Skip to main content
Log in

Oxidative imbalance in alzheimer’s disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oxidative stress is a striking feature of susceptible neurons in the Alzheimer’s disease brain. Importantly, because oxidative stress is an early event in Alzheimer’s disease, proximal to the development of hallmark pathologies, it likely plays an important role in the pathogenesis of the disease. Investigations into the cause of such oxidative stress show that interactions between abnormal mitochondria and disturbed metal metabolism are, at least in part, responsible for cytoplasmic oxidative damage observed in these susceptible neurons, which could ultimately lead to their demise. Oxidative stress not only temporally precedes the pathological lesions of the disease but could also contribute to their formation, which, in turn, could provide some protective mechanism to reduce oxidative stress and ensure that neurons do not rapidly succumb to oxidative insults. In this review, we present the evidence for oxidative stress in Alzheimer’s disease and its likely sources and consequence in relation to other pathological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halliwell B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623.

    Article  PubMed  CAS  Google Scholar 

  2. Joseph J., Shukitt-Hale B., Denisova N.A., et al. (2001) Copernicus revisited: amyloid beta in Alzheimer’s disease. Neurobiol. Aging 22, 131–146.

    Article  PubMed  CAS  Google Scholar 

  3. Hirai K., Aliev G., Nunomura A., et al. (2001) Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci. 21, 3017–3023.

    PubMed  CAS  Google Scholar 

  4. Zhu X., Raina A.K., Perry G., and Smith M.A. (2004) Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol. 3, 219–226.

    Article  PubMed  CAS  Google Scholar 

  5. Smith M.A., Rottkamp C.A., Nunomura A., et al. (2000) Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta 1502, 139–144.

    PubMed  CAS  Google Scholar 

  6. Good P.F., Werner P., Hsu A., et al. (1996) Evidence of neuronal oxidative damage in Alzheimer’s disease. Am. J. Pathol. 149, 21–28.

    PubMed  CAS  Google Scholar 

  7. Smith M.A., Richey Harris P.L., Sayre L.M., et al. (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J. Neurosci. 17, 2653–2657.

    PubMed  CAS  Google Scholar 

  8. Smith M.A., Perry G., Richey P.L., et al. (1996) Oxidative damage in Alzheimer’s. Nature 382, 120–121.

    Article  PubMed  CAS  Google Scholar 

  9. Castegna A., Thongboonkerd V., Klein J.B., et al. (2003) Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J. Neurochem. 85, 1394–1401.

    Article  PubMed  CAS  Google Scholar 

  10. Williamson K.S., Gabbita S.P., Mou S., et al. (2002) The nitration product 5-nitro-gamma-tocopherol is increased in the Alzheimer brain. Nitric Oxide 6, 221–227.

    Article  PubMed  CAS  Google Scholar 

  11. Sayre L.M., Smith M.A., and Perry G. (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. 8, 721–738.

    PubMed  CAS  Google Scholar 

  12. Smith M.A., Sayre L.M., Anderson V.E., et al. (1998) Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J. Histochem. Cytochem. 46, 731–735.

    PubMed  CAS  Google Scholar 

  13. Montine T.J., Amarnath V., Martin M.E., et al. (1996) E-4-Hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures. Am. J. Pathol. 148, 89–93.

    PubMed  CAS  Google Scholar 

  14. Sayre L.M., Zelasko D.A., Harris P.L., et al. (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J. Neurochem. 68, 2092–2097.

    Article  PubMed  CAS  Google Scholar 

  15. Nunomura A., Perry G., Pappolla M.A., et al. (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J. Neurosci. 19, 1959–1964.

    PubMed  CAS  Google Scholar 

  16. Rottkamp C.A., Nunomura A., Raina A.K., et al. (2000) Oxidative stress, antioxidants, and Alzheimer disease. Alzheimer Dis. Assoc. Disord. 14(Suppl. 1), S62-S66.

    PubMed  CAS  Google Scholar 

  17. Rinaldi P., Polidori M.C., Metastasio A., et al. (2003) Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol. Aging 24, 915–919.

    Article  PubMed  CAS  Google Scholar 

  18. Riviere S., Birlouez-Aragon I., Nourhashemi F., and Vellas B. (1998) Low plasma vitamin C in Alzheimer patients despite an adequate diet. Int. J. Geriatr. Psychiatry 13, 749–754.

