Skip to main content
Log in

The cellular prion protein

Biochemistry, topology, and physiologic functions

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Studies on the transmission from man to animals of Creutzfeld-Jacob disease (CJD) led Prusiner to identify a proteinaceous infectious particle lacking nucleic acid, which was called prion. The identification of the infectious prion (PrPsc) then led to the discovery of the normal cellular counterpart (PrPc). One of the still enigmatic aspects regarding prion diseases is actually how, where, and when the transformation PrPc/PrPsc is occurring, this being due to the result of a large extent to the fact that so far most studies have been dedicated to the formation and transmission of PrPsc, whereas the understanding of physiologic roles of PrPc are in their infancy. In this review, we hope to identify the most reliable hypotheses for future experiments on PrPc. This is relevant not only for the understanding of PrPc functions but also to unravel the enigmatic nature of PrPc/PrPsc conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prusiner, S. B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383.

    PubMed  CAS  Google Scholar 

  2. Rode, B. M., Flader, W., Sotriffer, C., and Righi, A. (1999) Are prions a relic of an early stage of peptide evolution?. Peptides 20, 1513–1516.

    PubMed  CAS  Google Scholar 

  3. True, H. L. and Lindquist, S. L. (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483.

    PubMed  CAS  Google Scholar 

  4. Shyng, S. L., Huber, M. T., and Harris, D. A. (1993) A prion protein cycles between the cell surface and an endocytic compartment in cultured neuro blastoma cells. J. Biol. Chem. 268, 15922–15928.

    PubMed  CAS  Google Scholar 

  5. Lehmann, S. and Harris, D. A. (1995) A mutant prion protein displays an aberrant membrane association when expressed in cultured cells. J. Biol. Chem. 270, 24589–24597.

    PubMed  CAS  Google Scholar 

  6. Stein, E., Lane, A. A., Cerretti, D. P., et al. (1998). Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12, 667–678.

    PubMed  CAS  Google Scholar 

  7. Kholodenko, B. N., Hoek, J. B., and Westerhoff, H. V. (2000) Why cytoplasmic signalling proteins should be recruited to cell membranes. Trends Cell Biol. 10, 173–178.

    PubMed  CAS  Google Scholar 

  8. Simons, K. and Toomre, D. (2000) Lipid rafts and signal transduction. Natl. Rev. Mol. Cell Biol. 1, 31–39.

    CAS  Google Scholar 

  9. Kurzchalia, T. V. and Parton, R. G. (1999) Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11, 424–431.

    PubMed  CAS  Google Scholar 

  10. Tomasi, V., Spisni, E., Griffoni, C., and Guarnieri, T. (2000) Caveolae, caveolar enzymes and angiogenesis. Curr. Top. Biochem. Res. 3, 81–90.

    CAS  Google Scholar 

  11. Massimino, M. L., Griffoni, C., Spisni, E., Toni, M., and Tomasi, V. (2002) Involvement of caveolae and caveolae-like domains in signalling, cell survival and angiogenesis. Cell Signal 14, 93–98.

    PubMed  CAS  Google Scholar 

  12. Okamoto, T., Schlegel, A., Scherer, P. E., and Lisanti, M. P. (1998) Caveolins, a family of scaffolding proteins for organizing “pressembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273, 5419–5422.

    PubMed  CAS  Google Scholar 

  13. Fra, A. M., Pasqualetto, E., Mancini, M., and Sitia, R. (2000) Genomic organization and transcriptional analysis of the human genes coding for caveolin-1 and caveolin-2. Gene 243, 75–83.

    PubMed  CAS  Google Scholar 

  14. Schlegel, A. and Lisanti, M. P. (2000) A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. J. Biol. Chem. 275, 21605–21617.

    PubMed  CAS  Google Scholar 

  15. Sotgia, F., Lee, J. K., Das, K., et al. (2000) Caveolin-3 directly interacts with the C-terminal tail of beta-dystroglycan. Identification of a central WW-like domain within caveolin family members. J. Biol. Chem. 275, 38048–38058.

