Skip to main content
Log in

Cellular and molecular alterations in mice with deficient and reduced serotonin transporters

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The function of serotonin transporters (SERTs) is related to mood regulation. Mice with deficient or reduced SERT function (SERT knockout mice) show several behavioral changes, including increased anxiety-like behavior, increased sensitivity to stress, and decreases in aggressive behavior. Some of these behavioral alterations are similar to phenotypes found in humans with short alleles of polymorphism in the 5-hydroxytryptamine (5-HT) transporter-linked promoter region (5-HTTLPR). Therefore, SERT knockout mice can be used as a tool to study 5-HTTLPR-related variations in personality and may be the etiology of affective disorders. This article focuses on the cellular and molecular alterations in SERT knockout mice, including changes in 5-HT concentrations and its metabolism, alterations in 5-HT receptors, impaired hypothalamic-pituitary-adrenal gland axis, developmental changes in the neurons and brain, and influence on other neurotransmitter transporters and receptors. It also discusses the possible relationships between these alterations and the behavioral changes in these mice. The knowledge provides the foundation for understanding the cellular and molecular mechanisms that mediate the SERT-related mood regulation, which may have significant impact on understanding the etiology of affective disorders and developing better therapeutic approaches for affective disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou F. C., Tao-Cheng J. H., Segu L., Patel T., and Wang Y. (1998) Serotonin transporters are located on the axons beyond the synaptic junctions: anatomical and functional evidence. Brain Res. 805, 241–254.

    Article  PubMed  CAS  Google Scholar 

  2. Owens M. J. (1997) Molecular and cellular mechanisms of antidepressant drugs. Depress. Anx. 1996–97 4, 153–159.

    Article  CAS  Google Scholar 

  3. Artigas F., Bel N., Casanovas J. M., and Romero L. (1996) Adaptative changes of the serotonergic system after antidepressant treatments. Adv. Exp. Med. Biol. 398, 51–59.

    PubMed  CAS  Google Scholar 

  4. Caspi A., Sugden K., Moffitt T. E., et al. (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389.

    Article  PubMed  CAS  Google Scholar 

  5. Lesch K. P., Bengel D., Heils A., et al. (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531.

    Article  PubMed  CAS  Google Scholar 

  6. Lesch K. P. and Mossner R. (1998) Genetically driven variation in serotonin uptake: is there a link to affective spectrum, neurodevelopmental, and neurodegenerative disorders? Biol. Psychiatr. 44, 179–192.

    Article  CAS  Google Scholar 

  7. Murphy D. L., Li Q., Engel S., et al. (2001) Genetic perspectives on the serotonin transporter. Brain Res. Bull. 56, 487–494.

    Article  PubMed  CAS  Google Scholar 

  8. Retz W., Retz-Junginger P., Supprian T., Thome J., and Rosler M. (2004) Association of serotonin transporter promoter gene polymorphism with violence: relation with personality disorders, impulsivity, and childhood ADHD psychopathology. Behav. Sci. Law 22, 415–425.

    Article  PubMed  Google Scholar 

  9. Heils A., Teufel A., Petri S., et al. (1996) Allelic variation of human serotonin transporter gene expression. J. Neurochem. 66, 2621–2624.

    Article  PubMed  CAS  Google Scholar 

  10. Holmes A., Yang R. J., Murphy D. L., and Crawley J. N. (2001) Abnormal emotional behaviors and age-related obesity in 5-HT transporter deficient mice. Soc. Neurosci. Abstr. 27, 987.5.

    Google Scholar 

  11. Greenberg B. D., Li Q., Lucas F. R., et al. (2000) Association between the serotonin transporter promoter polymorphism and personality traits in a primarily female population sample. American J. Med. Genet. 96, 202–216.

    Article  CAS  Google Scholar 

  12. Hariri A. R., Mattay V. S., Tessitore A., et al. (2002) Serotonin transporter genetic variation and the response of the human amygdala. Science 297, 400–403.

