Skip to main content
Log in

Cytokines and vascular permeability

An in vitro study on human endothelial cells in relation to tumor necrosis factor-α-primed peripheral blood mononuclear cells

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Tumor response is strongly enhanced by addition of tumor necrosis factor (TNF)-α to chemotherapy in localregional perfusion. TNF primarily targets the endothelial lining of the tumor-associated vasculature, thereby improving permeability of the vascular bed. This augments uptake of the coadministered chemotherapeutic drug in the tumor. In vitro, however the high dose of TNF did not directly affect endothelial cells, indicating that other factors, most likely TNF-induced, are involved in the antivascular activities observed in vivo. This is supported by in vivo studies in our laboratory in which depletion of leukocytes resulted in loss of the antivascular activity of TNF. The present study examined the role of peripheral blood mononuclear cells (PBMCs) on endothelial cells by exposing them to TNF, interferon (IFN)-γ, and PBMCs. We observed morphological changes of the endothelial cells when exposed to TNF in combination with IFN. Endothelial cells became elongated. and gaps between the cells formed. Addition of PBMCs enhanced these alterations. The endothelial layer became disrupted with highly irregular-shaped cells displaying large gap formations. PBMCs also contributed to an increased permeability of the endothelial layer without augmenting apoptosis. Replacing PBMC by interleukin (IL)-1β produced similar effect with regard to inhibition of cell growth, morphological changes, and induction of apoptosis. Blocking IL-1β with a neutralizing antibody diminished the effects inflicted of PBMCs. These observations indicate that endogenously produced IL-1β by primed PBMCs plays an important role in the antivascular effect of TNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lienard, D., Ewalenko, P., Delmotte, J. J., Renard, N., and Lejeune, F. J. (1992) High-dose recombinant tumor necrosis factor α in combination with interferon γ and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J. Clin. Oncol. 10, 52–60.

    PubMed  CAS  Google Scholar 

  2. Eggermont, A.M.M., Schraffordt Koops, H., Lienard, D., et al. (1996) Isolated limb perfusion with high-dose tumor necrosis factor-α in combination with interferon-γ and melphalan for nonresectable extremity soft tissue sarcomas: a multicenter trial. J. Clin. Oncol. 14, 2653–2665.

    PubMed  CAS  Google Scholar 

  3. Eggermont, A.M.M. (2000) TNF registered in Europe: does TNF get a second chance?. J. Immunother. 23, 505–506.

    Article  PubMed  CAS  Google Scholar 

  4. de Wilt, J.H.W., ten Hagen, T.L.M., de Boeck, G., van Tiel, S. T., De Bruijn, E. A. and Eggermont, A.M.M. (2000) Tumour necrosis factor α increases melphalan concentration in tumour tissue after isolated limb perfusion. Br. J. Cancer 82, 1000–10003.

    Article  PubMed  Google Scholar 

  5. Van Der Veen A. H., de Wilt, J.H.W., Eggermont, A.M.M., van Tiel, S. T., Seynhaeve, A.L.B., and ten Hagen, T.L.M. (2000) TNF-α augments intratumoural concentrations of doxorubicin in TNF-α-based isolated limb perfusion in rat sarcoma models and enhances anti-tumour effects. Br. J. Cancer 82, 973–980.

    Article  PubMed  Google Scholar 

  6. Brouckaert, P., Takahashi, N., van Tiel, S. T., et al. (2004) Tumor necrosis factor-α augmented tumor response in B16BL6 melanoma-bearing mice treated with stealth liposomal doxorubicin (Doxil) correlates with altered Doxil pharmacokinetics. Int. J. Cancer 109, 442–448.

    Article  PubMed  CAS  Google Scholar 

  7. ten Hagen, T.L.M., Van Der Veen, A. H., Nooijen, P. T., van Tiel, S. T., Seynhaeve, A.L.B., and Eggermont, A.M.M. (2000) Low-dose tumor necrosis factor-α augments antitumor activity of stealth liposomal doxorubicin (DOXIL) in soft tissue sarcoma-bearing rats. Int. J. Cancer 87, 829–837.

