R.M., et al. Mitsumoto H. (1995) Histometric effects of ciliary neurotrophic factor in wobbler mouse motor neuron disease. Ann. Neurol. 37, 47–54.

    Article  PubMed  CAS  Google Scholar 

  228. Ikeda K., Klinkosz B., Geene T., Cedarbaum J.M., Wong V., Lindsay R.M., et al. (1995) Effects of Brain-derived Neurotrophic Factor on motor dysfunction in wobbler mouse motor neuron disease. Ann. Neurol. 37, 505–511.

    Article  PubMed  CAS  Google Scholar 

  229. Mitsumoto H., Ikeda K., Klinkosz B., Cedarbaum J.M., Wong V., and Lindsay R. (1994) Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265, 1107–1110.

    Article  PubMed  CAS  Google Scholar 

  230. Ikeda K., Iwasaki Y., Tagaya N., Shiojima T., and Kinoshita M. (1995) Neuroprotective effect of cholinergic differentiation factor/Leukemia inhibitory factor on wobbler murine motor neuron disease. Muscle Nerve 18, 1344–1347.

    Article  PubMed  CAS  Google Scholar 

  231. Ikeda K., Kinoshita M., Tagaya N., Shiojima T., Taga T., Yasukawa K., et al. (1996) Coadministration of Interleukin-6 (IL-6) and soluble IL-6 receptor delays progression of wobbler mouse motor neuron disease. Brain Res. 726, 91–97.

    Article  PubMed  CAS  Google Scholar 

  232. Hantaï D., Akaaboune M., Lagord C., Murawsky M., Houenou L.J., Festoff B.W., et al. (1995) Beneficial effects of insulin-like growth factor-I on wobbler mouse motoneuron disease. J. Neurol. Sci. 129 Suppl, 123–126.

    Google Scholar 

  233. Vergani L., Finco C., Giulio A.M.D., Muller E.E., and Gorio A. (1997) Effects of low doses of glycosaminoglycans and insulin-like growth factor-I on motor neuron disease in wobbler mouse. Neurosci. Lett. 228, 41–44.

    Article  PubMed  CAS  Google Scholar 

  234. Vergani L., Losa M., lesma E., Giulio A.M.D., Torsello A., Müller E.E., et al. (1999) Glycosaminoglycans boost insulin-like growth factor-I-promoted neuroprotection: blockade of motor neuron death in the wobbler mouse. Neuroscience 93, 565–572.

    Article  PubMed  CAS  Google Scholar 

  235. Ikeda K., Iwasaki Y., Tagaya N., Shiojima T., Kobayashi T., and Kinoshita M. (1995) Neuroprotective effect of basic fibroblast growth factor on wobbler mouse motor neuron disease. Neurol. Res. 17, 445–448.

    PubMed  CAS  Google Scholar 

  236. Mitsumoto H., Klinkosz B., Pioro E.P., Tsuzaka K., Ishiyama T., O’Leary R.M., et al. (2001) Effects of cardiotrophin-1 (CT-1) in a mouse motor neuron disease. Muscle Nerve 24, 769–777.

    Article  PubMed  CAS  Google Scholar 

  237. Krieger C., Perry T.L., Hansen S., Mitsumoto H., and Honoré T. (1992) Excitatory amino acid receptor antagonist in murin motoneuron disease (the wobbler mouse). Can. J. Neurol Sci. 19, 462–465.

    PubMed  CAS  Google Scholar 

  238. Ikeda K., Iwasaki Y., Kinoshita M., Marubuchi S., and Ono S. (2000) T-588, a novel neuroprotective agent, delays progression of neuromuscular dysfunction in wobbler mouse motoneuron disease. Brain Res. 858, 84–91.

    Article  PubMed  CAS  Google Scholar 

  239. Kozachuk W.E., Mitsumoto H., Salanga V.D., Beck G.J., and Wilber J.F. (1987) Thyrotropin-releasing hormone (TRH) in murine motor neuron disease (the wobbler mouse). J. Neurol. Sci. 78, 253–260.

    Article  PubMed  CAS  Google Scholar 

  240. Ikeda K., Iwasaki Y., and Kinoshita M. (1998) JTP-2942, a novel thyrotropin-releasing hormone analogue, protects against spinal motor neuron degeneration in the wobbler mouse. Neurosci. Lett. 250, 9–12.

    Article  PubMed  CAS  Google Scholar 

  241. Lange D.J., Good P.F., and Bradley W.G. (1983) A therapeutic trial of gangliosides and thymosin in the wobbler mouse model of motor neuron disease. J. Neurol. Sci. 61, 211–216.

    Article  PubMed  CAS  Google Scholar 

  242. Bensimon G., Lacombez L., Meninger V., and group T.A.R.s. (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. N. Engl. J. Med. 330, 585–591.

    Article  PubMed  CAS  Google Scholar 

  243. Borasio G.D., Robberecht W., Leigh P.N., Emile J., Guiloff R.J., Jerusalem F., et al. (1998) A Placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. European ALS/IGF-I study group. Neurology 51, 583–586.

    PubMed  CAS  Google Scholar 

  244. Desnuelle C., Dib M., Carrel C., and Favier A. (2001) A double-blind, placebo-controlled randomized clinical trial of alpha-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol study group. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2, 9–18.

    Article  PubMed  CAS  Google Scholar 

  245. Group A.C.t.s. (1996) A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. Neurology. 46, 1244–1249.

    Google Scholar 

  246. Group B.S. (1999) A controlled trial of recombinant methionyl human BDNF in ALS: The BDNF study group (phase III). Neurology 52, 1427–1433.

    Google Scholar 

  247. Lacombez L., Bensimon G., N.Leigh P., Guillet P., and Meninger V. (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet 347, 1425–1431.

    Google Scholar 

  248. Lai E.C., Felice K.J., Festoff B.W., Gawel M.J., Gelinas D.F., Kratz R., et al. (1997) Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. The North America ALS/IGF-I study group. Neurology 49, 1621–1630.

    PubMed  CAS  Google Scholar 

  249. Louwerse E.S., Waverling G.J., Bossuyt P.M., Meyjes F.E., and Jong J.M.D. (1995) Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis. Arch. Neurol. 52, 559–564.

    PubMed  CAS  Google Scholar 

  250. Miller R.G., 2nd D.H.M., Gelinas D.F., Dronsky V., Mendoza M., Barohn R.J., et al. (2001) Phase III randomized trial of gabapentin in patients with amyotrophic lateral sclerosis. Neurology 56, 843–848.

    PubMed  CAS  Google Scholar 

  251. Miller R.G., Petajan J.H., Bryan W.W., Armon C., Barohn R.J., Goodpasture J.C., et al. (1996) A placebo-controlled trial of recombinant human ciliary neurotrophic factor (rhCNTF) in amyotrophic lateral sclerosis. Ann. Neurol. 39, 256–260.

    Article  PubMed  CAS  Google Scholar 

  252. Ochs G., Penn R.D., York M., Giess R., Beck M., Tonn J., et al. (2000) A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administrated by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1, 201–206.

    Article  PubMed  CAS  Google Scholar 

  253. Reider C.R. and Paulson G.W. (1997) Lou Gehrig and amyotrophic lateral sclerosis. Is vitamin E to be revisited? Arch. Neurol. 54, 527–528.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Pierre Junier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boillée, S., Peschanski, M. & Junier, MP. The wobbler mouse. Mol Neurobiol 28, 65–106 (2003). https://doi.org/10.1385/MN:28:1:65

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:28:1:65

Index Entries

Navigation