    PubMed  CAS  Google Scholar 

  16. Matsuda, C., Hayashi, Y. K., Ogawa, M., et al. (2001) The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum. Mol. Genet. 10, 1761–1766.

    PubMed  CAS  Google Scholar 

  17. Tang, Z., Scherer, P. E., Okamoto, T., et al. (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271, 2255–2261.

    PubMed  CAS  Google Scholar 

  18. Herrmann, R., Straub, V., Blank, M., et al. (2000) Dissociation of the dystroglycan complex in caveolin-3-deficient limb girdle muscular dystrophy. Hum. Mol. Genet. 9, 2335–2340.

    PubMed  CAS  Google Scholar 

  19. Vorgerd, M., Ricker, K., Ziemssen, F., et al. (2001) A sporadic case of rippling muscle disease caused by a de novo caveolin-3 mutation. Neurology 57, 2273–2277.

    PubMed  CAS  Google Scholar 

  20. Liu, J., Wang, X. B., Park, D. S., and Lisanti, M. P. (2002) Caveolin-1 expression enhances endothelial capillary tubule formation. J. Biol. Chem. 277, 10661–10668.

    PubMed  CAS  Google Scholar 

  21. Iwabuchi, K., Handa, K., and Hakomori, S. (1998) Separation of “glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J. Biol. Chem. 273, 33766–33773.

    PubMed  CAS  Google Scholar 

  22. Lipardi, C., Mora, R., Colomer, V., et al. (1998) Caveolin transfection results in caveolae for-mation but not apical sorting of glycosylphos-phatidylinositol (GPI)-anchored proteins in epithelial cells. J. Cell. Biol. 140, 617–626.

    PubMed  CAS  Google Scholar 

  23. Sowa, G., Pypaert, M., and Sessa, W. C. (2001) Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc. Natl. Acad. Sci. USA 98, 14072–14077.

    PubMed  CAS  Google Scholar 

  24. Shaul, P. W. and Anderson, R. G. (1998) Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol. 275, L843-L851.

    PubMed  CAS  Google Scholar 

  25. Griffoni, C., Spisni, E., Santi, S., Riccio, M., Guarnirei, T., and Tomasi, V. (2000) Knockdown of caveolin-1 by antisense oligonucleotides impairs angiogenesis in vitro and in vivo. Biochem. Biophys. Res. Commun. 276, 756–761.

    PubMed  CAS  Google Scholar 

  26. Abrami, L., Fivaz, M., Kobayashi, T., Kinoshita, T., Parton, R. G., and van der Goot, F. G. (2001) Cross-talk between caveolae and glycosylphosphatidylinositol-rich domains. J. Biol. Chem. 276, 30729–30736.

    PubMed  CAS  Google Scholar 

  27. Vey, M., Pilkuhn, S., Wille, H., et al. (1996) Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc. Natl. Acad. Sci. USA 93, 14945–14949.

    PubMed  CAS  Google Scholar 

  28. Mouillet-Richard, S., Ermonval, M., Chebassier, C., et al. (2000) Signal transduction through prion protein. Science 289, 1925–1928.

    PubMed  CAS  Google Scholar 

  29. Braun, J. E. and Madison, D. V. (2000) A novel SNAP25-caveolin complex correlates with the onset of persistent synaptic potentiation. J. Neurosci. 20, 5997–6006.

    PubMed  CAS  Google Scholar 

  30. Prioni, S., Liberto, N., Prinetti, A., et al. (2002) Sphingolipid metabolism and caveolin expression in gonadotropin-releasing hormone-expressing GN11 and gonadotropin-releasing hormone-secreting GT1-7 neuronal cells. Neurochem. Res. 27, 831–840.

    PubMed  CAS  Google Scholar 

  31. Cameron, P. L., Liu, C., Smart, D. K., Hantus, S. T., Fick, J. R., and Cameron, R. S. (2002) Caveolin-1 expression is maintained in rat and human astroglioma cell lines. Glia 37, 275–290.