    Article  PubMed  Google Scholar 

  8. ten Hagen, T.L.M. and Eggermont, A.M.M. (2002) Manipulation of the tumour-associated vasculature to improve tumour therapy. J. Liposome Res. 12, 149–154.

    Article  PubMed  Google Scholar 

  9. Lejeune, F. J., Ruegg, C., and Lienard, D. (1998) Clinical applications of TNF-α in cancer. Curr. Opin. Immunol. 10, 573–580.

    Article  PubMed  CAS  Google Scholar 

  10. Nooijen, P. T., Manusama, E. R., Eggermont, A.M.M., et al. (1996) Synergistic effects of TNF-α and melphalan in an isolated limb perfusion model of rat sarcoma: a histopathological, immunohistochemical and electron microscopical study. Br. J. Cancer 74, 1908–1915.

    PubMed  CAS  Google Scholar 

  11. Mauerhoff, T., Belfiore, A., Pujol-Borrell, R., and Bottazzo, G. F. (1994) Growth inhibition of human endothelial cells by human recombinant tumor necrosis factor α and −γ. Tumori 80, 301–305.

    PubMed  CAS  Google Scholar 

  12. Norioka, K., Borden, E. C., and Auerbach, R. (1992) Inhibitory effects of cytokines on vascular endothelial cells: synergistic interactions among-gamma, tumor necrosis factor-α, and interleukin-1. J. Immunother. 12, 13–18.

    PubMed  CAS  Google Scholar 

  13. Burke-Gaffney, A. and Keenan, A. K. (1993) Does TNF-α directly increase endothelial cell monolayer permeability? Agents Actions 38, C83-C85.

    Article  PubMed  CAS  Google Scholar 

  14. Ruegg, C., Yilmaz, A., Bieler, G., Bamat, J., Chaubert, P., and Lejeune, F. J. (1998) Evidence for the involvement of endothelial cell integrin αVβ3 in the disruption of the tumor vasculature induced by TNF and IFN-γ. Nat. Med. 4, 408–414.

    Article  PubMed  CAS  Google Scholar 

  15. Korpelainen, E. I., Gamble, J. R., Smith, W. B., et al. (1993) The receptor for interleukin 3 is selectively induced in human endothelial cells by tumor necrosis factor α and potentiates interleukin 8 secretion and neutrophil transmigration. Proc. Natl. Acad. Sci. USA 90 11,137–11,141.

    Article  CAS  Google Scholar 

  16. Luu, N. T., Rainger, G. E., and Nash, G. B. (1999) Kinetics of the different steps during neutrophil migration through cultured endothelial monolayers treated with tumour necrosis factor-α. J. Vasc. Res. 36, 477–485.

    Article  PubMed  CAS  Google Scholar 

  17. Yilmaz, A., Bieler, G., Spertini, O., Lejeune, F. J., and Ruegg, C. (1998) Pulse treatment of human vascular endothelial cells with high doses of tumor necrosis factor and interferon-γ results in simultaneous synergistic and reversible effects on proliferation and morphology. Int. J. Cancer 77, 592–599.

    Article  PubMed  CAS  Google Scholar 

  18. Manusama, E. R., Nooijen, P. T., Stavast, J., de Wilt, J.H.W., Marquet, R.L., and Eggermont, A.M.M. (1998) Assessment of the role of neutrophils on the antitumor effect of TNFα in an in vivo isolated limb perfusion model in sarcomabearing brown Norway rats. J. Surg. Res. 78, 169–175.

    Article  PubMed  CAS  Google Scholar 

  19. Kramer, S. M. and Carver, M. E. (1986) Serum-free in vitro bioassay for the detection of tumor necrosis factor. J. Immunol. Methods. 93, 201–206.

    Article  PubMed  CAS  Google Scholar 

  20. Jaffe, E. A., Nachman, R. L., Becker, C. G., and Minick, C. R. (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Investig. 52, 2745–2756.

    Article  PubMed  CAS  Google Scholar 

  21. Skehan, P., Storeng, R., Scudiero, D., et al. (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer. Inst. 82, 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi, N., Fiers, W., and Brouckaert, P. (1995) Antitumor activity of tumor necrosis factor in combination with interferon-γ is not affected by prior tolerization. Int. J. Cancer 63, 846–854.