    Article  PubMed  CAS  Google Scholar 

  19. Bourdel-Marchasson I., Delmas-Beauvieux M.C., Peuchant E., et al. (2001) Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients. Age Ageing 30, 235–241.

    Article  PubMed  CAS  Google Scholar 

  20. Lovell M.A., Xie C., and Markesbery W.R. (1998) Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer’s disease. Neurology 51, 1562–1566.

    PubMed  CAS  Google Scholar 

  21. Riviere S., Birlouez-Aragon I., and Vellas B. (1998) Plasma protein glycation in Alzheimer’s disease. Glycoconj. J. 15, 1039–1042.

    Article  PubMed  CAS  Google Scholar 

  22. Pratico D. (2002) Alzheimer’s disease and oxygen radicals: new insights. Biochem. Pharmacol. 63, 563–567.

    Article  PubMed  CAS  Google Scholar 

  23. Markesbery W.R. and Carney J.M. (1999) Oxidative alterations in Alzheimer’s disease. Brain Pathol. 9, 133–146.

    Article  PubMed  CAS  Google Scholar 

  24. Markesbery W.R. and Lovell M.A. (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol. Aging 19, 33–36.

    Article  PubMed  CAS  Google Scholar 

  25. Pratico D., Trojanowski J.Q., Rokach J., et al. (1998) Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB J. 12, 1777–1783.

    PubMed  CAS  Google Scholar 

  26. Montine T.J., Beal M.F., Cudkowicz M.E., et al. (1999) Increased CSF F2-isoprostane concentration in probable AD. Neurology 52, 562–565.

    PubMed  CAS  Google Scholar 

  27. Montine T.J., Sidell K.R., Crews B.C., et al. (1999) Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology 53, 1495–1498.

    PubMed  CAS  Google Scholar 

  28. Montine T.J., Markesbery W.R., Zackert W., et al. (1999) The magnitude of brain lipid peroxidation correlates with the extent of degeneration but not with density of neuritic plaques or neurofibrillary tangles or with APOE genotype in Alzheimer’s disease patients. Am. J. Pathol. 155, 863–868.

    PubMed  CAS  Google Scholar 

  29. Pratico D., Clark C.M., Lee V.M., et al. (2000) Increased 8,12-iso-iPF2alpha-VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann. Neurol. 48, 809–812.

    Article  PubMed  CAS  Google Scholar 

  30. Tuppo E.E., Forman L.J., Spur B.W., et al. (2001) Sign of lipid peroxidation as measured in the urine of patients with probable Alzheimer’s disease. Brain Res. Bull. 54, 565–568.

    Article  PubMed  CAS  Google Scholar 

  31. Pratico D., Clark C.M., Liun F., et al. (2002) Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch. Neurol. 59, 972–976.

    Article  PubMed  Google Scholar 

  32. Lovell M.A., Gabbita S.P., and Markesbery W.R. (1999) Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J. Neurochem. 72, 771–776.

    Article  PubMed  CAS  Google Scholar 

  33. Tohgi H., Abe T., Yamazaki K., et al. (1998) The cerebrospinal fluid oxidized NO metabolites, nitrite and nitrate, in Alzheimer’s disease and vascular dementia of Binswanger type and multiple small infarct type. J. Neural Transm. 105, 1283–1291.

    Article  PubMed  CAS  Google Scholar 

  34. Tohgi H., Abe T., Yamazaki K., et al. (1999) Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer’s disease. Neurosci. Lett. 269, 52–54.

    Article  PubMed  CAS  Google Scholar 

  35. Perry G., Castellani R.J., Smith M.A., et al. (2003) Oxidative damage in the olfactory system in Alzheimer’s disease. Acta Neuropathol. (Berl.) 106, 552–556.

    Article  CAS  Google Scholar 

  36. Mecocci P., Polidori M.C., Ingegni T., et al. (1998) Oxidative damage to DNA in lymphocytes from AD patients. Neurology 51, 1014–1017.

    PubMed  CAS  Google Scholar 

  37. Mecocci P., Polidori M.C., Cherubini A., et al. (2002) Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer disease. Arch. Neurol. 59, 794–798.

    Article  PubMed  Google Scholar 

  38. Gibson G.E., Pulsinelli W., Blass J.P., and Duffy T.E. (1981) Brain dysfunction in mild to moderate hypoxia. Am. J. Med. 70, 1247–1254.

    Article  PubMed  CAS  Google Scholar 

  39. Blass J.P. and Gibson G.E. (1999) Cerebrometabolic aspects of delirium in relationship to dementia. Dement. Geriatr. Cogn. Disord. 10, 335–338.

    Article  PubMed  CAS  Google Scholar 

  40. Small G.W., Mazziotta J.C., Collins M.T., et al. (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 273, 942–947.

    Article  PubMed  CAS  Google Scholar 

  41. Reiman E.M., Caselli R.J., Yun L.S., et al. (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N. Engl. J. Med. 334, 752–758.

    Article  PubMed  CAS  Google Scholar 

  42. Ibanez V., Pietrini P., Alexander G.E., et al. (1998) Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 50, 1585–1593.

    PubMed  CAS  Google Scholar 

  43. Gibson G.E., Sheu K.F., and Blass J.P. (1998) Abnormalities of mitochondrial enzymes in Alzheimer disease. J. Neural Transm. 105, 855–870.

    Article  PubMed  CAS  Google Scholar 

  44. Chandrasekaran K., Giordano T., Brady D.R., et al. (1994) Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Brain Res. Mol. Brain Res. 24, 336–340.

    Article  PubMed  CAS  Google Scholar 

  45. Cottrell D.A., Blakely E.L., Johnson M.A., et al. (2001) Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology 57, 260–264.

    PubMed  CAS  Google Scholar 

  46. Maurer I., Zierz S., and Moller H.J. (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol. Aging 21, 455–462.

    Article  PubMed  CAS  Google Scholar 

  47. Nagy Z., Esiri M.M., LeGris M., and Matthews P.M. (1999) Mitochondrial enzyme expression in the hippocampus in relation to Alzheimer-type pathology. Acta Neuropathol. (Berl.) 97, 346–354.

    Article  CAS  Google Scholar 

  48. Parker W.D., Jr., Mahr N.J., Filley C.M., et al. (1994) Reduced platelet cytochrome c oxidase activity in Alzheimer’s disease. Neurology 44, 1086–1090.

    PubMed  Google Scholar 

  49. Parker W.D., Jr., Parks J., Filley C.M., and Kleinschmidt-DeMasters B.K. (1994) Electron transport chain defects in Alzheimer’s disease brain. Neurology 44, 1090–1096.

    PubMed  Google Scholar 

  50. Gibson G.E., Haroutunian V., Zhang H., et al. (2000) Mitochondrial damage in Alzheimer’s disease varies with apolipoprotein E genotype. Ann. Neurol. 48, 297–303.

    Article  PubMed  CAS  Google Scholar 

  51. Lovell M.A., Ehmann W.D., Butler S.M., and Markesbery W.R. (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 45, 1594–1601.

    PubMed  CAS  Google Scholar 

  52. Kulkarni-Narla A., Getchell T.V., Schmitt F.A., and Getchell M.L. (1996) Manganese and copper-zinc superoxide dismutases in the human olfactory mucosa: increased immunoreactivity in Alzheimer’s disease. Exp. Neurol. 140, 115–125.

    Article  PubMed  CAS  Google Scholar 

  53. De Leo M.E., Borrello S., Passantino M., et al. (1998) Oxidative stress and overexpression of managanese superoxide dismutase in patients with Alzheimer’s disease. Neurosci. Lett. 250, 173–176.

    Article  PubMed  Google Scholar 

  54. Ozcankaya R. and Delibas N. (2002) Malondialdehyde, superoxide dismutase, melatonin, iron, copper, and zinc blood concentrations in patients with Alzheimer disease: cross-sectional study. Croat. Med. J. 43, 28–32.

    PubMed  Google Scholar 

  55. Aksenov M.Y., Tucker H.M., Nair P., et al. (1998) The expression of key oxidative stress-handling genes in different brain regions in Alzheimer’s disease. J. Mol. Neurosci. 11, 151–164.

    Article  PubMed  CAS  Google Scholar 

  56. Serra J.A., Dominguez R.O., de Lustig E.S., et al. (2001) Parkinson’s disease is associated with oxidative stress: comparison of peripheral antioxidant profiles in living Parkinson’s, Alzheimer’s and vascular dementia patients. J. Neural Transm. 108, 1135–1148.

    Article  PubMed  CAS  Google Scholar 

  57. Gulesserian T., Seidl R., Hardmeier R., et al. (2001) Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndrome. J. Invest. Med. 49, 41–46.