    PubMed  Google Scholar 

  32. Volonte, D., Galbiati, F., Li, S., Nishiyama, K., Okamoto, T., and Lisanti, M. P. (1999) Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. J. Biol. Chem. 274, 12702–12709.

    PubMed  CAS  Google Scholar 

  33. Stuermer, C. A., Lang, D. M., Kirsch, F., Wiechers, M., Deininger, S. O., and Plattner, H. (2001). Glycosylphosphatidyl inositolanchored proteins and fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and-2. Mol. Biol. Cell. 12, 3031–3045.

    PubMed  CAS  Google Scholar 

  34. Razani, B., Engelman, J. A., Wang, X. B., et al. (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276, 38121–38138.

    PubMed  CAS  Google Scholar 

  35. Razani, B. and Lisanti, M. P. (2001) Caveolin-deficient mice: insights into caveolar function human disease. J. Clin. Invest. 108, 1553–15561.

    PubMed  CAS  Google Scholar 

  36. Kimura, A., Baumann, C. A., Chiang, S. H., and Saltiel, A. R. (2001) The sorbin homology domain: a motif for the targeting of proteins to lipid rafts. Proc. Natl. Acad. Sci. USA 98, 9098–9103.

    PubMed  CAS  Google Scholar 

  37. Collinge, J. (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550.

    PubMed  CAS  Google Scholar 

  38. Wopfner, F., Weidenhofer, G., Schneider, R., et al. (1999) Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J. Mol. Biol. 289, 1163–1178.

    PubMed  CAS  Google Scholar 

  39. Strumbo, B., Ronchi, S., Bolis, L. C., and Simonic, T. (2001) Molecular cloning of the cDNA coding for Xenopus laevis prion protein. FEBS Lett. 508, 170–174.

    PubMed  CAS  Google Scholar 

  40. Beck, J. A., Mead, S., Campbell, T. A., et al. (2001) Two-octapeptide repeat deletion of prion protein associated with rapidly progressive dementia. Neurology 57, 354–356.

    PubMed  CAS  Google Scholar 

  41. Palmer, M. S., Mahal, S. P., Campbell, T. A., et al. (1993) Deletions in the prion protein gene are not associated with CJD. Hum. Mol. Genet. 2, 541–544.

    PubMed  CAS  Google Scholar 

  42. Meyer, R. K., Lustig, A., Oesch, B., Fatzer, R., Zurbriggen, A., and Vandevelde, M. (2000) A monomer-dimer equilibrium of a cellular prion protein (PrPc) not observed with recombinant PrP. J. Biol. Chem. 275, 38081–38087.

    PubMed  CAS  Google Scholar 

  43. Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W. K., and Yee, V. C. (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat. Struct. Biol. 8, 77–774.

    Google Scholar 

  44. Vilotte, J. L. and Laude, H. (2002) Transgenesis applied to transmissible spongiform encephalopathies, Transgenic Res. 11, 547–564.

    PubMed  CAS  Google Scholar 

  45. Kaneko, K., Zulianello, L., Scott, M., et al. (1997) Evidence for protein X binding to a dis-continuous epitope on the cellular prion protein during scrapie prion propagation. Proc. Natl. Acad. Sci. USA 16, 10069–10074.

    Google Scholar 

  46. Kaneko, K., Vey, M., Scott, M., Pilkuhn, S., Cohen, F. E., and Prusiner, S. B. (1997) COOH-terminal sequence of the cellular prion protein directs subcellular trafficking and controls conversion into the scrapie isoform. Proc. Natl. Acad. Sci. USA. 94, 2333–2338.

    PubMed  CAS  Google Scholar 

  47. Holscher, C., Bach, U. C., and Dobberstein, B. (2001) Prion protein contains a second endoplasmic reticulum targeting signal sequence located at its C terminus. J. Biol. Chem. 276, 13388–13394.

    PubMed  CAS  Google Scholar 

  48. Hegde, R. S., Mastrianni, J. A., Scott, M. R., et al. (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279, 827–834.

    PubMed  CAS  Google Scholar 

  49. Hegde, R. S., Tremblay, P., Groth, D., DeArmond, S. J., Prusiner, S. B., and Lingappa, V. R. (1999) Transmissible and genetic prion diseases share a common pathway of neurode-generation. Nature 402, 822–826.

    PubMed  CAS  Google Scholar 

  50. Schmitt-Ulms, G., Legname, G., Baldwin, M. A., et al. (2001) Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J. Mol. Biol. 314, 1209–1225.

    PubMed  CAS  Google Scholar 

  51. Gauczynski, S., Peyrin, J. M., Haik, S., et al. (2001) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J. 20, 5863–5875.

    PubMed  CAS  Google Scholar 

  52. Keshet, G. I., Bar-Peled, O., Yaffe, D., Nudel, U., and Gabizon, R. (2000) The cellular prion protein colocalizes with the dystroglycan complex in the brain. J. Neurochem. 75, 1889–1897.

    PubMed  CAS  Google Scholar 

  53. Rieger, R., Edenhofer, F., Lasmezas, C. I., and Weiss, S. (1997) The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cellsn. Nat. Med. 3, 1383–1388.

    PubMed  CAS  Google Scholar 

  54. Martins, V. R., Mercadante, A. F., Cabral, A. L., Freitas, A. R., and Castro, R. M. (2001) Insights into the physiological function of cellular prion protein. Braz. J. Med. Biol. Res. 34, 585–595.

    PubMed  CAS  Google Scholar 

  55. Kim, S. J., Rahbar, R., and Hegde, R. S. (2001) Combinatorial control of prion protein biogenesis by the signal sequence and transmembrane domain. J. Biol. Chem. 276, 26132–26140.

    PubMed  CAS  Google Scholar 

  56. Gu, Y., Fujioka, H., Mishra, R. S., Li, R. and Singh, N. (2002) Prion peptide 106–126 modulates the aggregation of cellular prion protein and induces the synthesis of potentially neuro-toxic transmembrane PrP. J. Biol. Chem. 277, 2275–2286.

    PubMed  CAS  Google Scholar 

  57. Stewart, R. S., Drisaldi, B. and Harris, D. A. (2001) A transmembrane form of the prion protein contains an uncleaved signal peptide and is retained in the endoplasmic reticulum. Mol. Biol. Cell 12, 881–889.

    PubMed  CAS  Google Scholar 

  58. Moore, R. C., Lee, I. Y., Silverman, G. L., et al. (1999) Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J. Mol. Biol. 292, 797–817.

    PubMed  CAS  Google Scholar 

  59. Mastrangelo, P. and Westaway, D. (2001) Biology of the prion gene complex. Biochem. Cell Biol. 79, 613–628.

    PubMed  CAS  Google Scholar 

  60. Basler, K., Oesch, B., Scott, M., et al. (1986) Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46, 417–428.

    PubMed  CAS  Google Scholar 

  61. Puckett, C., Concannon, P., Casey, C., and Hood, L. (1991) Genomic structure of the human prion protein gene. Am. J. Hum. Genet. 49, 320–329.

    PubMed  CAS  Google Scholar 

  62. Lee, I. Y., Westaway, D., Smit, A. F., et al. (1998) Complete genomic sequence and analysis of the prion protein gene region from three mammalian species. Genome Res. 8, 1022–1037.

    PubMed  CAS  Google Scholar 

  63. Horiuchi, M., Ishiguro, N., Nagasawa, H., Toyoda, Y., and Shinagawa, M. (1997) Alternative usage of exon 1 of bovine PrP mRNA. Biochem. Biophys. Res. Commun. 233, 650–654.

    PubMed  CAS  Google Scholar 

  64. Davies, S. and Ramsden, D. B. (2001) Huntington's disease. Mol. Pathol. 54, 409–413.

    PubMed  CAS  Google Scholar 

  65. Bueler, H., Fischer, M., Lang, Y. et al. (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582.

    PubMed  CAS  Google Scholar 

  66. Lledo, P. M., Tremblay, P., DeArmond, S. J., Prusiner, S. B., and Nicoll, R. A. (1996) Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc. Natl. Acad. Sci. USA 93, 2403–2407.

    PubMed  CAS  Google Scholar 

  67. Colling, S. B., Collinge, J., and Jefferys, J. G. (1996) Hippocampal slices from prioin protein null mice: disrupted Ca(2+)-activated K+ currents. Neurosci. Lett. 209, 49–52.

    PubMed  CAS  Google Scholar 

  68. Tobler, I., Gaus, S. E., Deboer, T., et al. (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380, 639–642.

    PubMed  CAS  Google Scholar 

  69. Mallucci, G. R., Ratte, S., Asante, E. A., Linehan, J., Gowland, I., Jefferys, J. G., and Collinge, J. (2002) Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21, 202–210.

    PubMed  CAS  Google Scholar 

  70. Herms, J., Tings, T., Gall, S., et al. (1999) Evidence of presynaptic location and function of the prion protein. J. Neurosci. 19, 8866–8875.

    PubMed  CAS  Google Scholar 

  71. Fournier, J. G., Tscaig-Haye, F., Billette de Villemeur, T., and Robain, O. Ultrastructural localization of cellular prion protein (PrPc) in synaptic boutons of normal hamster hippocampus. Can. R. Acad. Sci. 318, 339–344.

  72. Collinge, J., Whittington, M. A., Sidle, K. C., Smith, C. J., Palmer, M. S., Clarke, A. R., and Jefferys, J. G. (1994) Prion protein is necessary for normal synaptic function. Nature 370, 295–297.

    PubMed  CAS  Google Scholar 

  73. Askanas, V., Bilak, M., Engel, W. K., Leclerc, A., and Tome, F. (1993) Prion protein is strongly immunolocalized at the postsynaptic domain of human normal neuromuscular junctions. Neurosci. Lett. 159, 111–114.

    PubMed  CAS  Google Scholar 

  74. Laine, J., Marc, M. E., Sy, M. S., and Axelrad, H. (2001) Cellular and subcellular morphological localization of normal prion protein in rodent cerebellum. Eur. J. Neurosci. 14, 47–56.

    PubMed  CAS  Google Scholar 

  75. Nishida, N., Katamine, S., Shigematsu, K., et al. (1997) Prion protein is necessary for latent learning and long-term memory retention. Cell Mol. Neurobiol. 17, 537–545.

    PubMed  CAS  Google Scholar 

  76. Whittington, M. A., Sidle, K. C., Gowland, I. et al. (1995) Rescue of neurophysiological phenotype seen in PrP null mice by transgene encoding human prion protein. Nat. Genet. 9, 197–201.

    PubMed  CAS  Google Scholar 

  77. Westaway, D., DeArmond, S. J., Cayetano-Canlas, J., et al. (1994) Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell 76, 117–129.

    PubMed  CAS  Google Scholar 

  78. Shmerling, D., Hegyi, I., Fischer, M., et al. (1998) Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93, 203–214.

    PubMed  CAS  Google Scholar 

  79. Hope, J. (2000) Prions and neurodegenerative diseases. Curr. Opin. Genet. Dev. 10, 568–574.

    PubMed  CAS  Google Scholar 

  80. Li, A., Sakaguchi, S., Atarashi, R., et al. (2000) Identification of a novel gene encoding a PrP-like protein expressed as chimeric transcripts fused to PrP exon 1/2 in ataxic mouse line with a disrupted PrP gene. Cell. Mol. Neurobiol. 20, 553–567.

    PubMed  CAS  Google Scholar 

  81. Satoh, J., Kuroda, Y., and Katamine S. (2000) Gene expression profile in prion protein-deficient fibroblasts in culture. Am. J. Pathol. 157, 59–68.