    Article  PubMed  CAS  Google Scholar 

  13. Barr C. S., Newman T. K., Shannon C., et al. (2004) Rearing condition and Rh5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques. Biologic. Psychiatr. 55, 733–738.

    Article  CAS  Google Scholar 

  14. Bengel D., Murphy D. L., Andrews A. M., et al. (1998) Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxy-methamphetamine (“ecstasy”) in serotonin transporter-deficient mice. Molecular Pharmacol 53, 649–655.

    CAS  Google Scholar 

  15. Lira A., Zhou M. M., Castanon N., et al. (2003) Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol. Psychiatr. 54, 960–971.

    Article  CAS  Google Scholar 

  16. Ansorge M. S., Zhou M. M., Lira A., Hen R., and Gingrich J. A. (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306, 879–881.

    Article  PubMed  CAS  Google Scholar 

  17. Holmes A., Murphy D. L., and Crawley J. N. (2002) Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology 161, 160–167.

    Article  PubMed  CAS  Google Scholar 

  18. Holmes A., Yang R. J., Lesch K. P., Crawley J. N., and Murphy D. L. (2003) Mice lacking the serotonin transporter exhibit 5-HT1A receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28, 2077–2088.

    PubMed  CAS  Google Scholar 

  19. Holmes A., Murphy D. L., and Crawley, J. N. (2003b) Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol. Psychiatr. 54, 953–959.

    Article  CAS  Google Scholar 

  20. Murphy D. L., Wichems C., Li Q., and Heils A. (1999) Molecular manipulations as tools for enhancing our understanding of 5-HT neurotransmission. Trends Pharmacol. Sci. 20, 246–252.

    Article  PubMed  CAS  Google Scholar 

  21. Murphy D. L., Lerner, A., Rudnick G., and Lesch K. P. (2004) Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol. Inter. 4, 109–123.

    Article  CAS  Google Scholar 

  22. Perez X. A. and Andrews A. M. (2005) Chronoamperometry to determine differential reductions in uptake in brain synaptosomes from serotonin transporter knockout mice. Analyt. Chem. 77, 818–826.

    Article  CAS  Google Scholar 

  23. Montanez S., Owens W. A., Gould G. G., Murphy D. L., and Daws L. C. (2003) Exaggerated effect of fluvoxamine in heterozygote serotonin transporter knockout mice. J. Neurochem. 86, 210–219.

    Article  PubMed  CAS  Google Scholar 

  24. Fabre V., Beaufour C., Evrard A., et al., (2000) Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur. J. Neurosci. 12, 2299–2310.

    Article  PubMed  CAS  Google Scholar 

  25. Mathews T. A., Fedele D. E., Coppelli F. M., Avila A. M., Murphy D. L., and Andrews A. M. (2004) Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J. Neurosci. Methods 140, 169–181.

    Article  PubMed  CAS  Google Scholar 

  26. Kim D. K., Tolliver T. J., Huang S. J., et al. (2005) Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 49, 798–810.

    Article  PubMed  CAS  Google Scholar 

  27. Hoyer D., Clarkle D. E., Fozard, J. R., et al. (1994) VII. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol. Rev. 46, 157–204.

    PubMed  CAS  Google Scholar 

  28. Hoyer D., Hannon J. P., and Martin G. R. (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 71, 533–554.

    Article  PubMed  CAS  Google Scholar 

  29. den Boer J. A., Bosker F. J., and Slaap B. R. (2000) Serotonergic drugs in the treatment of depressive and anxiety disorders. Human Psychopharmacol. Clin. Experiment. 15, 315–336.

    Article  Google Scholar 

  30. Graeff F. G., Guimaraes F. S., De Andrade T. G., and Deakin J. F. (1996) Role of 5-HT in Stress, Anxiety, and Depression. Pharmacol. Biochem. Behav. 54, 129–141.