    CAS  Google Scholar 

  58. Behl C. (1997) Amyloid beta-protein toxicity and oxidative stress in Alzheimer’s disease. Cell Tissue Res. 290, 471–480.

    Article  PubMed  CAS  Google Scholar 

  59. Markesbery W.R. (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biol. Med. 23, 134–147.

    Article  CAS  Google Scholar 

  60. Gsell W., Conrad R., Hickethier M., et al. (1995) Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J. Neurochem. 64, 1216–1223.

    Article  PubMed  CAS  Google Scholar 

  61. Takahashi M., Dore S., Ferris C.D., et al. (2000) Amyloid precursor proteins inhibit heme oxygenase activity and augment neurotoxicity in Alzheimer’s disease. Neuron 28, 461–473.

    Article  PubMed  CAS  Google Scholar 

  62. Behl C., Davis J.B., Lesley R., and Schubert D. (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77, 817–827.

    Article  PubMed  CAS  Google Scholar 

  63. Samudralwar D.L., Diprete C.C., Ni B.F., et al. (1995) Elemental imbalances in the olfactory pathway in Alzheimer’s disease. J. Neurol. Sci. 130, 139–145.

    Article  PubMed  CAS  Google Scholar 

  64. Smith M.A., Harris P.L., Sayre L.M., and Perry G. (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. USA 94, 9866–9868.

    Article  PubMed  CAS  Google Scholar 

  65. Deibel M.A., Ehmann W.D., and Markesbery W.R. (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J. Neurol. Sci. 143, 137–142.

    Article  PubMed  CAS  Google Scholar 

  66. Smith M.A., Wehr K., Harris P.L., et al. (1998) Abnormal localization of iron regulatory protein in Alzheimer’s disease. Brain Res. 788, 232–236.

    Article  PubMed  CAS  Google Scholar 

  67. Connor J.R., Snyder B.S., Arosio P., et al. (1995) A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains. J. Neurochem. 65, 717–724.

    Article  PubMed  CAS  Google Scholar 

  68. Loeffler D.A., Connor J.R., Juneau P.L., et al. (1995) Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. J. Neurochem. 65, 710–724.

    Article  PubMed  CAS  Google Scholar 

  69. Kato J. and Niitsu Y. (2002) Recent advance in molecular iron metabolism: translational disorders of ferritin. Int. J. Hematol. 76, 208–212.

    PubMed  CAS  Google Scholar 

  70. Pinero D.J., Hu J. and Connor J.R. (2000) Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer’s diseased brains. Cell. Mol. Biol. (Noisy-le-grand). 46, 761–776.

    CAS  Google Scholar 

  71. Sayre L.M., Perry G., Harris P.L., et al. (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J. Neurochem. 74, 270–279.

    Article  PubMed  CAS  Google Scholar 

  72. Ding Q. and Keller J.N. (2003) Does proteasome inhibition play a role in mediating neuropathology and neuron death in Alzheimer’s disease? J. Alzheimer’s Dis. 5, 241–245.

    CAS  Google Scholar 

  73. Raina A.K., Zhu X., Rottkamp C.A., et al. (2000) Cyclin’ toward dementia: cell cycle abnormalities and abortive oncogenesis in Alzheimer disease. J. Neurosci. Res. 61, 128–133.

    Article  PubMed  CAS  Google Scholar 

  74. Zhu X., Raina A.K., and Smith M.A. (1999) Cell cycle events in neurons. Proliferation or death? Am. J. Pathol. 155, 327–329.

    PubMed  CAS  Google Scholar 

  75. Nagy Z., Esiri M.M., Cato A.M., and Smith A.D. (1997) Cell cycle markers in the hippocampus in Alzheimer’s disease. Acta Neuropathol. (Berl.) 94, 6–15.

    Article  CAS  Google Scholar 

  76. Vincent I., Jicha G., Rosado M., and Dickson D.W. (1997) Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J. Neurosci. 17, 3588–3598.

    PubMed  CAS  Google Scholar 

  77. Yang Y., Geldmacher D.S., and Herrup K. (2001) DNA replication precedes neuronal cell death in Alzheimer’s disease. J. Neurosci. 21, 2661–2668.