    PubMed  CAS  Google Scholar 

  82. Kuwahara, C., Takeuchi, A. M., Nishimura, T., et al. (1999) Prions prevent neuronal cell-line death. Nature 400, 225–226.

    PubMed  CAS  Google Scholar 

  83. Chiarini, L. B., Freitas, A. R., Zanata, S. M., et al. (2002) Cellular prion protein transduces neuroprotective signals. EMBO J. 21, 3317–3326.

    PubMed  CAS  Google Scholar 

  84. Zanata, S. M., Lopes, M. H., Mercadante, A. F., et al. (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J. 21, 3307–3316.

    PubMed  CAS  Google Scholar 

  85. Braun, J. E. and Madison, D. V. A. novel SNAP25-caveolin complex correlates with the onset of persistent synaptic potentiation. J. Neurosci. 20, 5997–6006.

  86. Bounhar, Y., Zhang, Y., Goodyer, C. G., and LeBlanc, A. (2001) Prion protein protects human neurons against Bax-mediated apoptosis. J. Biol. Chem., 276C, 39145–39149.

    Google Scholar 

  87. White, A. R., Guirguis, R., Brazier M. W., et al. (2001) Sublethal concentrations of prion peptide PrP106-126 or the anyloid beta peptide of Alzheimer's disease activates expression of proapoptotic markers in primary cortical neurons. Neurobiol. Dis. 8, 299–316.

    PubMed  CAS  Google Scholar 

  88. Weissmann, C., and Aguzzi A. (1999) Perspectives: neurobiology. PrP's double causes trouble. Science 286, 914–915.

    PubMed  CAS  Google Scholar 

  89. Silverman, G. L., Qin, K., Moore, R. C., et al. (2000) Doppel is an N-glycosylated, glycosylphosphatidylinositol-anchored protein. Expression in testis and ectopic production in the brains of Prnp(0/0) mice predisposed to Purkinje cell loss. J. Biol. Chem. 275, 26834–26841.

    PubMed  CAS  Google Scholar 

  90. Sakaguchi, S., Katamine, S., Nishida, N., et al. (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380, 528–531.

    PubMed  CAS  Google Scholar 

  91. Li, R., Liu, T., Wong, B. S., et al. (2000) Identification of an epitope in the C terminus of normal prion protein whose expression is modulated by binding events in the N terminus. J. Mol. Biol. 301, 567–573.

    PubMed  CAS  Google Scholar 

  92. Moore, R. C., Mastrangelo, P., Bouzamondo, E., et al. (2001) Doppel-induced cerebellar degeneration in transgenic mice. Proc. Natl. Acad. Sci. USA 98, 15288–15293.

    PubMed  CAS  Google Scholar 

  93. McKenzie, D., Bartz, J., Mirwald, J., Olander, D., Marsh, R., and Aiken, J. (1998) Reversibility of scrapie inactivation is enhanced by copper. J. Biol. Chem. 273, 25545–25547.

    PubMed  CAS  Google Scholar 

  94. Wadsworth, J. D., Hill, A. F., Joiner, S., Jackson, G. S., Clarke, A. R., and Collinge, J. (1999) Strain-specific prion-protein conformation determined by metal ions. Nat. Cell Biol. 1, 55–59.

    PubMed  CAS  Google Scholar 

  95. Whittal, R. M., Ball, H. L., Cohen, F. E., Burlingame, A. L., Prusiner, S. B., and Baldwin, M. A. (2000) Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Protein Sci. 9, 332–343.

    PubMed  CAS  Google Scholar 

  96. Jackson, G. S., Murray, I., Hosszu, L. L., et al. (2001) Location and properties of metal-binding sites on the human prion protein. Proc. Natl. Acad. Sci. USA. 98 8531–8535.

    PubMed  CAS  Google Scholar 

  97. Kramer, M. L., Kratzin, H. D., Schmidt, B., et al. (2001) Prion protein binds copper within the physiological concentration range. J. Biol. Chem. 276, 16711–16719.