    Article  PubMed  CAS  Google Scholar 

  31. Griebel G. (1995) 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol. Ther. 65, 319–395.

    Article  PubMed  CAS  Google Scholar 

  32. Gingrich J. A. and Hen R. (2001) Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology 155, 1–10.

    Article  PubMed  CAS  Google Scholar 

  33. Groenink L., Pattij T., de Jongh R., et al. (2003) 5-HT1A receptor knockout mice and mice overexpressing corticotropin-releasing hormone in models of anxiety. Eur. J. Pharmacol. 463, 185–197.

    Article  PubMed  CAS  Google Scholar 

  34. Olivier B., Pattij T., Wood S. J., Oosting R., Sarnyai Z., and Toth M. (2001) The 5-HT1A receptor knockout mouse and anxiety. Behav. Pharmacol. 12, 439–450.

    PubMed  CAS  Google Scholar 

  35. Holmes A., Li, Q., Murphy D. L., Gold E., and Crawley J. N. (2003) Abnormal anxiety-related behaviour in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav. 2, 365–380.

    Article  PubMed  CAS  Google Scholar 

  36. Wichems C. H., Li Q., Holmes A., et al. (2000) Mechanisms mediating the increased anxiety-like behavior and excessive responses to stress in mice lacking the serotonin transporter. Soc. Neurosci. Abstr. 26, 400.

    Google Scholar 

  37. Li Q., Wichems C., Heils A., Lesch K. P., and Murphy D. L. (2000) Reduction in the density and expression, but not G-protein coupling of serotonin receptors (5-HT1A) in 5-HT transporter knock-out mice: gender and brain region differences. J. Neurosci. 20, 7888–7895.

    PubMed  CAS  Google Scholar 

  38. Li Q., Wichems C., Heils A., Van de Kar L. D., Lesch K. P., and Murphy D. L. (1999) Reduction of 5-hydroxytryptamine (5-HT)(1A)-mediated temperature and neuroendocrine responses and 5-HT(1A) binding sites in 5-HT transporter knockout mice. J. Pharmacol. Exp. Ther. 291, 999–1007.

    PubMed  CAS  Google Scholar 

  39. Gobbi G., Murphy D. L., Lesch K. P., and Blier P. (2001) Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J. Pharmacol. Exp. Ther. 296, 987–995.

    PubMed  CAS  Google Scholar 

  40. Lanfumey L., La Cour C. M., Froger N., and Hamon M. (2000) 5-HT-HPA interactions in two models of transgenic mice relevant to major depression. Neurochem. Res. 25, 1199–1206.

    Article  PubMed  CAS  Google Scholar 

  41. Bouali S., Evrard A., Chastanet M., Lesch K. P., Hamon M., and Adrien J. (2003) Sex hormone-dependent desensitization of 5-HT1A autoreceptors in knockout mice deficient in the 5-HT transporter. Eur. J. Neuroscience 18, 2203–2212.

    Article  Google Scholar 

  42. Bethea C. L., Gundlah C., and Mirkes S. J. (2000) Ovarian steroid action in the serotonin neural system of macaques. Novartis Found. Symp. 230, 112–130.

    Article  PubMed  CAS  Google Scholar 

  43. Carrasco G. A., Barker S. A., Zhang Y., et al. (2004) Estrogen treatment increases the levels of regulator of G protein signaling-Z1 in the hypothalamic paraventricular nucleus: possible role in desensitization of 5-hydroxytryptamine(1A) receptors. Neuroscience 127, 261–267.

    Article  PubMed  CAS  Google Scholar 

  44. D'Souza D. N., Zhang Y. H., Damjanoska K. J., et al. (2004) Estrogen reduces serotonin-1A receptor-mediated oxytocin release and G alpha(i/o/z) proteins in the hypothalamus of ovariectomized rats. Neuroendocrinology 80, 31–41.

    Article  PubMed  CAS  Google Scholar 

  45. Le Saux M. and Di Paolo T. (2005) Changes in 5-HT1A receptor binding and G-protein activation in the rat brain after estrogen treatment: comparison with tamoxifen and raloxifene. J. Psychiatr. Neurosci. 30, 110–117.

    Google Scholar 

  46. Lu N. Z. and Bethea C. L. (2002) Ovarian steroid regulation of 5-HT1A receptor binding and G protein activation in female monkeys. Neuropsychopharmacology 27, 12–24.

    Article  PubMed  CAS  Google Scholar 

  47. Azmitia E. C. (2001) Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res. Bull. 56, 413–424.

    Article  PubMed  CAS  Google Scholar 

  48. Azmitia E. C. and Whitaker-Azmitia P. M. (1997) Development and adult plasticity of serotoninergic neurons and their target cells, in Serotoninergic Neurons and 5-HT Receptors in the CNS, Baumgarten H. G. and Gothert M., eds, Berlin: Springer, pp. 1–39.

    Google Scholar 

  49. Whitaker-Azmitia P. M. (2005) Behavioral and cellular consequences of increasing serotonergic activity during brain development: a role in autism?. Intern. J. Development. Neurosci. 23, 75–83.

    Article  CAS  Google Scholar 

  50. Li Q., Holmes A., Ma L., Van de Kar L. D., Garcia F., and Murphy D. L. (2004) Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences. J. Neurosci. 24, 10,868–10,877.

    CAS  Google Scholar 

  51. Rittenhouse P. A., Bakkum E. A., O'Connor P. A., Carnes M., Bethea C. L., and Van de Kar L. D. (1992) Comparison of neuroendocrine and behavioral effects of ipsapirone, a 5-HT1A agonist, in three stress paradigms: immobilization, forced swim and conditioned fear. Brain Res. 580, 205–214.

    Article  PubMed  CAS  Google Scholar 

  52. Saphier D., Farrar G. E. and Welch J. E. (1995) Differential inhibition of stress-induced adrenocortical responses by 5-HT1A agonists and by 5-HT2 and 5-HT3 antagonists. Psychoneuroendocrinology 20, 239–257.

    Article  PubMed  CAS  Google Scholar 

  53. Saphier D. and Welch J. E. (1995) Effects of the serotonin1A agonist, 8-hydroxy-2-(di-n- propylamino)tetralin on neurochemical responses to stress. J. Neurochem. 64, 767–776.

    Article  PubMed  CAS  Google Scholar 

  54. Li Q., Wichems C. H., Ma L., Van de Kar L. D., Garcia F., and Murphy D. L. (2003) Brain region-specific alterations of 5-HT2A and 5-HT2C receptors in serotonin transporter knockout mice. J. Neurochem. 84, 1256–1265.

    Article  PubMed  CAS  Google Scholar 

  55. Rioux A., Fabre V., Lesch K. P., et al. (1999) Adaptive changes of serotonin 5-HT2A receptors in mice lacking the serotonin transporter. Neurosci. Lett. 262, 113–116.

    Article  PubMed  CAS  Google Scholar 

  56. Hartig P. R., Hoffman B. J., Kaufman M. J., and Hirata F. (1990) The 5-HT1C receptor. Ann. NY Acad. Sci. 600, 149–166.

    Article  PubMed  CAS  Google Scholar 

  57. Pompeiano M., Palacios J. M., and Mengod G. (1994) Distribution of the serotonin 5-HT2 receptor family MRNAs: comparison between 5-HT2A and 5-HT2C receptors. Mol. Brain Res. 23, 163–178.

    Article  PubMed  CAS  Google Scholar 

  58. Broocks A., Bandelow B., George A., et al. (2000) Increased psychological responses and divergent neuroendocrine responses to M-CPP and ipsapirone in patients with panic disorder. Intern. Clin. Psychopharmacol. 15, 153–161.

    Article  CAS  Google Scholar 

  59. Preuss U. W., Soyka M., Bahlmann M., et al. (2000) Serotonin transporter gene regulatory region polymorphism (5-HTTLPR), [H-3]paroxetine binding in healthy control subjects and alcohol-dependent patients and their relationships to impulsivity. Psych. Res. 96, 51–61.

    Article  CAS  Google Scholar 

  60. Burns C. M., Chu H., Rueter S. M., et al. (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303–308.

    Article  PubMed  CAS  Google Scholar 

  61. Canton H., Emeson R. B., Barker E. L., et al. (1996) Identification, molecular cloning, and distribution of a short variant of the 5-Hydroxytryptamine2C receptor produced by alternative splicing. Mol Pharmacol 50, 799–807.

    PubMed  CAS  Google Scholar 

  62. Niswender C. M., Sanders-Bush E., and Emeson R. B. (1998) Identification and characterization of RNA editing events within the 5-HT2C receptor. Ann. NY Acad. Sci. 861, 38–48.

    Article  PubMed  CAS  Google Scholar 

  63. Wang Q., O'Brien P. J., Chen C. X., Cho D. S., Murray J. M., and Nishikura K. (2000) Altered G protein-coupling functions of RNA editing isoform and splicing variant serotonin2C receptors. J. Neurochem. 74, 1290–1300.

    Article  PubMed  CAS  Google Scholar 

  64. Englander M. T., Dulawa S. C., Bhansali P., and Schmauss C. (2005) How stress and fluoxetine modulate serotonin 2C receptor pre-MRNA editing. J. Neurosci. 25, 648–651.

    Article  PubMed  CAS  Google Scholar 

  65. Gurevich I., Tamir H., Arango V., Dwork A. J., Mann J. J., and Schmauss C. (2002) Altered editing of serotonin 2C receptor pre-MRNA in the prefrontal cortex of depressed suicide victims. Neuron 34, 349–356.

    Article  PubMed  CAS  Google Scholar 

  66. Gurevich I., Englander M. T., Adlersberg M., Siegal N. B., and Schmauss C. (2002) Modulation of serotonin 2C receptor editing by sustained changes in serotonergic neurotransmission. J. Neurosci. 22, 10,529–10,532.

    CAS  Google Scholar 

  67. Heisler L. K., Chu H. M., and Tecott L. H. (1998) Epilepsy and obesity in serotonin 5-HT2C receptor mutant mice. Ann. NY Acad. Sci. 861, 74–78.

    Article  PubMed  CAS  Google Scholar 

  68. Nonogaki K., Strack A. M., Dallman M. F., and Tecott L. H. (1998) Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nat. Med. 4, 1152–1156.

    Article  PubMed  CAS  Google Scholar 

  69. Vickers S. P., Clifton P. G., Dourish C. T., and Tecott L. H. (1999) Reduced satiating effect of D-fenfluramine in serotonin 5-HT(2C) receptor mutant mice. Psychopharmacology (Berl.) 143, 309–314.

    Article  CAS  Google Scholar 

  70. Mossner R., Schmitt A., Hennig T., et al. (2004) Quantitation of 5HT3 receptors in forebrain of serotonin transporter deficient mice. J. Neural Trans. 111, 27–35.

    Article  CAS  Google Scholar 

  71. Chen J. J., Li Z. S., Pan H., et al. (2001) Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J. Neurosci. 21, 6348–6361.

    PubMed  CAS  Google Scholar 

  72. Liu M. T., Rayport S., Jiang Y., Murphy D. L., and Gershon M. D. (2002) Expression and function of 5-HT3 receptors in the enteric neurons of mice lacking the serotonin transporter. Am. J. Physiol. Gastrointestinal Liver Physiol. 283, G1398-G1411.

    CAS  Google Scholar 

  73. Tjurmina O. A., Armando I., Saavedra J. M., Goldstein D. S., and Murphy D. L. (2002) Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. Endocrinology 143, 4520–4526.

    Article  PubMed  CAS  Google Scholar 

  74. Persico A. M., Mengual E., Moessner R., et al. (2001) Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J. Neurosci. 21, 6862–6873.

    PubMed  CAS  Google Scholar 

  75. Salichon N., Gaspar P., Upton A. L., et al. (2001) Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-HT transporter knock-out mice. J. Neurosci. 21, 884–896.

    PubMed  CAS  Google Scholar 

  76. Esaki T., Cook M., Shimoji K., Murphy D. L., Sokoloff L., and Holmes A. (2005) Developmental disruption of serotonin transporter function impairs cerebral responses to whisker stimulation in mice. Proc. Nat. Acad. Sci. USA 102, 5582–5587.

    Article  PubMed  CAS  Google Scholar 

  77. Freo U., Ori C., Dam M., Merico A., and Pizzolato G. (2000) Effects of acute and chronic treatment with fluoxetine on regional glucose cerebral metabolism in rats: implications for clinical therapies. Brain Res. 854, 35–41.

    Article  PubMed  CAS  Google Scholar 

  78. Azmitia E. C. (2001) Neuronal instability: implications for Rett's syndrome. Brain Develop. 23, S1-S10.

    Article  Google Scholar 

  79. Persico A. M., Baldi A., Dell'Acqua M. L., et al. (2003) Reduced programmed cell death in brains of serotonin transporter knockout mice. Neuroreport 14, 341–344.

    Article  PubMed  CAS  Google Scholar 

  80. Zhou F. C., Lesch K. P., and Murphy D. L. (2002) Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res. 942, 109–119.

    Article  PubMed  CAS  Google Scholar 

  81. Pan Y., Gembom E., Peng W., Lesch K. P., Mossner R., and Simantov R. (2001) Plasticity in serotonin uptake in primary neuronal cultures of serotonin transporter knockout mice. Brain Res. Dev. Brain Res. 126, 125–129.

    Article  PubMed  CAS  Google Scholar 

  82. Holmes A., Yang R. J., Murphy D. L., and Crawley J. N. (2002) Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 27, 914–923.

    Article  PubMed  CAS  Google Scholar 

  83. Schmitt A., Mossner R., Gossmann A., et al. (2003) Organic cation transporter capable of transporting serotonin is up-regulated in serotonin transporter-deficient mice. J. Neurosci. Res. 71, 701–709.

    Article  PubMed  CAS  Google Scholar 

  84. La Cour C. M., Hanoun N., Melfort M., et al. (2004) GABA(B) receptors in 5-HT transporter-and 5-HT1A receptor-knock-out mice: further evidence of a transduction pathway shared with 5-HT1A receptors. J. Neurochem. 89, 886–896.

    Article  CAS  Google Scholar 

  85. Mannoury L. C., Hanoun N., Melfort M., et al. (2004) GABA(B) Receptors in 5-HT transporter-and 5-HT1A receptor-knock-out mice: further evidence of a transduction pathway shared with 5-HT1A receptors. J. Neurochem. 89, 886–896.

    Article  CAS  Google Scholar 

  86. Mossner R., Albert D., Persico A. M., et al. (2000) Differential regulation of adenosine A(1) and A(2A) receptors in serotonin transporter and monoamine oxidase A-deficient mice. Eur. Neuropsychopharmacol. 10, 489–493.

    Article  PubMed  CAS  Google Scholar 

  87. Kilic F., Murphy D. L., and Rudnick G. (2003) A human serotonin transporter mutation causes constitutive activation of transport activity. Mol. Pharmacol. 64, 440–446.

    Article  PubMed  CAS  Google Scholar 

  88. Ozaki N., Goldman D., Kaye W. H., et al. (2003) Serotonin transporter missense mutation associated with a complex neuropsychiatric phenotype. Mol. Psych. 8, 933–936.

    Article  CAS  Google Scholar 

  89. David S. P., Murthy N. V., Rabiner E. A., et al. (2005) A functional genetic variation of the serotonin (5-HT) transporter affects 5-HT1A receptor binding in humans. J. Neurosci. 25, 2586–2590.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q. Cellular and molecular alterations in mice with deficient and reduced serotonin transporters. Mol Neurobiol 34, 51–65 (2006). https://doi.org/10.1385/MN:34:1:51

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:34:1:51

Index Entries

Navigation