    PubMed  CAS  Google Scholar 

  78. Zhu X., McShea A., Harris P.L., et al. (2004) Elevated expression of a regulator of the G2/M phase of the cell cycle, neuronal CIP-1-associated regulator of cyclin B, in Alzheimer’s disease. J. Neurosci. Res. 75, 698–703.

    Article  PubMed  CAS  Google Scholar 

  79. Barni S., Sciola L., Spano A., and Pippia P. (1996) Static cytofluorometry and fluorescence morphology of mitochondria and DNA in proliferating fibroblasts. Biotech. Histochem. 71, 66–70.

    PubMed  CAS  Google Scholar 

  80. Bowser R. and Smith M.A. (2002) Cell cycle proteins in Alzheimer’s disease: plenty of wheels but no cycle. J. Alzheimer’s Dis. 4, 249–254.

    CAS  Google Scholar 

  81. Smith M.A., Richey P.L., Taneda S., et al. (1994) Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer’s disease. Ann. NY Acad. Sci. 738, 447–454.

    Article  PubMed  CAS  Google Scholar 

  82. Smith M.A., Rudnicka-Nawrot M., Richey P.L., et al. (1995) Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease. J. Neurochem. 64, 2660–2666.

    Article  PubMed  CAS  Google Scholar 

  83. Smith M.A., Taneda S., Richey P.L., et al. (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. USA 91, 5710–5714.

    Article  PubMed  CAS  Google Scholar 

  84. Vitek M.P., Bhattacharya K., Glendening J.M., et al. (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 4766–4770.

    Article  PubMed  CAS  Google Scholar 

  85. Castellani R.J., Harris P.L., Sayre L.M., et al. (2001) Active glycation in neurofibrillary pathology of Alzheimer disease: N(epsilon)-(carboxymethyl) lysine and hexitol-lysine. Free Radical Biol. Med. 31, 175–180.

    Article  CAS  Google Scholar 

  86. Nunomura A., Perry G., Aliev G., et al. (2001) Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 759–767.

    PubMed  CAS  Google Scholar 

  87. Nunomura A., Perry G., Pappolla M.A., et al. (2000) Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J. Neuropathol. Exp. Neurol. 59, 1011–1017.

    PubMed  CAS  Google Scholar 

  88. Odetti P., Angelini G., Dapino D., et al. (1998) Early glycoxidation damage in brains from Down’s syndrome. Biochem. Biophys. Res. Commun. 243, 849–851.

    Article  PubMed  CAS  Google Scholar 

  89. Pratico D., Uryu K., Leight S., et al. (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci. 21, 4183–4187.

    PubMed  CAS  Google Scholar 

  90. Smith M.A., Hirai K., Hsiao K., et al. (1998) Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J. Neurochem. 70, 2212–2215.

    Article  PubMed  CAS  Google Scholar 

  91. Olivieri G., Baysang G., Meier F., et al. (2001) N-acetyl-l-cysteine protects SHSY5Y neuroblastoma cells from oxidative stress and cell cytotoxicity: effects on beta-amyloid secretion and τ phosphorylation. J. Neurochem. 76, 224–233.

    Article  PubMed  CAS  Google Scholar 

  92. Misonou H., Morishima-Kawashima M., and Ihara Y. (2000) Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry 39, 6951–6959.

    Article  PubMed  CAS  Google Scholar 

  93. Frederikse P.H., Garland D., Zigler J.S., Jr., and Piatigorsky J. (1996) Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (Abeta) in mammalian lenses, and Abeta has toxic effects on lens epithelial cells. J. Biol. Chem. 271, 10,169–10,174.

    CAS  Google Scholar 

  94. Tamagno E., Bardini P., Obbili A., et al. (2002) Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol. Dis. 10, 279–288.

    Article  PubMed  CAS  Google Scholar 

  95. Dyrks T., Dyrks E., Hartmann T., et al. (1992) Amyloidogenicity of beta A4 and beta A4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J. Biol. Chem. 267, 18,210–18,217.

    CAS  Google Scholar 

  96. Atwood C.S., Moir R.D., Huang X., et al. (1998) Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273, 12,817–12,826.

    Article  CAS  Google Scholar 

  97. Ono K., Hasegawa K., Naiki H., and Yamada M. (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J. Neurosci. Res. 75, 742–750.

    Article  PubMed  CAS  Google Scholar 

  98. Frautschy S.A., Hu W., Kim P., et al. (2001) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol. Aging 22, 993–1005.

    Article  PubMed  CAS  Google Scholar 

  99. Pappolla M., Bozner P., Soto C., et al. (1998) Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J. Biol. Chem. 273, 7185–7188.

    Article  PubMed  CAS  Google Scholar 

  100. Hall E.D. and Braughler J.M. (1986) Role of lipid peroxidation in post-traumatic spinal cord degeneration: a review. Central Nerv. Syst. Trauma 3, 281–294.

    CAS  Google Scholar 

  101. Kitagawa K., Matsumoto M., Oda T., et al. (1990) Free radical generation during brief period of cerebral ischemia may trigger delayed neuronal death. Neuroscience 35, 551–558.

    Article  PubMed  CAS  Google Scholar 

  102. Jenner P., Dexter D.T., Sian J., et al. (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann. Neurol. 32(Suppl.), S82-S87.

    Article  PubMed  CAS  Google Scholar 

  103. Geddes J.W., Tekirian T.L., Soultanian N.S., et al. (1997) Comparison of neuropathologic criteria for the diagnosis of Alzheimer’s disease. Neurobiol. Aging 18, S99-S105.

    Article  PubMed  CAS  Google Scholar 

  104. Gentleman S.M., Graham D.I., and Roberts G.W. (1993) Molecular pathology of head trauma: altered beta APP metabolism and the aetiology of Alzheimer’s disease. Prog. Brain. Res. 96, 237–246.

    PubMed  CAS  Google Scholar 

  105. Roberts G.W., Gentleman S.M., Lynch A., et al. (1994) Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry. 57, 419–425.

    PubMed  CAS  Google Scholar 

  106. Lim G.P., Chu T., Yang F., et al. (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21, 8370–8377.

    PubMed  CAS  Google Scholar 

  107. Sung S., Yao Y., Uryu K., et al. (2004) Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J. 18, 323–325.

    PubMed  CAS  Google Scholar 

  108. Matsubara E., Bryant-Thomas T., Pacheco Quinto J., et al. (2003) Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J. Neurochem. 85, 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  109. Veurink G., Liu D., Taddei K., et al. (2003) Reduction of inclusion body pathology in ApoE-deficient mice fed a combination of antioxidants. Free Radical Biol. Med. 34, 1070–1077.

    Article  CAS  Google Scholar 

  110. Johnson G.V. and Bailey C.D. (2002) T, where are we now? J. Alzheimer’s Dis. 4, 375–398.

    CAS  Google Scholar 

  111. Gomez-Ramos A., Diaz-Nido J., Smith M.A., et al. (2003) Effect of the lipid peroxidation product acrolein on τ phosphorylation in neural cells. J. Neurosci. Res. 71, 863–870.

    Article  PubMed  CAS  Google Scholar 

  112. Ho P.I., Ortiz D., Rogers E., and Shea T.B. (2002) Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage. J. Neurosci. Res. 70, 694–702.

    Article  PubMed  CAS  Google Scholar 

  113. Olivieri G., Brack C., Muller-Spahn F., et al. (2000) Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and τ phosphorylation in SHSY5Y neuroblastoma cells. J. Neurochem. 74, 231–236.

    Article  PubMed  CAS  Google Scholar 

  114. Mattson M.P., Fu W., Waeg G., and Uchida K. (1997) 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein τ. Neuroreport. 8, 2275–2281.

    Article  PubMed  CAS  Google Scholar 

  115. Egana J.T., Zambrano C., Nunez M.T., et al. (2003) Iron-induced oxidative stress modify τ phosphorylation patterns in hippocampal cell cultures. Biometals 16, 215–223.

    Article  PubMed  CAS  Google Scholar 

  116. Ko L., Odawara T., and Yen S.H. (1997) Menadione-induced τ dephosphorylation in cultured human neuroblastoma cells. Brain Res. 760, 118–128.

    Article  PubMed  CAS  Google Scholar 

  117. Davis D.R., Anderton B.H., Brion J.P., et al. (1997) Oxidative stress induces dephosphorylation of τ in rat brain primary neuronal cultures. J. Neurochem. 68, 1590–1597.

    Article  PubMed  CAS  Google Scholar 

  118. Takeda A., Smith M.A., Avila J., et al. (2000) In Alzheimer’s disease, heme oxygenase is coincident with Alz50, an epitope of τ induced by 4-hydroxy-2-nonenal modification. J. Neurochem. 75, 1234–1241.

