Skip to main content

TP53 Mutation Detection by SSCP and Sequencing

  • Protocol
Molecular Diagnosis of Cancer

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 97))

Abstract

The TP53 tumor suppressor gene on chromosome 17p13.1 contains 11 exons and encodes a nuclear phosphoprotein of 53 kDa, a transcription factor involved in the regulation of the cell cycle (1). Normal p53 protein functions as a cell cycle checkpoint and is involved in DNA repair and/or apoptosis (2). The p53 protein acts as a powerful transcription factor that binds to as many as 300 different promoter elements in the genome, broadly altering patterns of specific gene expression (3). Loss of normal p53 function can lead to uncontrolled cell proliferation and neoplastic transformation. A TP53 mutation, most commonly a missense mutation, may cause either a loss of tumor suppressor function or, in certain cases, a gain of oncogenic function (46). This functional duality may be one explanation for the high frequency of TP53 mutations in human cancer (710), which makes the TP53 gene especially suitable for mutational analysis. The modest size of the highly conserved TP53 gene (p53 protein contains 393 amino acids in human) is an advantage in mutation analysis. Mutations in TP53 are usually clustered within the most conserved regions in the area of exons 5–8, corresponding to the sequence-specific DNA-binding domain of the p53 protein (11,12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lane, D. P. and Lain, S. (2002) Therapeutic exploitation of the p53 pathway. Trends Mol. Med. 8(4), 38–42.

    Article  Google Scholar 

  2. Vousden, K. H. (2002) Activation of the p53 tumor suppressor protein. Biochim. Biophys. Acta 1602, 47–59.

    PubMed  CAS  Google Scholar 

  3. Zhao, R., Gish, K., Murphy, M., et al. (2000) Analysis of p53 regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14, 981–993.

    Article  PubMed  CAS  Google Scholar 

  4. Sigal, A. and Rotter, V. (2000) Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 60, 6788–6793.

    PubMed  CAS  Google Scholar 

  5. van Oijen, M. G. C. T. and Slootweg, P. J. (2000) Gain-of-function mutations in the tumor suppressor gene p53. Clin. Cancer Res. 6, 2138–2145.

    PubMed  Google Scholar 

  6. Guimaraes, D. P. and Hainaut, P. (2002) TP53: a key gene in human cancer. Biochimie 84, 83–93.

    Article  PubMed  CAS  Google Scholar 

  7. Hollstein, M., Sidransky, B., Vogelstein, C., et al. (1991) P53 mutations in human cancers. Science 253, 49–53.

    Article  PubMed  CAS  Google Scholar 

  8. Greenblatt, M. S., Bennett, W. P., Hollstein, M., et al. (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878.

    PubMed  CAS  Google Scholar 

  9. Hainaut, P., Soussi, T., Shomer, B., et al. (1997) Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acid Res. 25, 151–157.

    Article  PubMed  CAS  Google Scholar 

  10. Vähäkängas, K. H., Bennett, W. P., Castren, K., et al. (2001) P53 gene and K-ras mutations in lung cancers from former and never-smoking women. Cancer Res. 61, 4350–4356.

    PubMed  Google Scholar 

  11. Levine, A. J. (1997) P53, the cellular gatekeeper for growth and division. Cell 88, 323–331.

    Article  PubMed  CAS  Google Scholar 

  12. Hainaut, P. and Vähäkangas, K. (1997) P53 as a sensor of carcinogenic exposures: mechanisms of p53 protein induction and lessons from p53 gene mutations. Pathol.-Biolog. 45, 833–844.

    CAS  Google Scholar 

  13. Borresen, A.-L., Anderson, T. I., Eyfjörd, J. E., et al. (1995) TP53 mutations and breast cancer prognosis: particularly poor survival rates for cases with mutations in the zinc-binding domains. Genes Chromosomes Cancer 14, 71–75.

    Article  PubMed  CAS  Google Scholar 

  14. Valgardsdottir, R., Tryggvadottir, L., Steinarsdottir, M., et al. (1997) Genomic instability and poor prognosis associated with abnormal TP53 in breast carcinomas. Molecular and immunohistochemical analysis. APMIS 105, 121–130.

    Article  PubMed  CAS  Google Scholar 

  15. Huang, C., Taki, T., Adachi, M., et al. (1998) Mutations in exon 7 and 8 of p53 as poor prognostic factors in patients with non-small cell lung cancer. Oncogene 16, 2469–2477.

    Article  PubMed  CAS  Google Scholar 

  16. Orita, M., Iwahana, H., Kanazawa, H., et al. (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770.

    Article  PubMed  CAS  Google Scholar 

  17. Hayashi, K. (1992) PCR-SSCP: a method for detection of mutations. GATA 9, 73–92.

    CAS  Google Scholar 

  18. Hayashi, K. and Yandell, D. W. (1993) How sensitive is PCR-SSCP? Hum. Mutat. 2, 338–346.

    Article  PubMed  CAS  Google Scholar 

  19. Glavac, D. and Dean, M. (1993) Optimization of the single-strand conformation polymorphism (SSCP) technique for detection of point mutations. Hum. Mutat. 2, 404–414.