    PubMed  CAS  Google Scholar 

  98. Hasnain, S. S., Murphy, L. M., Strange, R. W., et al. (2001) XAFS study of the high-affinity copper-binding site of human PrP(91–231) and its low-resolution structure in solution. J. Mol. Biol. 311, 467–473.

    PubMed  CAS  Google Scholar 

  99. Cereghetti, G. M., Schweiger, A., Glockshuber, R., and Van Doorslaer, S. (2001) Electron paramagnetic resonance evidence for binding of Cu(2+) to the C-terminal domain of the murine prion protein. Biophys. J. 81, 516–525.

    Article  PubMed  CAS  Google Scholar 

  100. Thackray, A. M., Knight, R., Haswell, S. J., Bujdoso, R., and Brown, D. R. (2002) Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem. J. 362, 253–258.

    PubMed  CAS  Google Scholar 

  101. Kretzschmar, H. A., Tings, T., Madlung, A., Giese, A., and Herms, J. (2000) Function of PrP(C) as a copper-binding protein at the synapse. Arch. Virol. Suppl. 16, 239–249.

    PubMed  Google Scholar 

  102. Brown, D. R. (2000) PrPSc-like prion protein peptide inhibits the function of cellular prion protein. Biochem. J. 352, 511–518.

    PubMed  CAS  Google Scholar 

  103. Brown, D. R., Qin, K., Herms, J. W., et al. (1997) The cellular prion protein binds copper in vivo. Nature 390, 684–687.

    PubMed  CAS  Google Scholar 

  104. Wong, B. S., Pan, T., Liu, T., et al. (2000) Prion disease: a loss of antioxidant function? Biochem. Biophys. Res. Commun. 275, 249–252.

    PubMed  CAS  Google Scholar 

  105. Pauly, P. C. and Harris, D. A. (1998) Copper stimulates endocytosis of the prion protein. J. Biol. Chem. 273, 33107–33110.

    PubMed  CAS  Google Scholar 

  106. Viles, J. H., Cohen, F. E., Prusiner, S. B., Goodin, D. B., Wright, P. E., and Dyson, H. J. (1999) Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc. Natl. Acad. Sci. USA 96, 2042–2047.

    PubMed  CAS  Google Scholar 

  107. Waggoner, D. J., Drisaldi, B., Bartnikas, T. B., et al. (2000) Brain copper content and cuproenzyme activity do not vary with prion protein expression level. J. Biol. Chem. 275, 7455–7458.

    PubMed  CAS  Google Scholar 

  108. Perera, W. S. and Hooper, N. M. (2001) Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Curr. Biol. 11, 519–523.

    PubMed  CAS  Google Scholar 

  109. Lee, K. S., Magalhaes, A. C., Zanata, S. M., Brentani, R. R., Martins, V. R. and Prado, M. A. Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells. J. Neurochem. 79, 79–87.

  110. Quaglio, E., Chiesa R., and Harris, D. A. (2001) Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform. J. Biol. Chem. 276, 11432–11438.

    PubMed  CAS  Google Scholar 

  111. Mahfoud, R., Garmy, N., Maresca, M., Yahi, N., Puigserver, A., and Fantini, J. (2002) Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins. J. Biol. Chem. 277, 11292–11296.

    PubMed  CAS  Google Scholar 

  112. Heppner, F. L., Musahl, C., Arrighi, I., et al. (2001) Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science 294, 178–182.

    PubMed  CAS  Google Scholar 

  113. Peretz, D., Williamson, R. A., Kaneko, K., et al. (2001) Artibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743.

    PubMed  CAS  Google Scholar 

  114. Shin, J. S. and Abraham, S. N. (2001) Co-option of endocytic functions of cellular caveolae by pathogens. Immunology 102, 2–7.

    PubMed  CAS  Google Scholar 

  115. Van Gool, W. A., Hensels, G. W., Hoogerwaard, E. M., Wiezer, J. H., Wesseling, P., and Bolhuis, P. A. (1995) Hypokinesia and presenile dementia in a Dutch family with a novel insertion in the prion protein gene. Brain 118, 1565–1571.

    PubMed  Google Scholar 

  116. Duchen, L. W., Poulter, M., and Harding, A. E. (1993) Dementia associated with a 216 base pair insertion in the prion protein gene. Clinical and neuropathological features. Brain 116, 555–567.

    PubMed  Google Scholar 

  117. Van Harten, B., van Gool, W. A., Van Langen, I. M., Deekman, J. M., Meijerink, P. H., and Weinstein, H. C. (2000) A new mutation in the prion protein gene: a patient with dementia and white matter changes. Neurology 55, 1055–1057.

    PubMed  Google Scholar 

  118. Capellari, S., Vital, C., Parchi, P., et al. (1997) Familial prion disease with a novel 144-bp insertion in the prion protein gene in a Basque family. Neurology 49, 133–141.

    PubMed  CAS  Google Scholar 

  119. Campbell, T. A., Palmer, M. S., Will, R. G., Gibb, W. R., Luthert, P. J., and Collinge, J. (1996) A prion disease with a novel 96-base pair insertional mutation in the prion protein gene. Neurology 46, 761–766.

    PubMed  CAS  Google Scholar 

  120. Cochran, E. J., Bennett, D. A., Cervenakova, L., et al. (1996) Familial Creutzfeldt-Jakob disease with a five-repeat octapeptide insert mutation. Neurology 47, 727–733.

    PubMed  CAS  Google Scholar 

  121. Skworc, K. H., Windl, O., Schulz-Schaeffer, W. J., et al. (1999) Familial Creutzfeldt-Jakob disease with a novel 120-bp insertion in the prion protein gene. Ann. Neurol. 46, 693–700.

    CAS  Google Scholar 

  122. Krasemann, S., Zerr, I., Weber, T., et al. (1995) Prion disease associated with a novel nine octapeptide repeat insertion in the PRNP gene. Brain Res. Mol. Brain Res. 34, 173–176.

    PubMed  CAS  Google Scholar 

  123. Rossi, G., Giaccone, G., Giampaolo, L., et al. (2000) Creutzfeldt-Jakob disease with a novel four extra-repeat insertional mutation in the PrP gene. Neurology 55, 405–410.

    PubMed  CAS  Google Scholar 

  124. Goldfarb, L. G., Brown, P., McCombie W. R., et al. (1991) Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc. Natl. Acad. Sci. USA. 88, 10926–10930.

    PubMed  CAS  Google Scholar 

  125. Goldfarb, L. G., Brown, P., Little, B. W., et al. (1993) A new (two-repeat) octapeptide coding insert mutation in Creutzfeldt-Jakob disease. Neurology 43, 2392–2394.

    PubMed  CAS  Google Scholar 

  126. Telling, G. C., Scott, M., Mastrianni, J., et al.. (1995) Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83, 79–90.

    PubMed  CAS  Google Scholar 

  127. Stockel, J. and Hartl, F. U. (2001) Chaperonin-mediated de novo generation of prion protein aggregates. J. Mol. Biol. 313, 861–872.

    PubMed  CAS  Google Scholar 

  128. Graner, E., Mercadante, A. F., Zanata, S. M., et al. (2000) Cellular prion protein binds laminin and mediates neuritogenesis. Mol. Brain Res. 76, 85–92.

    PubMed  CAS  Google Scholar 

  129. Hundt, C., Peyrin, J. M., Haik, S., et al. (2001) Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J. 20, 5876–5886.

    PubMed  CAS  Google Scholar 

  130. Spielhaupter, C. and Schatzl, H. M. (2001) PrPc directly interacts with proteins involved in signaling pathways. J. Biol. Chem. 276, 44604–44612

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Tomasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffoni, C., Toni, M., Spisni, E. et al. The cellular prion protein. Cell Biochem Biophys 38, 287–304 (2003). https://doi.org/10.1385/CBB:38:3:287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:38:3:287

Index Entries

Navigation