    Article  PubMed  CAS  Google Scholar 

  119. Perez M., Hernandez F., Gomez-Ramos A., et al. (2002) Formation of aberrant phosphotau fibrillar polymers in neural cultured cells. Eur. J. Biochem. 269, 1484–1489.

    Article  PubMed  CAS  Google Scholar 

  120. Perez M., Cuadros R., Smith M.A., et al. (2000) Phosphorylated, but not native, τ protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal. FEBS Lett. 486, 270–274.

    Article  PubMed  CAS  Google Scholar 

  121. Wilson D.M. and Binder L.I. (1997) Free fatty acids stimulate the polymerization of τ and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer’s disease. Am. J. Pathol. 150, 2181–2195.

    PubMed  CAS  Google Scholar 

  122. Gamblin T.C., King M.E., Dawson H., et al. (2000) In vitro polymerization of τ protein monitored by laser light scattering: method and application to the study of FTDP-17 mutants. Biochemistry 39, 6136–6144.

    Article  PubMed  CAS  Google Scholar 

  123. Nacharaju P., Lewis J., Easson C., et al. (1999) Accelerated filament formation from τ protein with specific FTDP-17 missense mutations. FEBS Lett. 447, 195–199.

    Article  PubMed  CAS  Google Scholar 

  124. Gamblin T.C., King M.E., Kuret J., et al. (2000) Oxidative regulation of fatty acid-induced τ polymerization. Biochemistry 39, 14,203–14,210.

    CAS  Google Scholar 

  125. Smith M.A. (1998) Alzheimer disease. Int. Rev. Neurobiol. 42, 1–54.

    Article  PubMed  CAS  Google Scholar 

  126. Smith M.A., Casadesus G., Joseph J.A., and Perry G. (2002) Amyloid-beta and τ serve antioxidant functions in the aging and Alzheimer brain. Free Radical Biol. Med. 33, 1194–1999.

    Article  CAS  Google Scholar 

  127. Lee H.G., Petersen R.B., Zhu X., et al. (2003) Will preventing protein aggregates live up to its promise as prophylaxis against neurodegenerative diseases? Brain Pathol. 13, 630–638.

    Article  PubMed  CAS  Google Scholar 

  128. Gomez-Isla T., Hollister R., West H., et al. (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann. Neurol. 41, 17–24.

    Article  PubMed  CAS  Google Scholar 

  129. Kril J.J., Patel S., Harding A.J., and Halliday G.M. (2002) Neuron loss from the hippocampus of Alzheimer’s disease exceeds extracellular neurofibrillary tangle formation. Acta Neuropathol. (Berl.) 103, 370–376.

    Article  Google Scholar 

  130. Morsch R., Simon W., and Coleman P.D. (1999) Neurons may live for decades with neurofibrillary tangles. J. Neuropathol. Exp. Neurol. 58, 188–197.

    Article  PubMed  CAS  Google Scholar 

  131. Curtain C.C., Ali F., Volitakis I., et al. (2001) Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276, 20,466–20,473.

    Article  CAS  Google Scholar 

  132. Hock C., Golombowski S., Muller-Spahn F., et al. (1998) Cerebrospinal fluid levels of amyloid precursor protein and amyloid beta-peptide in Alzheimer’s disease and major depression—inverse correlation with dementia severity. Eur. Neurol. 39, 111–118.

    Article  PubMed  CAS  Google Scholar 

  133. Hou L., Kang I., Marchant R.E., and Zagorski M.G. (2002) Methionine 35 oxidation reduces fibril assembly of the amyloid abeta-(1–42) peptide of Alzheimer’s disease. J. Biol. Chem. 277, 40,173–40,176.

    CAS  Google Scholar 

  134. Zou K., Gong J.S., Yanagisawa K., and Michikawa M. (2002) A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J. Neurosci. 22, 4833–4841.

    PubMed  CAS  Google Scholar 

  135. Kontush A., Berndt C., Weber W., et al. (2001) Amyloid-beta is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radical Biol. Med. 30, 119–128.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongwei Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Lee, Hg., Casadesus, G. et al. Oxidative imbalance in alzheimer’s disease. Mol Neurobiol 31, 205–217 (2005). https://doi.org/10.1385/MN:31:1-3:205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:31:1-3:205

Index Entries

Navigation