    Article  PubMed  CAS  Google Scholar 

  20. Moyret, C., Theillet, C., Puig, P. L., et al. (1994) Relative efficiency of denaturing gradient gel electrophoresis and single-strand conformation polymorphism in the detection of mutations in exon 5 to 8 of the p53 gene. Oncogene 9, 1739–1743.

    PubMed  CAS  Google Scholar 

  21. Welsh, J. A., Castren, K., and Vahakangas, K. (1997) Single-strand conformation polymorphism analysis to detect p53 mutations: characterization and development of controls. Clin. Chem. 43, 2251–2255.

    PubMed  CAS  Google Scholar 

  22. Sheffield, V. C., Cox, D. R., Lerman, L. S., et al. (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-lamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA 86, 232–236.

    Article  PubMed  CAS  Google Scholar 

  23. Meinhold-Heerlein, I., Ninci, E., Ikenberg, H., et al. (2001) Evaluation of methods to detect p53 mutations in ovarian cancer. Oncology 60, 176–188.

    Article  PubMed  CAS  Google Scholar 

  24. Ryu, J.-W., Lee, M.-C., and Jang, W.-C. (2000) Detecting p53 gene mutation of breast cancer and defining differences between silver staining PCR-SSCP and immunohistochemical staining. J. Korean Med. Sci. 15, 73–77.

    PubMed  CAS  Google Scholar 

  25. Pinheiro, N. A., Moura, R. P., Monteiro, E., et al. (1999) Detection of point mutations by non-isotopic single strand conformation polymorphism. Brazil J. Med. Biol. Res. 32, 55–58.

    CAS  Google Scholar 

  26. Vähäkangas, K. H., Castren, K., and Welsh, J. A. (2000) Single-strand conformation polymorphism analysis of mutations in exons 4–8 of the TP53 gene, in Methods in Molecular Medicine, Volume 49: Molecular Pathology Protocols (Killeen, A. A., ed.), Humana, Totowa, NJ, pp. 15–27.

    Google Scholar 

  27. Wikman, F. P., Lu, M.-L., Thykjaer, T., et al. (2000) Evaluation of the performance of a p53 sequencing microarray chip using 140 previously sequenced bladder tumor samples. Clin. Chem. 46, 1555–1561.

    PubMed  CAS  Google Scholar 

  28. Vähäkangas, K. H., Samet, J. M., Metcalf, R. A., et al. (1992) Mutations of the p53 and ras genes in radon-associated lung cancer from uranium miners. Lancet 339, 576–580.

    Article  PubMed  Google Scholar 

  29. Shi, M. M. (2001) Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin. Chem. 47, 164–172.

    PubMed  CAS  Google Scholar 

  30. Worsham, M. J., Pals, G., Raju, U., et al. (2002) Establishing a molecular continuum in breast cancer: DNA microarrays and benign breast disease. Cytometry 47, 56–59.

    Article  PubMed  CAS  Google Scholar 

  31. Schaefer K. L., Wai, D., Poremba, C., et al. (2002) Analysis of TP53 mutations in pediatric tumor patients using microarray-based sequencing technology. Med. Pediatr. Oncol. 38(4), 247–253.

    Article  PubMed  Google Scholar 

  32. Castren, K., Ranki, A., Welsh, J., et al. (1998a) Infrequent p53 mutations in arsenic-related skin lesions. Oncol. Res. 10, 475–482.

    PubMed  CAS  Google Scholar 

  33. Chaubert, P., Beautista, D., and Benhattar J. (1993) An improved method for rapid screening of DNA mutations by nonradioactive single-strand conformational polymorphism procedure. Biotechniques 15, 586.

    PubMed  CAS  Google Scholar 

  34. Cheng, J. and Haas, M. (1992) Sensitivity of detection of heterozygous point mutations in p53 cDNAs by direct PCR sequencing. PCR Methods Appl. 1, 199–201.

    PubMed  CAS  Google Scholar 

  35. Wu, J. K., Ye, Z., and Darras, B. T. (1993) Sensitivity of single-strand conformation polymorphism (SSCP) analysis in detecting p53 point mutations in tumours with mixed cell populations. Am. J. Hum. Genet. 52, 1273–1275.

    PubMed  CAS  Google Scholar 

  36. Conway, K., Edmiston, S. N., Cui, L., et al. (2002) Prevalence and spectrum of p53 mutations associated with smoking in breast cancer. Cancer Res. 62, 1987–1995.

    PubMed  CAS  Google Scholar 

  37. Mizusawa, S., Nishimura, S., and Seela, F. (1986) Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Res. 14, 1319–1324.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hakkarainen, J., Welsh, J.A., Vähäkangas, K.H. (2004). TP53 Mutation Detection by SSCP and Sequencing. In: Roulston, J.E., Bartlett, J.M.S. (eds) Molecular Diagnosis of Cancer. Methods in Molecular Medicine, vol 97. Humana Press. https://doi.org/10.1385/1-59259-760-2:191

Download citation

  • DOI: https://doi.org/10.1385/1-59259-760-2:191

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-160-8

  • Online ISBN: 978-1-59259-760-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics