Skip to main content

Death Receptor Signaling in Embryonic Ectodermal Development

  • Chapter
Death Receptors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The ectodermal dysplasias (EDs) are a heterogeneous group of genetic disorders which are identified by the absent or deficient function of at least two derivatives of ectoderm (e.g., skin, nails, sweat glands, or teeth) (1). More than 150 different types of EDs have been identified, and the combined incidence of these disorders may be as high as 7 per 10,000 births. However, a large number of cases go undetected due to the relatively mild phenotype and the apparent ability of the affected individuals to cover up their disease by application of cosmetics, wigs, or dentures. Although Charles Darwin wrote one of the earliest descriptions of an ED involving “the toothless men of Sind” (2), the diagnosis of these disorders may be extremely difficult, partly because there can be many different permutations of ectodermal defects. EDs have been broadly classified into two major subgroups based on the absence or presence of sweat gland function—hidrotic ectodermal dysplasia (or Clouston syndrome) and hypohidrotic ectodermal dysplasias (HEDs). Recent studies suggest an important role of signaling via the tumor necrosis factor receptor (TNFR) family in the pathogenesis of hypohidrotic ectodermal dysplasias, and that will be the focus of this discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freire-Maia N, Pinheiro M. Ectodermal dysplasias: a clinical and genetic study. Alan R. Liss, New York: 1984.

    Google Scholar 

  2. Darwin C. The variation of animals and plants under domestication. Vol. II. John Murray, London: 1875:319.

    Google Scholar 

  3. Pinheiro M, Freire-Maia N. Ectodermal dysplasias: a clinical classification and a causal review. Am J Med Genet 1994;53:153–162.

    Article  PubMed  CAS  Google Scholar 

  4. Kere J, Srivastava AK, Montonen O, et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat Genet 1996;13:409–416.

    Article  PubMed  CAS  Google Scholar 

  5. Srivastava AK, Pispa J, Hartung AJ, et al. The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. Proc Natl Acad Sci USA 1997;94:13,069–13,074.

    Article  PubMed  CAS  Google Scholar 

  6. Ferguson BM, Brockdorff N, Formstone E, Ngyuen T, Kronmiller JE, Zonana J. Cloning of Tabby, the murine homolog of the human EDA gene: evidence for a membrane-associated protein with a short collagenous domain. Hum Mol Genet 1997;6:1589–1594.

    Article  PubMed  CAS  Google Scholar 

  7. Mikkola ML, Pispa J, Pekkanen M, et al. Ectodysplasin, a protein required for epithelial morphogenesis, is a novel TNF homologue and promotes cell-matrix adhesion. Mechanisms of Development 1999;88:133–146.

    Article  PubMed  CAS  Google Scholar 

  8. Chen Y, Molloy SS, Thomas L, et al. Mutations within a furin consensus sequence block proteolytic release of ectodysplasin-A and cause X-linked hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci USA 2001;98:7218–7223.

    Article  PubMed  CAS  Google Scholar 

  9. Schneider P, Street SL, Gaide O, et al. Mutations leading to X-linked hypohidrotic ectodermal dysplasia affect three major functional domains in the tumor necrosis factor family member ectodysplasin-A. J Biol Chem 2001;276:18,819–18,827.

    Article  PubMed  CAS  Google Scholar 

  10. Elomaa O, Pulkkinen K, Hannelius U, Mikkola M, Saarialho-Kere U, Kere J. Ectodysplasin is released by proteolytic shedding and binds to the EDAR protein. Hum Mol Gen 2001; 10:953–962.

    Article  PubMed  CAS  Google Scholar 

  11. Monreal AW, Zonana J, Ferguson B. Identification of a new splice form of the EDA1 gene permits detection of nearly all X-linked hypohidrotic ectodermal dysplasia mutations.[erratum appears in Am J Hum Genet 1998 Oct;63(4):1253-1255]. Am J Hum Gen 1998;63:380–389.

    Article  CAS  Google Scholar 

  12. Bayes M, Hartung AJ, Ezer S, et al. The anhidrotic ectodermal dysplasia gene (EDA) undergoes alternative splicing and encodes ectodysplasin-A with deletion mutations in collagenous repeats. Hum Mol Genet 1998;7:1661–1669.

    Article  PubMed  CAS  Google Scholar 

  13. Yan M, Wang LC, Hymowitz SG, et al. Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 2000;290:523–527.

    Article  PubMed  CAS  Google Scholar 

  14. Headon DJ, Overbeek PA. Involvement of a novel Tnf receptor homologue in hair follicle induction. Nat Genet 1999;22:370–374.

    Article  PubMed  CAS  Google Scholar 

  15. Monreal AW, Ferguson BM, Headon DJ, Street SL, Overbeek PA, Zonana J. Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. Nat Genet 1999;22:366–369.