    Article  PubMed  CAS  Google Scholar 

  23. van Ijken, M. G., van Etten, B., de Wilt, J.H.W., van Tiel, S.T., ten Hagen, T.L.M., and Eggermont, A.M.M. (2000) Tumor necrosis factor-α augments tumor effects in isolated hepatic perfusion with melphalan in a rat sarcoma model. J. Immunother. 23, 449–455.

    Article  PubMed  Google Scholar 

  24. Schnittler, H. J., Schneider, S. W., Raifer, H., et al. (2001) Role of actin filaments in endothelial cell-cell adhesion and membrane stability under fluid shear stress. Pflugers Arch. 442, 675–687.

    Article  PubMed  CAS  Google Scholar 

  25. Gao, B., Saba, T. M., and Tsan, M. F. (2002) Role of α(v)β(3)-integrin in TNF-α-induced endothelial cell migration. Am. J. Physiol. 283 C1196-C1205.

    CAS  Google Scholar 

  26. Lim, M. J., Chiang, E. T., Hechtman, H. B., and Shepro, D. (2001) Inflammation-induced subcellular redistribution of VE-cadherin, actin, and γ-catenin in cultured human lung microvessel endothelial cells. Microvasc. Res. 62, 366–382.

    Article  PubMed  CAS  Google Scholar 

  27. Goldblum, S. E., Ding, X., and Campbell-Washington, J. (1993) TNF-α induces endothelial cell F-actin depolymerization, new actin synthesis, and barrier dysfunction. Am. J. Physiol. 264, C894-C905.

    PubMed  CAS  Google Scholar 

  28. Kohno, K., Hamanaka, R., Abe, T., et al. (1993) Morphological change and destabilization of β-actin mRNA by tumor/necrosis factor in human microvascular endothelial cells. Exp. Cell. Res. 208, 498–503.

    Article  PubMed  CAS  Google Scholar 

  29. Coyne, C. B., Vanhook, M. K., Gambling, T. M., Carson, J. L., Boucher, R. C., and Johnson, L. G. (2002) Regulation of airway tight junctions by proinflammatory cytokines. Mol. Biol. Cell. 13, 3218–3234.

    Article  PubMed  CAS  Google Scholar 

  30. Wachtel, M., Bolliger, M. F., Ishihara, H., Frei, K., Bluethmann, H., and Gloor, S. M. (2001) Down-regulation of occludin expression in astrocytes by tumour necrosis factor (TNF) is mediated via TNF type-1 receptor and nuclear factor-kB activation. J. Neurochem. 78 155–162.

    Article  PubMed  CAS  Google Scholar 

  31. Mankertz, J., Tavalali, S., Schmitz, H., et al. (2000) Expression from the human occludin promoter is affected by tumor necrosis factor α and interferon γ. J. Cell Sci. 113, 2085–2090.

    PubMed  CAS  Google Scholar 

  32. Kniesel, U. and Wolburg, H. (2000) Tight junctions of the blood-brain barrier. Cell. Mol. Neurobiol. 20, 57–76.

    Article  PubMed  CAS  Google Scholar 

  33. Wright, T. J., Leach, L., Shaw, P. E., and Jones, P. (2002) Dynamics of vascular endothelial-cadherin and β-catenin localization by vascular endothelial growth factor-induced angiogenesis in human umbilical vein cells. Exp. Cell Res. 280, 159–168.

    Article  PubMed  CAS  Google Scholar 

  34. Friedl, J., Puhlmann, M., Bartlett, D. L., et al. (2002) Induction of permeability across endothelial cell monolayers by tumor necrosis factor (TNF) occurs via a tissue factor-dependent mechanism: relationship between the procoagulant and permeability effects of TNF. Blood 100, 1334–1339.

    PubMed  CAS  Google Scholar 

  35. Nooteboom, A., van der Linden, C. J., and Hendriks, T. (2002) Tumor necrosis factor-α and interleukin-1β mediate endothelial permeability induced by lipopolysaccharide-stimulated whole blood. Crit. Care Med. 30, 2063–2068.

    Article  PubMed  CAS  Google Scholar 

  36. Petrache, I., Birukova, A., Ramirez, S. I., Garcia, J. G., and Verin, A. D. (2003) The role of the microtubules in tumor necrosis factor-{α}-induced endothelial cell permeability. Am. J. Respir. Cell Mol. Biol. 28, 574–581.

    Article  PubMed  CAS  Google Scholar 

  37. Dvorak, A. M. and Feng, D. (2001) The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J. Histochem. Cytochem. 49, 419–432.

    PubMed  CAS  Google Scholar 

  38. Brunstein, F., Hoving, S., Seynhaeve, A.L.B., et al. (2004) Synergistic antitumor activity of histamine plus melphalan in isolated limb perfusion: preclinical studies. J. Natl. Cancer Inst. 96, 1603–1610.

    Article  PubMed  CAS  Google Scholar 

  39. Ahlberg, R., MacNamara, B., Andersson, M. et al. (2003) Stimulation of T-cell cytokine production and NK-cell function by IL-2, IFN-α and histamine treatment during remission of non-Hodgkin's lymphoma. Hematol. J. 4, 336–341.

    Article  PubMed  CAS  Google Scholar 

  40. Andersson, U., Andersson, J., Lindfors, A., Wagner, K., Moller, G., and Heusser, C. H. (1990) Simultaneous production of interleukin 2, interleukin 4 and interferon-γ by activated human blood lymphocytes. Eur. J. Immunol. 20, 1591–1596.

    Article  PubMed  CAS  Google Scholar 

  41. Luo, Y., Chen, X., and O'Donnell, M. A. (2003) Role of Th1 and Th2 cytokines in BCG-induced IFN-γ production: cytokine promotion and simulation of BCG effect cytokine. Cytokine 21, 17–26.

    Article  PubMed  CAS  Google Scholar 

  42. Nilsen, E. M., Johansen, F. E., Jahnsen, F. L., et al. (1998) Cytokine profiles of cultured microvascular endothelial cells from the human intestine. Gut 42, 635–642.

    Article  PubMed  CAS  Google Scholar 

  43. Renard, N., Lienard, D., Lespagnard, L., Eggermont, A.M.M., Heimann, R., and Lejeune, F. J. (1994) Early endothelium activation and polymorphonuclear cell invasion precede specific necrosis of human melanoma and sarcoma treated by intravascular high-dose tumour necrosis factor α (rTNFα). Int. J. Cancer 57, 656–663.

    Article  PubMed  CAS  Google Scholar 

  44. Ramesh, R., Marrogi, A. J., Munshi, A., Abboud, C. N., and Freeman, S. M. (1996) In vivo analysis of the ‘bystander effect’: a cytokine cascade. Exp. Hematol. 24, 829–838.

    PubMed  CAS  Google Scholar 

  45. Barth, R. J., Jr., Mule, J. J., Spiess, P. J., and Rosenberg, S. A. (1991) interferon γ and tumor necrosis factor have a role in tumor regressions mediated by murine CD8+tumor-infiltrating lymphocytes. J. Exp. Med. 173, 647–658.

    Article  PubMed  CAS  Google Scholar 

  46. Sadanaga, N., Nagoshi, M., Lederer, J. A., Joo, H. G., Eberlein, T. J., and Goedegebuure, P. S. (1999) Local secretion of IFN-γ induces an antitumor response: comparison between T cells plus IL-2 and IFN-γ transfected tumor cells. J. Immunother. 22, 315–323.

    Article  PubMed  CAS  Google Scholar 

  47. Eggermont, A.M.M., de Wilt, J. H., and ten Hagen, T.L.M. (2003) Current uses of isolated limb perfusion in the clinic and a model system for new strategies. Lancet Oncol. 4, 429–437.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. M. ten Hagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seynhaeve, A.L.B., Vermeulen, C.E., Eggermont, A.M.M. et al. Cytokines and vascular permeability. Cell Biochem Biophys 44, 157–169 (2006). https://doi.org/10.1385/CBB:44:1:157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:44:1:157

Index Entries

Navigation