Skip to main content
Log in

Differential coupling of the PAC1 SV1 splice variant on human colonic tumors to the activation of intracellular cAMP but not intracellular Ca2+ does not activate tumor proliferation

  • Receptors
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

PAC1 is a recently cloned and characterized heptahelical, G protein-coupled receptor with high affinity to PACAP-27 and PACAP-38 and is differentially coupled to activate intracellular Ca2+ and cAMP. PAC1 is expressed as four major splice variants, each possessing differential coupling to inositol phosphates and intracellular Ca2+. PAC1 has been shown previously to be expressed and regulate the growth and proliferation of nonsquamous cell lung cancer cells, as well as breast cancer cell lines. PAC1 is expressed on the HCT8 human colon cancer cell line and is coupled to the activation of both intracellular cAMP and Ca2+ with consequent stimulation of growth. In the current study, we contrast the effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on the HCT8 colon cancer cell lines to the HCT116 and FET cell lines wherein PAC1 is expressed as the SV1 or HIP splice variant and is coupled to the activation only of cAMP but not of intracellular Ca2+. These data indicate that human colon tumor cells express PAC1 and are differentially coupled to intracellular signal transduction molecules. The ability to activate both cAMP and Ca2+ appears to be a prerequisite for activation of tumor proliferation, indicating a potentially important factor in how PACAP potentiates the growth of certain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Deutsch P. J. and Sun Y. (1992) The 38-amino acid form of pituitary adenylate cyclase-activating polypeptide stimulates dual signaling cascades in PC12 cells and promotes neurite outgrowth. J. Biol. Chem. 267, 5108–5113.

    PubMed  CAS  Google Scholar 

  • Germano P. M., Stalter J., Le S. V., Wu M., Yamaguchi D. J., Scott D., and Pisegna J. R. (2001) Characterization of the pharmacology, signal transduction and internalization of the fluorescent PACAP ligand, fluor-PACAP, on NIH/3T3 cells expressing PAC1. Peptides 22, 861–866.

    Article  PubMed  CAS  Google Scholar 

  • Harmar A. J., Arimura A., Gozes I., Journot L., Laburthe M., Pisegna J. R., et al. (1998) International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol. Rev. 50, 265–270.

    PubMed  CAS  Google Scholar 

  • Hoshino M., Li M., Zheng L. Q., Suzuki M., Mochizuki T., and Yanaihara N. (1993) Pituitary adenylate cyclase activating peptide and vasoactive intestinal polypeptide: differentiation effects on human neuroblastoma NB-OK-1 cells. Neurosci Lett. 159, 35–38.

    Article  PubMed  CAS  Google Scholar 

  • Le S.V., Yamaguchi D.J., McArdle C.A., Tachiki K, Pisegna J. R., and Germano P. (2002) PAC1 and PACAP expression, signaling, and effect on the growth of HCT8, human colonic tumor cells. Regul. Pept. 109, 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Lyu R., Germano P. M., Choi J. K., Le S. V., and Pisegna J. R. (2000) Identification of an essential amino acid motif within the C-terminus of the pituitary adenylate cyclase-activating polypeptide type 1 receptor that is critical for signal truncation but not for receptor internalization. J. Biol. Chem. 275, 36134–36142.

    Article  PubMed  CAS  Google Scholar 

  • Miampamba M., Germano P. M., Arli S., Wong H. H., Scott D., Tache Y., and Pisegna J. R. (2002) Expression of pituitary adeylate cyclase-activating 16 polypeptide and PACAP type 1 receptor in the rat gastric and colonic myenteric neurons. Regul. Pept. 105, 145–154.

    PubMed  CAS  Google Scholar 

  • Miyata A., Jiang L., Dahl R. R., Kitada C., Kubo K., Fujino M., et al. (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP-38). Biochem. Biophys. Res. Commun. 170, 643–648.

    Article  PubMed  CAS  Google Scholar 

  • Moody T. W., Leyton J., Casibang M., Pisegna J. R., and Jensen R. T. (2002) PACAP-27 tyrosine phosphorylates mitogen activated protein kinase and increases VEGF mRNAs in human lung cancer cells. Regul. Pept. 109, 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Moody T. W., Zia F., and Makheja A. (1993) Pituitary adenylate cyclase activating polypeptide receptors are present on small cell lung cancer cells. Peptides 14, 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Pisegna J. R. and Wank S. A. (1996) Cloning and characterization of the signal transduction of four splice variants of the human pituitary adenylate cyclase activating polypeptide receptor: evidence for dual coupling to adenylate cyclase and phospholipase C. J. Biol. Chem. 271, 17267–17271.

    Article  PubMed  CAS  Google Scholar 

  • Pisegna J. R., Leyton J., Coelho T., Hida T., Jakolew S., Birrer S., et al. (1997) Differential activation of immediate-early gene expression by four splice variants of the human pituitary activating polypeptide receptor: evidence for an activation by PACAP hybrid and the phospholipase C inhibitor U73122. Life Sci. 61, 631–639.

    Article  PubMed  CAS  Google Scholar 

  • Robberecht P., Woussen-Colle M. C., De Neef P., Gourlet P., Buscail L., Vandermeers A., et al. (1991) The two forms of the pituitary adenylate cyclase activating polypeptide (PACAP [1–27] 17 and PACAP [1–38]) interact with distinct receptors on rat pancreatic AR 4-2J cell membranes. FEBS Lett. 286, 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Salomon Y., Londos C., and Rodbell M. (1974) A highly sensitive adenylate cyclase assay. Anal. Biochem. 58, 541–548.

    Article  PubMed  CAS  Google Scholar 

  • Spengler D., Waeber C., Pantaloni C., Holsboer F., Bockaert J., Seeburg P. H., and Journot L. (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365, 170–175.

    Article  PubMed  CAS  Google Scholar 

  • Zeng N., Kang T., Wong H., Walsh J. H., Sachs G. A., and Pisegna J. R. (1999) PACAP type I receptor activation regulates ECL cells and gastric acid secretion. J. Clin. Invest. 104, 1383–1391.

    Article  PubMed  CAS  Google Scholar 

  • Zia F., Fagarasan M., Bitar K., Coy D. H., Pisegna J. R., Wank S. A., and Moody, T. W. (1996) PACAP receptors regulate the growth of non-small cell lung cancer cells. Cancer Res. 55, 4886–4891.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Pisegna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germano, P.M., Le, S.V., Oh, D.S. et al. Differential coupling of the PAC1 SV1 splice variant on human colonic tumors to the activation of intracellular cAMP but not intracellular Ca2+ does not activate tumor proliferation. J Mol Neurosci 22, 83–91 (2004). https://doi.org/10.1385/JMN:22:1-2:83

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:22:1-2:83

Index Entries

Navigation