    Article  PubMed  CAS  Google Scholar 

  16. Kumar A, Eby MT, Sinha S, Jasmin A, Chaudhary PM. Ectodermal dysplasia receptor activates the nuclear factor kappa B, c-Jun N-terminal kinase and cell death pathways and binds to ectodysplasin A. J Biol Chem 2001;276:2668–2677.

    Article  PubMed  CAS  Google Scholar 

  17. Eby MT, Jasmin A, Kumar A, Sharma K, Chaudhary PM. TAJ, a novel member of the tumor necrosis factor receptor family, activates the c-Jun N-terminal kinase pathway and mediates caspase-independent cell death. J Biol Chem 2000;275:15,336–15,342.

    Article  PubMed  CAS  Google Scholar 

  18. Kojima T, Morikawa Y, Copeland NG, et al. TROY, a newly identified member of the tumor necrosis factor receptor superfamily, exhibits a homology with Edar and is expressed in embryonic skin and hair follicles. J Biol Chem 2000;275:20,742–20,747.

    Article  PubMed  CAS  Google Scholar 

  19. Aggarwal BB. Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-kappaB. Ann Rheum Dis 2000;59Suppl 1:i6–i16.

    Article  PubMed  CAS  Google Scholar 

  20. Koppinen P, Pispa J, Laurikkala J, Thesleff I, Mikkola ML. Signaling and subcellular localization of the TNF receptor Edar. Exp Cell Res 2001;269:180–192.

    Article  PubMed  CAS  Google Scholar 

  21. Headon DJ, Emmal SA, Ferguson BM, et al. Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature 2001;414:913–916.

    Article  PubMed  CAS  Google Scholar 

  22. Yan M, Zhang Z, Brady JR, Schilbach S, Fairbrother WJ, Dixit VM. Identification of a novel death domain-containing adaptor molecule for ectodysplasin-A receptor that is mutated in crinkled mice. Curr Biol 2002;12:409–413.

    Article  PubMed  CAS  Google Scholar 

  23. Israel A. The IKK complex: an integrator of all signals that activate NF-kappaB? Trends Cell Biol 2000;10:129–133.

    Article  PubMed  CAS  Google Scholar 

  24. Zonana J, Elder ME, Schneider LC, et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 2000;67:1555–1562.

    Article  PubMed  CAS  Google Scholar 

  25. Doffinger R, Smahi A, Bessia C, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 2001;27:277–285.

    Article  PubMed  CAS  Google Scholar 

  26. Dupuis-Girod S, Corradini N, Hadj-Rabia S, et al. Osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics 2002;109:e97.

    Article  PubMed  Google Scholar 

  27. Sinha SK, Zachariah S, Quinones HI, Shindo M, Chaudhary PM. Role of TRAF3 and-6 in the activation of the NF-kappa B and JNK pathways by X-linked ectodermal dysplasia receptor. J Biol Chem 2002;277:44,953–44,961.

    Article  PubMed  CAS  Google Scholar 

  28. Ye H, Park YC, Kreishman M, Kieff E, Wu H. The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol Cell 1999;4:321–330.

    Article  PubMed  CAS  Google Scholar 

  29. Qian Y, Zhao Z, Jiang Z, Li X. Role of NFkappa B activator Act1 in CD40-mediated signaling in epithelial cells. Proc Natl Acad Sci USA 2002;99:9386–9391.

    Article  PubMed  CAS  Google Scholar 

  30. Ye H, Arron JR, Lamothe B, et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 2002;418:443–447.

    Article  PubMed  CAS  Google Scholar 

  31. Naito A, Yoshida H, Nishioka E, et al. TRAF6-deficient mice display hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci USA 2002;99:8766–8771.

    PubMed  CAS  Google Scholar 

  32. Smahi A, Courtois G, Rabia SH, et al. The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet 2002;11:2371–2375.

    Article  PubMed  CAS  Google Scholar 

  33. Srivastava AK, Durmowicz MC, Hartung AJ, et al. Ectodysplasin-A1 is sufficient to rescue both hair growth and sweat glands in Tabby mice. Hum Mol Genet 2001;10:2973–2981.

    Article  PubMed  CAS  Google Scholar 

  34. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104:487–501.

    Article  PubMed  CAS  Google Scholar 

  35. Munoz F, Lestringant G, Sybert V, et al. Definitive evidence for an autosomal recessive form of hypohidrotic ectodermal dysplasia clinically indistinguishable from the more common X-linked disorder. Am J Hum Genet 1997;61:94–100.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chaudhary, P.M. (2005). Death Receptor Signaling in Embryonic Ectodermal Development. In: El-Deiry, W.S. (eds) Death Receptors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-851-X:083

Download citation

  • DOI: https://doi.org/10.1385/1-59259-851-X:083

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-172-1

  • Online ISBN: 978-1-59259-851-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics